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The application of non-optimized damping and phono-absorbent materials to
automotive systems has not proved fully satisfactory in abating noise and vibration. The
objective of this work was to develop a simple finite element modelling procedure that
would allow optimizing structures such as a car body-in-white in terms of vibroacoustic
behavior from the design stage. A procedure was developed to determine the modifications
to be made in the mass, stiffness and damping characteristics in the finite element (FE)
modelling of a metal structure meshed with shell elements so that the model would describe
the behavior of the acoustically treated structure. To validate the modifications, a
numerical–experimental comparison of the velocities on the vibrating surface was carried
out, followed by a numerical–experimental comparison of the sound pressures generated
by the vibrating plate. In the comparison a simple monopole model was used, in which
each area of vibrating surface could be likened to a point source. The simulation and
experimental procedures, previously validated for the metal structure, were then applied
to multi-layered panels. Good agreement between the experimental and simulated velocities
and sound pressures resulted for all the multi-layered panel configurations examined.
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1. INTRODUCTION

The abatement of noise and vibrations has always been a major goal in vehicle design.
Over the last few years, as a result of the growing strictness of international standards and
the criticality of user comfort in the success or failure of new models, its importance has
increased even more.

The rewards for abating noise and vibration are well worth the effort. In addition to
enhanced user comfort, benefits are also accrued to the vehicle itself in terms of
performance and longer lifetimes for its electrical, electronic and mechanical components.
However, the conventional approach to noise and vibration abatement, which mainly
involves the application of panels made of damping and phono-absorbent materials that
have not been subjected to prior optimization, can no longer be considered satisfactory.

Of notable aid would be the availability of a tool to optimize a structure, such as a car
body-in-white, in terms of its vibroacoustic behavior right from the initial design stage.
Obviously, the ability to design a car body in relation to noise would represent a
breakthrough in current vehicle design, since the car body is the main source of vibration
transmission from the mechanical components and the road surface to the passengers.

The objective of this work, the theoretical background and preliminary phase of which
have been described in a previous paper [1], was to determine how to modify the mass,
stiffness and damping characteristics in the finite element (FE) modelling of a metal
structure meshed with shell elements to enable the model to describe the behavior
of the acoustically treated structure (normally a multi-layered panel). To validate the
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modifications, a numerical–experimental comparison of the velocities on the vibrating
surface was carried out, followed by a numerical–experimental comparison of the ensuing
sound pressures. For the second phase, a simple monopole model, in which each area of
vibrating surface could be likened to a point source, was developed to evaluate the sound
pressure generated by the vibrating surface. In this work, the simulation and experimental
procedures validated for the metal structure in the previous work, have been applied to
multi-layered panels.

2. THEORETICAL BACKGROUND

When a structure is excited by a force, F=F(t), varying in time, and is made to vibrate,
it displaces the air particles adjacent to its surface, which in turn vibrate around their
equilibrium position, thus displacing the other particles that they are in contact with. This
mechanism transforms the structure’s vibrational mechanical energy into acoustic energy
in the form of an acoustic wave that propagates into the surrounding environment.
Knowing the system’s excitation, one can calculate the sound pressure in the environment
by means of a transfer function that characterizes the vibrations’ structural path and the
radiated sound pressure field. Hence, assuming system linearity, one can relate the value
of the sound pressure P=P(x, y, z, t) at a point i in space to the excitation force applied
at point j by a frequency response function (FRF) of the kind

HFP =P/F. (1)

(A list of nomenclature is given in the Appendix.)
Consider the vibrating structure as a plate divided into rectangles, each of which is

considered a monopole. Each source’s contributions can be viewed as the product of two
FRFs, in which the first relates each vibrating component’s velocity to the exciting force
on point i and the second relates the sound pressure field at point j in space to the vibrating
component’s velocity. Hence, assuming

HFV =Vk /Fi and HVP =Pj /Vk , (2)

one obtains

HFP = s
n

k=1

HFV HVP , (3)

where n represents the number of areas into which the structure is divided.
Analyzing the two terms inside the summation, one can see that the first, HFV , can be

experimentally determined by direct measurement or analytically determined by modelling
the structure with finite elements. To simulate the second term, HVP , influenced by the
environment in which the sound propagates, the authors have developed a simple
monopole model, assuming that each rectangular element of the modelled plate emits
a spherical wave. Hence, one can express HVP [1–3] as

HVP =
Pj

Vk
=

P(r, t)
u(r, t)

=−
jvrr2

0

0j v

c
r0 −11 r

ej(v/c)(r− r0). (4)
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3. PROCEDURE

3.1.     

A procedure was developed to verify whether the modified FE modelling of the vibrating
plates produced good agreement with the actual experimental results in terms of vibration
and noise generation. The procedure entailed a step-by-step numerical–experimental
comparison of the HFP applied to flat steel plates (measuring 550×350×1 mm) without
acoustic treatment [1]. In the first phase of the verification, the experimentally measured
HFV and the HVP calculated with the monopole model were used: the monopole model
could thus be adjusted by comparing the experimental and numerical values of the HFP.
The HFV were then computed with the FE model and combined with the calculated HVP .
The resulting HFP was compared to the experimental one. The excellent results of the
comparison (see Figure 1) justified development of the entire procedure. The procedure,
which is described in this work, was applied to multi-layered panels of the same
configuration as those actually used in automotive applications, first with a damping
material glued to the steel plate, and then with the addition of a porous material and a
high mass viscoelastic material (septum) resting upon the other layers without any
adhesive.

The test rig is schematically illustrated in Figure 2. The test plate was fixed along its
external perimeter to a rigid frame within the frequency range being examined. The plate
was supported by four springs, which provided motion to the rigid frame at frequencies
below the test range. An electromagnetic shaker was used to produce vibration, while
an impedance head between the shaker and frame allowed measurement of the applied
force.

The velocities were obtained by integrating the accelerations measured on the plate by
a lightweight accelerometer in order to prevent the mass from affecting dynamic behavior.
Sound pressure was measured at various positions above the plate by microphones placed
at various locations above the test rig, which was housed inside a semi-anechoic chamber.
The rig was encapsulated in an acoustically treated isolation box to ensure that the
microphones measured only the noise generated by the plate’s upper surface.

Figure 1. A plate without acoustic treatment. ——, Measured HFP values; ——, HFP values simulated on the
basis of simulated HVP .
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Figure 2. A schematic of the test rig.

3.2.     

In the experimental modal analysis of the plate, an odd phenomenon emerged from
comparison of the experimental and FE results. More natural frequencies were
encountered in the same frequency range in the FE simulation than in experimental testing.
Two (specifically numbers 5 and 9 in Table 1) had seemingly vanished altogether.
Examination of the displacement at point P (see Figure 2) for each mode vibration in the
FE model reveals amplitudes between seven and eight orders of magnitude smaller than
those of the other eigenvectors (scaled to unitary modal mass) at the vanished natural
frequencies. This means that if a modal synthesis between point P and the plate points
starting from the FE eigenvectors is performed, one obtains the FRFs in which modes 5
and 9 are invisible, owing to the negligible amplitudes of their eigenvectors. The result is
thus synthesized FRFs closely resembling the experimentally derived ones. To explain this
behavior, it should be recalled that the plate had dual symmetry with respect to the
centerpoint axes and was clamped on all four sides. One can now discover the source of
this oddity. Calling R the resultant of the inertial forces acting on the plate and M their
resultant moment, one can first analyze the mode shapes for the various natural
frequencies. The following three cases are shown in Table 1: (1) the mode shapes are
symmetric to both axes of symmetry, so that R$ 0 and M=0; (2) the mode shapes
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T 1

The characteristics of the first ten modes for inertial forces (R), their resultant moments (M)
and types of symmetry

Types of
Mode Shape R M symmetry

1 $ 0 0 Symmetric
Symmetric

2 0 $ 0 Symmetric
Asymmetric

3 $ 0 0 Symmetric
Symmetric

4 0 $ 0 Asymmetric
Symmetric

5 0 0 Asymmetric
Asymmetric

6 0 $ 0 Symmetric
Asymmetric

7 0 $ 0 Asymmetric
Symmetric

8 $ 0 0 Symmetric
Symmetric

9 0 0 Asymmetric
Asymmetric

10 $ 0 0 Symmetric
Symmetric

are symmetric to one axis of symmetry and asymmetric to the other, so that R=0 and
M$ 0; (3) the mode shapes are asymmetric to both axes of symmetry, so that R=0 and
M=0. Classifying the plate’s natural frequencies, one can observe that ‘‘vanishing’’ modes
5 and 9 are the only ones belonging to case 3.

Mode 5, schematically illustrated in Figure 3, will serve as an example. Since R=0 and
M=0 according to the theorem of centerpoint motion, the center point G is immobile
and consequently all the points belonging to the nodal lines of AC and BD in Figure 3
are immobile, and the frame supporting and constraining the plate is also immobile. Hence,
the whole frame, and also the application point of force F during the experimental FRF
measurement, fails to move during the vibration of the plate at that given natural
frequency. This, on the one hand, justifies the exceedingly reduced amplitude of the
displacements of point P encountered in modes 5 and 9 in the FE solution and, on the
other, explains why they failed to emerge experimentally. The frame, which was excited
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Figure 3. A representation of the mode shape of mode 5.

at point P in order to make the plate vibrate, was thus excited in one of its modal nodes
and one was thus unable to transmit energy to the plate at that particular frequency.

To resolve the problem caused by the mass distribution, it was necessary to insert a 20 g
‘‘unbalancing’’ mass on the plate. The mass was placed at point N, which is characterized
by not belonging to any nodal lines for the modes under examination. In this way, all the
modes emerged in both the experimental and numerical analyses.

4. RESULTS

4.1.        

The steel plate was tested with layers of damping material of various thicknesses.
Although all gave good results, for brevity only one is illustrated. The thickness of the
damping material was 1·86 mm and the surface density was 3·37 kg/m2. The material was
hot-glued to the steel plate in an oven for 30 minutes at 160°C, according to the
manufacturer’s instructions. As had been previously done for the untreated plates [1], the
plate was divided into 96 rectangles, each measuring 45·8×43·8 mm. The velocities
measured at their centerpoints were respectively associated to each rectangle.

Following the previously described procedure, the 96 HFV were measured and together
with the numerically derived HVP from the monopole model, produced the HFP plotted in
Figure 4 against the experimentally measured value. The good agreement between the two
curves allowed passing to the next step, the FE modelling of the plate.

The first step was to analyze the plate experimentally to derive its natural frequency,
damping and mode shapes. At the same time, an FE model was created by using shell
elements for the plate and beam elements for the frame beams. The modifications to the
FE model of the untreated plate entailed replacing the density by an equivalent density
to account for the mass owing to the damping material and replacing the thickness by an
equivalent thickness to account for the increased stiffness resulting from the treatment.
While the calculation for the density modifications was fairly straightforward, the thickness
variation had to be evaluated by trial and error in order to provide a good fit for the
numerical and experimental natural frequencies.

The equivalent density was 10 333 kg/m3 (+32 percent); the equivalent thickness,
1·06 mm (+6 percent). Since the objective of this work was to characterize the variations
to be made to the FE model of a shell structure in terms of mass, stiffness and damping
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Figure 4. A plate with damping material. ——, Measured HFP values; ——, HFP simulated on the basis of
measured HFV .

in order to simulate vibroacoustic treatment, the calculation of an equivalent thickness
could represent a serious limitation. It should, however, be noted that the variation was
so slight that neglecting it did not produce any significant errors. In addition, when
simulating a structure stiffer than a flat plate (e.g., a grooved surface), one can expect the
stiffness contribution of the damping material to be negligible and hence can refer to the
thickness of a plate lacking acoustic treatment.

With the frequency and the mode shapes calculated by using the FE model and the
dampings derived from experimental measurements by using LMS software, it was possible
to synthesize the HFV . The synthesized and experimental HFV relative to one of the
measuring points are plotted in Figure 5. The synthesized HFV associated to HVP derived

Figure 5. Measured (—— ) and simulated (——) HFV values for a point of a plate with damping material.
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Figure 6. A plate with damping material: —— , Measured HFP values; ——, HFP values simulated on the basis
of simulated HFV .

from the monopole model produce the HFP in Figure 6, which were compared with the
experimental FRFs. The good agreement between the two curves justified proceeding to
the addition of layers in modelling the multi-layered panel. Good agreement also emerged
when the sound pressure measuring point was varied.

4.2.         ,  

 

A steel plate in various configurations of damping material+porous layer+ septum
was tested. For brevity, only the results for a configuration comprising a 10 mm thick

Figure 7. A plate with damping material, porous layer and septum: —— , Measured HFP values; ——,
HFP values simulated on the basis of HFV values measured on the upper panel plate surface.
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porous layer and a septum layer with a surface density of 5 kg/m2 are illustrated. The two
layers were glued together according to the manufacturer’s specifications and the resulting
layer was placed over the test plate. Putty was applied along the edge of the multi-layered

Figure 8. The first numerical and experimental frequencies and mode shapes of the steel plate with damping
material, porous layer and septum. (a) Experimental mode 1; f=42 Hz, damping=3 percent: (b) numerical
mode 1; f=41 Hz: (c) experimental mode 2; f=60 Hz, damping=5 percent: (d) numerical mode 2; f=59 Hz:
(e) experimental mode 3; f=86 Hz, damping=12 percent: (f) numerical mode 3; f=93 Hz.
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Figure 9. Measured (—— ) and simulated (——) HFV values for a point of a plate with damping material,
porous layer and septum.

panel (see Figure 2) to connect the panel to the frame edges. This was done to prevent
an acoustic flow through the edges and to stimulate real-life automotive applications,
in which the multi-layered panels are connected to the car bodies by the upholstery.
As in the preceding case, in Figure 7 is shown the HFP estimated on the basis of the
experimental HFV measured on the upper panel surface plotted in comparison with the
experimental HFP curve.

The mode shapes on the upper and lower surfaces were measured by experimental modal
analysis. The first three mode shapes are shown in Figure 8. There is excellent agreement,
especially for the low frequencies, which are those of interest in automotive applications,

Figure 10. A plate with damping material, porous layer and septum: —— , Measured HFP values; ——,
HFP values simulated on the basis of HFV values simulated.
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between the upper and lower surface mode shapes. This is an extremely important result
in view of the FE modelling of the multi-layer panel with only a single shell layer. In this
case, the modifications to the FE model of the untreated plate are analogous to those of
the previous cases: an equivalent density of 13 956 kg/m3 (+77·8 percent); an equivalent
thickness of 1·13 mm (+13 percent). The same considerations as in the previous case are
also applicable here.

The frequencies and mode shapes obtained from the FE model are shown in Figure 8
in comparison with the experimental mode shapes. The numerical–experimental
comparison of the HFP calculated on the basis of the synthesized HFV plotted with the
experimental HFP curve in Figure 9 is illustrated in Figure 10. The good agreement validates
the procedure for evaluating the modifications for the plate FE model with acoustic
treatment and the validity of the modifications selected for simulating the treatment of the
experimental multi-layered panels.

Owing to the high levels, not all damping modes could be experimentally determined
with the LMS software; some had to be obtained by interpolation. Since damping and
mass emerged as the parameters having the strongest effect on dynamic behaviour, a
forthcoming research project will be aimed at devising a reliable experimental procedure
for evaluating damping (mass being far easier to compute).

5. CONCLUSIONS

A simplified procedure for the finite element modelling of acoustically treated structures
such as a car body-in-white has been presented. The vibroacoustic behavior of
multi-layered panels was simulated by varying mass (density), stiffness (thickness) and
damping in steel plate. Good agreement between the experimental and simulated velocities
and sound pressures resulted for all the multi-layered panel configurations examined.
The procedure is simple to use, requires little calculation effort, and may be applied to FE
models of vibrating panels only by varying their mass and stiffness. Since damping must
be experimentally determined for each panel configuration, our next work will focus on
developing a procedure for evaluating damping, the complexity of which increases as the
damping level increases.
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APPENDIX: NOMENCLATURE

c sound speed
F(t) force in relation to time
HFP force–sound pressure frequency response function
HFV force–velocity frequency response function
HVP velocity–sound pressure frequency response function
j imaginary unit ( j2 =−1)
P(r, t) sound pressure in relation to the distance from the spheres (polar co-ordinates)
r distance of a point from the center of the sphere
r0 sphere radius
u(r, t) velocity of the air particles in relation to the distance from the sphere and time
Vk velocity of the k vibrating component
r air density
v 2pf, circular frequency


