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PART I: STRINGS AND SECOND ORDER
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The energetics of translating one-dimensional uniform strings and highly tensioned pipes
with vanishing bending stiffness and flowing fluid are analyzed for fixed, free and damped
boundary conditions. The interaction between the translating continua and the boundary
supports causes energy transfer. At a fixed boundary, the transverse component of tension
does work, and the Coriolis forces at a free-end cause energy flux into the second-order
continuum. Under a symmetric boundary configuration, the total energy of free oscillation
varies periodically at the fundamental natural frequency. Asymmetric boundary supports
in the pipe-fluid system lead to damped or self-excited motions. At a viscously damped
boundary, the condition for maximal energy dissipation, the destabilizing effect of
dissipation and the stabilizing effect of negative damping are examined analytically using
travelling wave solutions. The energies transferred at the different boundary supports are
quantified by energy reflection coefficients which are determined completely by the
boundary conditions. Numerical simulations verify the analytically predicted energy
variations.
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1. INTRODUCTION

Understanding vibration of translating continua is important for the design of high speed
magnetic tapes, band saws, power transmission chains and belts, textile and composite
fibers, aerial cable tramways, pipes transporting fluid and other similar systems. Recent
developments are reviewed by Wickert and Mote [1], Wang and Liu [2], and Paidoussis
and Li [3].

A translating uniform string is the simplest model of axially moving continua. Earlier
studies concern the dependence of the frequency spectrum on the transport speed, complex
eigenfunctions, and the existence of a divergence instability [4–8]. The natural frequencies
decrease with increasing transport speed, and the translating continua experience
divergence instability at a critical speed. The eigenfunctions are complex and
speed-dependent due to a convective acceleration component in the equations of motion.
The phases of the natural oscillations are not constant and propagate upstream at the
phase propagation velocity. Wickert and Mote [9] derived exact, closed-form, expressions
for the response of translating continua to arbitrary excitation and initial conditions by
using a complex modal analysis and a Green’s function.
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Another interesting feature of the translating continuum is the periodic variation of total
mechanical energy. For an undamped non-translating string, the total energy is constant.
However under translation, the energy of each natural mode periodically transfers into and
out of the span. Chubachi [6] and Miranker [10] discussed periodicity of the energy transfer
in a translating string. Wickert and Mote [11] showed that the energy flux at a fixed support
is the product of the string tension and the convective component of a velocity. An
analogous problem, with similar governing equation, is the problem of a highly tensioned
pipe conveying fluids under the assumptions that the contribution of bending to the
stiffness of the pipe and the effect of fluid pressure are negligible.

In this paper the energetics of translating uniform strings and highly tensioned pipes
conveying fluids are investigated using traveling waves. By addressing the energetics of
both translating strings and tensioned pipes under a fixed, free or damped boundary
support in a generalized manner, this paper extends the previous work by Wickert and
Mote [11] on the energy variation of a single-mode wave in a translating string with a fixed
support. This paper, firstly, identifies the generalized forces and the convective velocities,
that result in energy flux at the boundary, by the one-dimensional transport theorem.
Then, the magnitude of the energy transfer is quantified completely by the boundary
condition specified through traveling wave solutions. The dynamic stability of the
second-order continua is discussed based on the energy transfer mechanism at the
boundaries.

2. THE EQUATIONS OF MOTION

2.1.  

Consider a uniform string translating at constant speed and tension between two
supports separated by distance L (Figure 1(a)). The linear equation of the transverse
motion of the string is [4, 5]

r(wtt +2vwxt + v2wxx )−Pwxx =0, x $ (0, L) (1)

where r is the linear density of the string, v is the constant transport speed, and P is the
constant tension. The linear model (1) is restricted by the assumptions that the transverse
displacement is small compared to the span length L and the initial tension is sufficiently
large that its variation due to extension of the string is negligible. The contributions of
the non-linear terms in the equation of motion increase with transport speed [12]. When
the stiffness operator in (1) is no longer positive definite, divergence instability occurs at
a critical speed

vc =zP/r . (2)

The critical speed is actually the phase velocity of a wave with v=0. In this study, v is
subcritical (vQ vc ).

2.2.    fl

Consider an idealized, highly tensioned pipe with negligible bending stiffness conveying
fluids with a steady flow velocity u between two supports, as illustrated in Figure 1 (b–c).
If gravity, pressurization effects and flexural restoring forces are negligible, then the
pipe–fluid system is modelled by a string conveying fluids. The linear equation of transverse
motion w(x, t) of the tensioned pipe is

(mf +mp )wtt +2mfuwxt +mfu2wxx −Pwxx =0, x $ (0, L) (3)
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where mf and mp are the mass densities of the fluid and pipe, and P is the tension on the
pipe. Similar to a beam conveying fluids [13], fluid-frictional effects acting on this pipe are
absent in equation (3). The centrifugal force mfu2wxx is analogous to a compressive force
to the pipe, and the pipe system experiences divergence instability at a critical flow velocity

uc =zP/mf (4)

which is obtained from the time-independent terms in equation (3).

3. TRAVELING WAVE CHARACTERISTICS

3.1.  

A one-dimensional traveling wave has the form

w(x, t)=A ei(vt− kx), (5)

where v and k are the frequency and wavenumber. The traveling wave solution of an
infinite, translating second-order continuum is represented by two independent traveling
waves

w(x, t)=Ad ei(vt− kdx) +Au ei(vt+ kux), (6)

where kd and ku are the wavenumbers for downstream (forward) and upstream (backward)
traveling waves. Substitution of equation (5) into equation (1) gives the dispersion relation
of the translating string

(v2
c − v2)k2 +2vvk−v2 =0, (7)

and it leads to the wavenumbers

kd =
v

vc + v
, ku =

v

vc − v
. (8)

Figure 1. Schematics of the second order translating continua; (a) an axially moving string, (b) a tensioned
pipe conveying fluid with fixed supports, and (c) a tensioned pipe with a free-end at x=L.
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The phase velocities of the downstream and upstream waves are, respectively, cd = vc + v,
and cu = vc − v. For a tensioned pipe transporting fluids, the dispersion relation is

b(u2
c − u2)k2 +2ubvk−v2 =0, (9)

where b=mf /(mf +mp ). The downstream and upstream wavenumbers are

kd =
v

bu+zb2u2 + b(u2
c − u2)

, ku =
v

−bu+zb2u2 + b(u2
c − u2)

. (10)

The phase velocities, cd = bu+zb2u2 + b(u2
c − u2) and cu =−bu+zb2u2 + b(u2

c − u2),
are independent of wavenumber. In the non-dispersive medium, the energy propagation
velocity (group velocity) equals the phase velocity. For a stationary fluid (u=0),
kd = ku =v/(uczb ). For the limiting case b=1, the wavenumbers become kd =v/(uc + u)
and ku =v/(uc − u), which are similar to equation (8). Accordingly, the translating string
(1) can be considered a special case of the second order fluid–pipe system (3).

When a wave, propagating along an elastic medium, is incident on a discontinuity in
the medium, a wave is reflected with its amplitude and phase determined by the reflection
coefficient

r=Ar /Ai = =r = eif, (11)

where Ai and Ar are amplitudes of the incident and reflected waves. When the boundary
has no external energy source (or sink), such as a fixed support, energy conservation
requires that =r ==1.

3.2.   :  

In the infinite, translating continua without constraints, all wavenumbers are
permissible. The natural modes of vibration (standing waves) are representable by the
superposition of equal but opposite traveling waves. As a wave propagates, the phase
difference between two points in the continuum is characterized by the wavenumber k,
which is the phase change per unit length. In the translating continua the total phase
change is kdL, as a wave propagates from the upstream boundary to the downstream one.
Similarly the phase change of a wave travelling the upstream boundary to the downstream
one is kuL. The total phase change, as the wave travels the domain, becomes

L(kd + ku )+fd +fu , (12)

where fd and fu are phase changes produced at the downstream and upstream boundaries.
The phase–closure principle [14, 15] states that, if this total phase change is an integer
multiple of 2p, equation (12) identifies a natural frequency of the system. For the
translating string with fixed supports, the total phase difference

vL(1/(vc + v)+1/(vc − v))+ p+ p=2pn (13)

gives the natural frequencies of the classical moving threadline [7],

vn =
np(v2

c − v2)
vcL

, (14)

where n=1, 2, 3, · · · . The natural frequencies of the fluid–pipe system (3) are determined
in a similar manner (Table 1). For the case of a fixed-free boundary configuration, vn

represents the real part of the natural frequencies of the tensioned pipe.
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T 1

Natural frequencies

String
Tensioned pipe

ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV
Boundary fixed–fixed fixed–fixed fixed–free free–free

vn
np(v2

c − v2)
vcL

npb(u2
c − u2)

Lzb2u2 + b(u2
c − u2)

(n−1/2)pb(u2
c − u2)

Lzb2u2 + b(u2
c − u2)

(n−1)pb(u2
c − u2)

Lzb2u2 + b(u2
c − u2)

4. ENERGETICS OF SECOND ORDER CONTINUA

Consider a continum moving axially at a constant speed v. The instantaneous transverse
velocity of the material particle in inertial co-ordinates is wt + vwx . The total energy per
unit length of a translating string is the sum of the kinetic and potential energy densities:

E
 = 1
2 r(wt + vwx )2 + 1

2Pw2
x . (15)

The energy density of a tensioned pipe conveying fluid becomes

E
 = 1
2mf(wt + uwx )2 + 1

2mpw2
t + 1

2Pw2
x . (16)

The total mechanical energy E(t) contained in the material particles belonging to the fixed
region 0E xEL is

E(t)=g
L

0

E
 dx. (17)

When the continuum transports mass at speed v, the time-rate of change of the total
energy is expressed by the one-dimensional transport theorem including the effect by
nonconservative forces acting on two boundaries:

E� (t)=Et + vE
 m =L0 +F=L0 , (18)

where (
.
)=d/dt, ()t = 1/1t, and E
 m is the energy density of the continuum crossing the

boundary supports. The first term on the right side of equation (18) describes the local
rate of change of energy within the domain, while the second term represents the net rate
of outward energy flux at any instant of time [16]. For a translating string, E
 m =E
 in
equation (15), and for a tensioned pipe conveying fluids,

E
 m = 1
2mf(mt + uwx )2. (19)

The last term F of equation (18) denotes energy flux into the continuum by
non-conservative forces at the boundaries. The non-conservative flux term vanishes at fixed
boundaries because of the zero displacements. Substitution of equations (15) and (17) into
equation (18), and use of equation (1) yield the time-rate of change of the total energy
of the translating string:

E� (t)=Pwx (wt + vwx ) =L0 +F=L0 . (20)

Similarly, the expression for total energy flux in the fluid-pipe system is obtained by
substituting equation (17) and (19) into equation (18) and using equation (3):

E� (t)=Pwx (wt + uwx ) =L0 −g
L

0

mpwtt (uwx ) dx+F=L0 . (21)
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4.1.  

From equation (20), the time-rate of change of energy in a translating string with fixed
boundary conditions w(0, t)=w(L, t)=0 and F=0 is

E� (t)=Pwx (vwx ) =L0 . (22)

At the fixed boundary, the instantaneous velocity of the material particle, vwx , mutiplied
by the transverse component of the string tension, Pwx , gives energy flux into the string
[11]. The string segment passing through a downstream fixed boundary gains energy, and
it loses energy at an upstream one.

For tensioned pipe with fixed supports, the rate of change of energy is, from equation
(21),

E� (t)=Pwx (uwx ) =L0 −g
L

0

mpwtt (uwx ) dx. (23)

The first term represents energy flux into the pipe by the boundary force Pwx and the
convective velocity uwx of the fluid to the pipe. The second term of equation (21) represents
energy flux resulted from inertial force by the transverse motion in the domain. For a
traveling wave w(x, t)=A ei(vt− kx), the inertia force and the convective velocity at a
material particle on the pipe are given by

mpwtt =−mpv
2A ei(vt− kx), uwx =−iukA ei(vk− kx), (24)

showing that the phase difference between the local inertia force and the convective velocity
is always p/2. Thus, the energy flux term vanishes for both downstream and upstream
traveling waves and it is represented only by the pipe tension Pwx and the relative velocity
uwx at the boundaries.

Equations (22) and (23) show that total energy of free oscillation in both systems varies
with time due to energy transfer at both boundaries. All waves recover their original forms
after two consecutive reflections at the end supports. For the translating string, the period
of the energy variation, with zero net energy flux by both boundary supports, is

Te =L/(vc + v)+L/(vc − v)=2vcL/(v2
c − v2), (25)

which equals the fundamental period of the string. For the pipe, the energy of free
vibration varies with a period

Te =
L
cd

+
L
cu

=
2Lzb2u2 + b(u2

c − v2)
b(u2

c − u2)
, (26)

which is also the period of the first mode of the fluid-pipe system. In both cases, the
resultant energy variation of each system vanishes over Te :

DW=g
Te

0

E� (t) dt=0. (27)

4.2.  

When the exit end of a tensioned pipe is unconstrained, the momentum flux of the fluid
acts as a non-conservative force. The fluid–dynamic force does work on the boundary,
while energy flux induced by the boundary force Pwx at the end vanishes. The
non-conservative force is obtained from Hamilton’s principle [17]:
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d g
t2

t1

L dt+g
t2

t1

dW dt=0, (28)

where L=T−V is the Lagrangian function made up of the kinetic energy (T) and
potential energy (V) of the pipe and fluid and dW is the virtual work due to the
non-conservative force not included in the Lagrangian. The substitution of the Lagrangian
for the second order fluid–pipe system,

L=
1
2 g

L

0

(mf(w2
t +2uwxwt + u2w2

x )+mpw2
t −Pw2

x ) dx,

and the virtual work by the unknown non-conservative force FL (t),

dW=FL (t)dw(L, t),

into equation (28) gives the boundary condition at x=L:

{−Pwx +mfu(wt + uwx )+FL}dw=0. (29)

With the boundary condition wx (L, t)=0 at the free-end, equation (29) gives the
non-conservative force

FL (t)=−mfuwt (L, t). (30)

In this case, the Coriolis force induced by the fluid transport does work at the free end.
However, the centrifugal force −mfu2wx (L, t), which is not zero at a free boundary of a
beam conveying fluids, vanishes in the second order continuum. The fluid–dynamic force
at an upstream free end is F0(t)=mfuwt (0, t). Accordingly, with energy flux
F=Fwt =mfuw2

t , the rate of change of energy in the pipe system with free supports both
downstream and upstream is

E� (t)=F=L0 =mfuw2
t (0, t)−mfuw2

t (L, t). (31)

The pipe always loses energy at the downstream free-end and gains energy at the upstream
free-end. The total energy varies with period

Te =
2Lzb2u2 + b(u2

c − u2)
b(u2

c − u2)
(32)

which equals equation (26) for the case with fixed supports, because the fundamental
frequencies of both cases are the same. For any initial condition, the total energy flux by
the nonconservative forces vanishes over Te :

DW=g
Te

0

E� (t) dt=mfu g
Te

0

{w2
t (0, t)−w2

t (L, t)} dt=0. (33)

4.3.   

Consider a translating continuum subjected to an asymmetric boundary configuration.
In a tensioned cantilevered pipe with fluid exiting from the downstream free end, the total
energy flux becomes, from equations (23) and (31),

E� (t)=−Puw2
x (0, t)−mfuw2

t (L, t)E 0. (34)

Energy flux into the pipe is always negative and free motion is damped. However a
tensioned cantilevered pipe with an upstream free end loses stability by flutter, because the
total energy flux into the pipe,
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E� (t)=mfuw2
t (0, t)+Puw2

x (L, t), (35)

is always positive. In either case, the period of energy fluctuation in damped or self-excited
free oscillation becomes

Te =4L
zb2u2 + b(u2

c − u2)
b(u2

c − u2)
, (36)

which is twice the period (26) for the case with a symmetric boundary configuration as
shown in Table 1.

The forces and the corresponding transverse velocity terms resulting in energy flux at
fixed and free supports are summarized in Table 2. A positive sign indicates that energy
is transferred into the system at the boundary.

5. GENERALIZED EXPRESSION FOR ENERGY TRANSFER

The explicit expression for energy transfer, between translating continua and different
types of boundary supports, is examined by considering the energies of incident and
reflected travelling waves on a boundary. The energy contained in one wavelength
l=2p/k of a single harmonic wave A ei(vt− kx) in a translating continuum is

El =g
x+ l

x

E
 dx= pPkA2 = pvZA2, (37)

where Z=P/c is the mechanical impedance of the continuum. The energy DW,
transferred into the continuum span over one period by wave reflection at a boundary,
equals the difference between the energies of the reflected and incident waves:

DW=Er −Ei = pv(ZrA2
r −ZiA2

i ), (38)

where Zr and Zi are the mechanical impedances of the continuum, and Ar and Ai are the
amplitudes of reflected and incident waves. The different impedances, Zr $Zi , in the
translating medium lead to energy flux into the continuum at the boundary even when the
incident and reflected waves have the same amplitude (r=1). An energy reflection
coefficient is then introduced to quantify the energy transfer at the boundary. The energy
reflection coefficient equals the ratio of the reflected wave energy to the incident wave
energy,

R=Er /Ei =Zr /Zi (Ar /Ai )2 = (kr /ki )r2. (39)

T 2

Energy flux at fixed and free boundaries

Tensioned pipe
String ZXXXXXCXXXXXV

Boundary fixed fixed free

Force Pwx Pwx −mfuwt

Convective velocity vwx uwx wt

Energy flux at x=L + + −
Energy flux at x=0 − − +
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The simple equation (39) determines the energy transfer without identifying the
conservative or non-conservative forces acting on the boundary. The energy transferred
into the continuum over a cycle of the wave is then

DW=(1−R)Ei . (40)

For the translating string and the fluid-conveying pipe, the impedance (wavenumber) ratio
of downstream waves to upstream waves is, from equations (8) and (10),

Zd

Zu
=

kd

ku
=

vc − v
vc + v

,
Zd

Zu
=

kd

ku
=

−bu+zb2u2 + b(u2
c − u2)

bu+zb2u2 + b(u2
c − u2)

. (41)

5.1.      

For a harmonic wave solution

w(x, t)=Ad ei(vt− kdx) +Au ei(vt+ kux), (42)

any travelling wave propagating towards a boundary can be considered as the incident
wave. At a downstream boundary, Ad is the amplitude of the incident wave, and Au is the
amplitude of that reflected wave. Substitution of equation (42) into the boundary condition
gives r=Au /Ad at the boundary, and Rd is determined completely from equation (39). For
a fixed boundary support (w(L, t)=0),

r=−1, Rd =(ku /kd )r2 = ku /kd . (43)

For the translating string and pipe, the energy reflection coefficients are, from equations
(41) and (43),

Rd =
vc + v
vc − v

, Rd =
bu+zb2u2 + b(u2

c − u2)

−bu+zb2u2 + b(u2
c − u2)

. (44)

Note that Rd e 1 in both cases, and the incident wave energy increases with a factor ku /kd

at the fixed end. Rd =1 at zero transport speed (v=0 or u=0) and Rd increases with the
speed.

For a fluid-pipe system with a free end at x=L (Pwx (L, t)=0), the coefficients are

r=Rd =
kd

ku
=

−bu+zb2u2 + b(u2
c − u2)

bu+zb2u2 + b(u2
c − u2)

E 1. (45)

The wave reflected from the downstream free end decreases its amplitude and energy by
kd /ku . Both r and Rd asymptotically approach zero as u is increased to uc .

When viscous damping is attached to the free end of the tensioned pipe system, the
boundary condition becomes Pwx (L, t)=−dwt (L, t) and

r=
Pkd −dv

Pku +dv
=

Zd − d
Zu + d

, Rd =
ku (Zd − d)2

kd (Zu + d)2. (46)

If the damping coefficient is tuned to the impedance,

dopt =Zd =P/{bu+zb2u2 + b(u2
c − u2)}, (47)

then r and Rd both vanish at the downstream boundary regardless of frequency. For a
translating string with a viscous damper at x=L, the expressions for r and Rd in equations
(46) are valid with the assumption that the string particles exiting the boundary have no
contribution to the force balance (Pwx (L+, t)=0). Under this assumption, the impedance
of a downstream wave in the axially moving string,

dopt =Zd =P/(vc + v), (48)
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T 3

Critical damping coefficient and energy flux at a viscous damped support

Boundary Downstream (x=L) Upstream (x=0)
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

String d1, 2 =
P
v 013

vc

zv2
c − v21 d1, 2 =

P
v 0−13

vc

zv2
c − v21

Tensioned pipe d1, 2 =
P
bu 013Xb2u2 + b(u2

c − u2)
b(u2

c − u2) 1 d1, 2 =
P
bu 0−13Xb2u2 + b(u2

c − u2)
b(u2

c − u2) 1
Damping coefficient dQ d1 d1 Q dQ d2 dq d2 dQ d1 d1 Q dQ d2 dq d2

Energy flux + − + − + −

becomes the optimal coefficient for complete wave dissipation. Lee and Mote [18] have
recently used this result to stabilize vibration of an axially moving string through boundary
control. The damping coefficients leading to Rd =1, where energy dissipated by the
damping component equals energy transferred into the pipe are

d1, 2 =
P
bu 013Xb2u2 + b(u2

c − u2)
b(u2

c − u2) 1. (49)

When dq d2, Rd q 1 and energy transferred into the pipe at the damped support exceeds
energy dissipation by the damping component. This interesting phenomenon, the
destabilizing effect of dissipation, is also found in a cantilevered, fourth order beam
conveying fluids [19, 20].

Figure 2. Characteristic lines and energy E(t) of a string translating at v=0·5 with fixed supports and a
midspan disturbance at 0·4 Q x*Q 0·6. The period of the energy fluctuation is Te =2/(1− v*2)=2·667.
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5.2.      

When an upstream travelling wave of amplitude Au impinges on a boundary at x=0,
the reflection and energy reflection coefficients at the upstream boundary are obtained in
a similar manner. For

fixed support: w(0, t)=0,

r=Ad /Au =−1, Ru =(kd /ku )r2 = kd /ku ; (50)

free support: wx (0, t)=0,

r= ku /kd , Ru = ku /kd ; (51)

viscously damped support: Pwx (0, t)= dwt (0, t),

r=(Zu − d)/(Zd + d) Ru =(kd /ku)(Zu − d)2/(Zd + d)2. (52)

From equation (50), the energy reflection coefficients for the translating string and the
tensioned pipe at the fixed-end are always less than unity:

Ru =
vc − v
vc + v

, Ru =
−bu+zb2u2 + b(u2

c − u2)

bu+zb2u2 + b(u2
c − u2)

. (53)

At an upstream free support in the fluid-pipe system, the Coriolis force, mfuwt (0, t), is
induced by mass transport through the inlet boundary and does positive work on the pipe.
From equation (51), both r and Ru are larger than unity,

r=Ru =
bu+zb2u2 + b(u2

c − u2)

−bu+zb2u2 + b(u2
c − u2)

e 1, (54)

and increase with transport speed. Thus the free boundary, where energy flux into the
system is positive, can cause large increases in energy as the fluid speed approaches uc .

If damping is attached on the upstream free end of the fluid–pipe system, the damping
force dissipates the incident wave energy but the non-conservative force due to fluid
particles does positive work on the end. The critical damping coefficients leading to Ru =1,
(energy dissipated due to the damping equals energy transferred from inlet fluid particles),
are

d1,2 =
P
bu 0−13Xb2u2 + b(u2

c − u2)
b(u2

c − u2) 1. (55)

It is noted that, firstly, the upstream wave energy can increase at the damped boundary
when the damping coefficient satisfies

d1 Q dQ d2. (56)

Secondly, a negatively damped support can dissipate the incident wave energy, because
Ru Q 1 for the range dQ d1 Q 0. The damping coefficient of the boundary damping for
perfect wave dissipation,

dopt =Zu =P/{−bu+zb2u2 + b(u2
c − u2)}, (57)

is easily obtained from Ru . The results are summarized in Table 3.

6. NUMERICAL COMPARISON

Introduction of the variables

x*= x/L, w*=w/L, t*= t/LzP/r , v*= vzr/P
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Figure 3. Characteristic lines and energy variation with time of the fluid–pipe system with free ends. Fluid
speed is u=0·5 and b=1. The initial midspan wave repeats its motion with period Te =2·667.

into equation (1) gives the normalized equation of motion for the translating string:

w*t*t* +2v*w*x*t* − (1− v*2)u*x*x* =0, x*$ (0, 1). (58)

For the tensioned pipe (3), the equation has the form

w*t*t* +2zbu*w*x*t* − (1− u*2)w*x*x* =0, x*$ (0, 1), (59)

using the dimensionless parameters

x*=
x
L

, w*=
w
L

, t*=
t
LX P

mf +mp
, u*= uXmf

P
, b=

mf

mf +mp
.

The corresponding normalized period of free oscillation for the string and the tensioned
pipe are

Te =2/(1− v*2), Te =2z(1+ (b−1)u*2)/(1− u*2), (60)

respectively.
Numerical simulations by an explicit finite difference method are compared to the

analytical predictions. The unit length of the string is divided into n equal intervals of
length h=1/n, and the time increment is k. The displacement and velocity at each point
are then

uj
i =w*(ih, jk), vj

i =w*t* (ih, jk). (61)

The explicit difference equations for uj+1
i and vj+1

i from the normalized equation (58) are

vj+1
i = vj

i − vk
vj

i+1 − vj
i−1

h
+(1− v2)k

uj
i+1 −2uj

i − uj
i−1

h2 ,
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uj+1
i = uj

i +(k/2)(vj
i + vj+1

i ). (62)

A mesh number n=400 and a time step k=2×10−6 gave stable difference solutions.
The energy fluctuation and the characteristic lines of a fixed boundary string translating

at v*=0·5 are shown in Figure 2. Consider two waves, one travelling upstream and the
other downstream, starting from an initial midspan disturbance (0·4Q x*Q 0·6) with zero
transverse velocity and a total energy EI . The energies contained in the upstream and
downstream waves are calculated by integrating equation (15):

Eu

EI
=

(1+ v*)2

2(1+ v*2)
,

Ed

EI
=

(1− v*)2

2(1+ v*2)
. (63)

The upstream wave energy, Eu , always exceeds the downstream one, Ed . For v*=0·5, an
upstream wave contains (1+ v*)2/(2(1+ v*2))=0·9E1, while a downstream wave has
0·1E1. The downstream travelling wave impinging on the downstream boundary increases
its energy by (1+ v*)/(1− v*)=3, as predicted by equation (43). For an initial energy
EI =100, the total energy becomes 10×3+90=120 at t*=0·6/(1+ v*)=0·4. The
energy of backward travelling wave decreases to (1− v*)/(1+ v*)×90=30 when it is
reflected from the upstream boundary, and the total energy decreases to 30+30=60 at
t*=0·6/(1− v*)=1·2. The total energy returns to 100 at t*=0·6/(1+ v*)
+ 1/(1− v*)=2·4. The energy fluctuation has the period Te =2/(1− v*2)=2·667. As
predicted earlier, it equals the time required for a disturbance to propagate the length of
the string downstream and upstream and return to the initial position.

The total energy of a tensioned pipe with free–free supports is shown in Figure 3. In
this case, the mass parameter is b=1 and fluid speed is u*=0·5 for the comparison with
the previous string case. A traveling wave incident on the downstream free support
decreases its energy to one-third during reflection. An upstream wave energy, which is

Figure 4. Transverse response w*(x*, t*) of a translating string with a midspan initial disturbance at
intermediate times: (a) t*=0, (b) t*=0·2, (c) t*=1, (d) t*=1·5, (e) t*=2, (f) t*=Te =2·667. Transport
speed is v*=0·5. Fixed supports (solid line) and free supports (dashed line).
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Figure 5. Characteristic lines and energy variation with time of the fluid-pipe system with fixed upstream and
free downstream supports. Fluid speed is u*=0·5 and b=1. The wave energy decreases at both boundaries.

initially 90, increases three times ((1+ u*)/(1− u*)=3) at the upstream free support. At
that time the total energy becomes 10×1/3+90×3=273·3. The forward travelling
wave, reflected from the backward wave at x=0, propagates to x=1 where the total
energy becomes 10×1/3+270×1/3=93·3 at t*=0·6/(1− u*)+1/(1+ u*)=1·87.
The period of energy fluctuation is Te =2·667. The corresponding displacements of the
fixed string and the pipe with free ends at intermediate times are plotted in Figure 4. When
a travelling wave is incident on each boundary, the wave reflected from a fixed support
has the amplitude of the incident wave and a phase of p. At a free support, both the
amplitude and the energy of the reflected wave decrease by a factor of 2/3 at x=1 and
increase by a factor 2 at x=0. The incident wave is reflected from the free end without
phase change.

The energy fluctuation and the characteristic lines of a tensioned pipe with fixed–free
boundary configuration are shown in Figure 5 when b=1 and u*=0·5. Free oscillation
is damped by the interaction between the fluid flow and the pipe at the boundaries. A
downstream wave, resulting from the initial disturbance, propagates to x=1 which
decreases its energy to a factor of (1− u*)/(1+ u*)=1/3. The energy of an upstream
wave decreases by 90×2/3=60 at x=0. Then the total energy becomes
10×1/3+90×1/3=33·3 at t*=0·6/0·5=1·2. At t*=2·4, the total wave energy
decreases to 33·3/3=11·1.

The energy and free response of the first and second modes of a translating string are
shown in Figures 6(a) and (b). The total wave energy varies periodically with a period
Te =2·669 in each case. The displacements at intermediate times t*/Te =0, 0·25, 0·5, 0·75
and 1 are plotted together. The total energy of the fundamental mode of a tensioned pipe
system is simulated in Figure 7 when b=0·7 and u*=0·2. Initial condition is
w(0, t*)=0·1 sin px* for fixed–fixed, w*(0, t*)=0·1 sin (px*/2) for fixed–free and
w*(0, t*)=0·1 cos (px*/2) for free–fixed supports. As predicted from equation (60), the
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Figure 6. Total energy variation of a translating string: (a) free response of the first mode
(w*(0, t*)=0·1 sin (px*)); (b) the second mode (w*(0, t*)=0·1 sin (2px*)). The displacement of the string is
shown at t*/Te =0, 0·25, 0·5, 0·75 and 1. Transport speed is v*=0·5 and the period of free motion is Te =2·667.

vibration energy of the fixed–fixed pipe varies with a period Te =2z(1+ (b−1)u*2)/
(1− u*2)=2·058. For the fixed–free configuration, the free vibration is damped with time
because energy is always transferred out of the pipe at both boundaries. However, in the
free–fixed case, energy flux into the pipe is positive at both boundaries and the flowing
fluid becomes an energy source. The amplitude of the oscillation increases with time.

Figure 7. Total energy variation of the first mode in a tensioned pipe for fixed–fixed, fixed–free and free–fixed
supports. Fluid speed is u*=0·2 and b=0·7. The period of free oscillation in the pipe with fixed supports is
Te =2·058.
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Figure 8. The energy reflection coefficient Rd at a viscously damped, downstream boundary when b=0·7:
——, analytical, u*=0·5; - - - -, analytical, u*=0; w, numerical.

When viscous damping is attached to a downstream free end of the tensioned pipe,
analytical solutions (46) and finite difference calculations for the energy reflection
coefficient Rd are compared in Figure 8. The coefficient Rd is numerically calculated using
energies of a single harmonic, incident and reflected waves when b=0·7 and u*=0 or
0·5. The agreement is satisfactory over the ranges examined. Under u*=0·5, the viscously
damped support leads to an energy increase when

d*q d2 =1/(zbu*)(1+z(1+ (b−1)u*2)/(1− u*2))=5·0452.

Figure 9. The energy reflection coefficient Ru at a viscously damped, upstream boundary when b=0·7: ——,
analytical, u*=0·5; - - - -, analytical, u*=0; w, numerical.



 ,   733

The optimal damping coefficient required to dissipate all the incident wave energy is
d*=Zd =1/[zbu*+z1+ (b−1)u*2]=0·7246 for u*=0·5 and 1 for u*=0.

The energy reflection coefficient Ru at a viscous damped support attached to x=0 is
shown in Figure 9 for u*=0 and 0·5. For complete wave dissipation (Ru =0),
d*=Zu =1·8451 at u*=0·5. The damping coefficients leading to Ru =1 are

d1 =−5·042 d2 =0·2643 (64)

for b=0·7 and u*=0·5. At u*=0 (dot line), energy flux into the pipe is positive for
d*Q 0 and negative for d*q 0. However the case of u*=0·5 (solid line) shows that the
pipe loses energy at negative damping (d*Q d1). In this case, energy transferred out of the
pipe is larger than the energy increase by the negative damping. Accordingly,
unstable motions in a pipe with free–fixed boundary conditions can be avoided by
attaching a viscous damper whose damping coefficient satisfies d*Q d1 or d*q d2.

7. CONCLUSIONS

(1) The energy transferred into the translating continua, due to the conservative or non
conservative forces at the various boundary supports is determined completely by the
energy reflection coefficient that depends on the mechanical impedance and the ratio of
the amplitudes of the reflected to incident waves.

(2) At a fixed boundary, the boundary force (tension) leads to energy flux into a
translating string or tensioned pipe. The energy flux into the second-order continuum over
one cycle of a travelling wave is always positive at a fixed downstream boundary and
negative at an upstream one. The Coriolis force at a free end, resulting from mass transport
through the boundary, causes energy flux into the continuum. The sign of the energy flux
is opposite to the case at the fixed boundary.

(3) The total energy of free oscillations in the string or tensioned pipe system with a
symmetric boundary configuration (fixed–fixed and free–free) varies periodically at the
fundamental frequency.

(4) Asymmetric boundary configurations lead to damped (fixed–free) or self-excited
(free–fixed) motions in free vibration of the tensioned pipe.

(5) A boundary viscous damper, whose damping coefficient is tuned to the mechanical
impedance of the translating string or tensioned pipe completely dissipates all the wave
energy incident on the boundary.
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