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1. 

In this note, an elastic string of unit length and unit mass density, represented by the
following non-linear partial differential equation, is considered

ytt(x, t)= [1+ 3
2by2

x(x, t)]yxx(x, t), (1a)

for all x$(0, 1) and te 0, with the boundary conditions

y(0, t)=0, T(1, t)yx(1, t)= u(t), (1b, c)

for all te 0, and the initial conditions

y(x, 0)= f(x), yt(x, 0)= g(x), (1d)

for all x$(0, 1). In equations (1), y(·, ·)$R denotes the transversal displacement of the
string, T(1, t)q 0 denotes the tension in the string at x=1 for all te 0, u(·)$R is a control
input, yxM1y/1x, yxxM12y/1x2, ytM1y/1t, yttM12y/1t2, and bq 0 is a constant real number.

There are several non-linear mathematical models that describe the transversal vibration
of stretched strings. One such model is presented in equation (1a). This model was derived
in reference [1] and has been studied by researchers from the physical and mathematical
points of view; see, e.g., references [2–6] and the references therein.

The boundary condition in equation (1b) implies that the string is fixed at x=0. The
boundary condition in equation (1c) represents the balance of the transversal component
of the tension in the string and the control input u, which is applied transversally at x=1.
The tension in the string represented by equation (1a) is not constant and is given by

T(x, t)=1+ 1
2by2

x(x, t), (2)

for all x$[0, 1] and te 0 (see references [1, 2]). Therefore, the boundary condition in
equation (1c) can be written as

[1+ 1
2by2

x(1, t)]yx(1, t)= u(t), (3)

for all te 0.
In equation (1d), the initial displacement and velocity of the string are, respectively,

denoted by f(x) and g(x) for all x$(0, 1). One assumes that f$C1[0, 1], and that at least
one of the functions f or g is not identically zero over [0, 1].

The control input u in equation (3) is commonly known as the boundary control. In this
note, the stabilization of the string in equaion (1a) by u is studied. More precisely, a u that
results in y(x, t):0 as t:a for all x$[0, 1], is studied. As a stabilizing control input, one
proposes

u(t)=−kyt(1, t), (4)
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for all te 0, where kq 0 is a constant real number. With this choice of u, the boundary
control is the negative feedback of the transversal velocity of the string at x=1, with the
gain k. It is known that linear strings represented by equations (1)–(3), for which b=0,
can be stabilized by the control law in equation (4), see, e.g., references [7–12]. Roughly
speaking, the boundary control in equation (4) provides a dissipative effect in linear strings,
because it is of the form of negative velocity feedback. This is in accordance with the well
known fact that the negative velocity feedback increases damping in most finite
dimensional inertial systems, such as large flexible systems and robotic manipulators.

The authors’ goal in this note is to show that the boundary control u in equation (4)
stabilizes the non-linear string in equations (1)–(3), i.e., u results in y(x, t):0 as t:a for
all x$[0, 1]. The approach taken in this note to show the stabilization of the string in
equations (1)–(4) is similar to that in reference [13], where the stabilization of the
Kirchhoff’s non-linear string by the boundary control was presented.

2.    

The authors’ plan to establish the stability of the non-linear string represented by
equations (1)–(4) is as follows. One defines an energy like (Lyapunov) function of time for
the string and denote it by t � V(t). One shows that V tends to zero exponentially.

The scalar-valued function V is defined as

V(t)ME(t)+ g g
1

0

xyt(x, t)yx(x, t) dx, (5)

for all te 0, where gq 0 is a constant real number,

E(t)M1
2 g

1

0

[y2
t (x, t)+ y2

x(x, t)] dx+
b
8 g

1

0

y4
x(x, t) dx, (6)

and y(·, ·) satisfies equations (1)–(4). From equations (5), (6), and (1d), one obtains

E(0)= 1
2 g

1

0

[g2(x)+ f 2
x(x)] dx+

b
8 g

1

0

f 4
x(x) dx, (7a)

V(0)=E(0)+ g g
1

0

xg(x)fx(x) dx, (7b)

where fx(x)Mdf(x)/dx. Since at least one of the functions f or g is not identically zero over
[0, 1], one has E(0)q 0.

Now, a property of V is proved.

Lemma 2.1. Let g in equation (5) satisfy

gQ 1. (8)

Then, the function V satisfies

0EK1E(t)EV(t)EK2E(t), (9)

for all te 0, where K1 q 0 and K2 q 0 are constant real numbers given by

K1 =1− g, K2 =1+ g. (10a, b)



    837

Proof. For the integral term in equation (5), whose coefficient is g, one has (the
argument (x, t) of the functions is deleted)

g
1

0

xytyx dxEg
1

0

x=yt ==yx = dxE 1
2 g

1

0

y2
t dx+ 1

2 g
1

0

y2
x dxEE(t), (11)

for all te 0. Similarly, one obtains

g
1

0

xytyx dxe−E(t), (12)

for all te 0. Using equations (11) and (12) in equation (5), one obtains inequality (9).
q

Remark. Let g satisfy inequality (8). Then, by inequality (9) and the fact that E(0)q 0,
it is concluded that V(0)q 0. q

Next, equation (4) is used in equation (3) and the boundary conditions are rewritten as

y(0, t)=0, yx(1, t)=−kyt(1, t)/(1+ by2
x(1, t)/2), (13a, b)

for all te 0. One now proves some identities for the functions satisfying equations (13).

Lemma 2.2. Let y(·, ·) satisfy the boundary conditions in equations (13). Then,

g
1

0

(yxxyt + yxtyx) dx=−
ky2

t (1, t)
1+ by2

x(1, t)/2
, (14a)

g
1

0

(3yxxy2
xyt + y3

xyxt) dx=−
k3y4

t (1, t)
[1+ by2

x(1, t)/2]3
, (14b)

g
1

0

xyxtyt dx= 1
2y

2
t (1, t)− 1

2 g
1

0

y2
t dx, (14c)

g
1

0

xyxxyx dx=
k2y2

t (1, t)
2[1+ by2

x(1, t)/2]2
− 1

2 g
1

0

y2
x dx, (14d)

g
1

0

xyxxy3
x dx=

k4y4
t (1, t)

4[1+ by2
x(1, t)/2]4

− 1
4 g

1

0

y4
x dx, (14e)

for all te 0.

Proof. From equation (13a), one has yt(0, t)=0 for all te 0. Thus, one obtains

g
1

0

(yxxyt + yxtyx) dx=g
1

0

(yxyt)x dx= yx(1, t)yt(1, t), (15)

for all te 0. Using equation (13b) in equation (15), one obtains equation (14a).
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Having yt(0, t)=0 for all te 0, one next obtains

g
1

0

(3yxxy2
xyt + y3

xyxt) dx=g
1

0

(y3
xyt)x dx= y3

x(1, t)yt(1, t), (16)

for all te 0. Using equation (13b) in equation (16), one obtains equation (14b).
Next one writes

g
1

0

xyxtyt dx= 1
2 g

1

0

(xy2
t )x dx− 1

2 g
1

0

y2
t dx, (17)

for all te 0. Thus, equation (14c) follows.
Next, one writes

g
1

0

xyxxyx dx= 1
2 g

1

0

(xy2
x)x dx− 1

2 g
1

0

y2
x dx= 1

2y
2
x(1, t)− 1

2 g
1

0

y2
x dx, (18)

for all te 0. Using equation (13b) in equation (18), one obtains equation (14d).
Finally, one writes

g
1

0

xyxxy3
x dx= 1

4 g
1

0

(xy4
x)x dx− 1

4 g
1

0

y4
x dx= 1

4y
4
x(1, t)− 1

4 g
1

0

y4
x dx, (19)

for all te 0. Using equation (13b) in equation (19), one obtains equation (14e). q

Next, the time-derivative of the function E is computed.

Lemma 2.3. The time-derivative of the function E in equation (6), along the solution
of the system (1a), (1d), and (13) (equivalently, the system (1)–(4)) satisfies

E� (t)=−ky2
t (1, t)E 0, (20)

for all te 0.

Proof. From equation (6), one obtains

E� (t)=g
1

0

(yttyt + yxtyx) dx+
b
2 g

1

0

yxty3
x dx, (21)

for all te 0. Substituting ytt from equation (1a) into equation (21), one obtains

E� (t)=g
1

0

(yxxyt + yxtyx) dx+
b
2 g

1

0

(3yxxy2
xyt + y3

xyxt) dx, (22)

for all te 0. Using equation (14a) and (14b) in equation (22), one obtains

E� (t)=−
ky2

t (1, t)
1+ by2

x(1, t)/2 $1+
bk2y2

t (1, t)
2[1+ by2

x(1, t)/2]2% , (23)

for all te 0. Using equation (13b) in the last term of equation (23), one obtains equation
(20). q
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Using the preliminary results obtained thus far, it is next proved that the functions V
and E tend to zero exponentially.

Theorem 2.4. Let g in equation (5) satisfy

gQ 4k/(3k2 +2). (24)

Then, the functions V and E, along the solution of the system (1a), (1d), and (13)
(equivalently, the system (1)–(4)) satisfy

0EV(t)EV(0) e−(g/K2)t 0EE(t)E (V(0)/K1) e−(g/K2)t, (25a, b)

for all te 0, where K1 and K2 are given in equations (10).

Proof. From equation (5), one obtains

V� (t)=E� (t)+ g g
1

0

(xyttyx + xytyxt) dx, (26)

for all te 0. Substituting ytt from equation (1a) into equation (26), one obtains

V� (t)=E� (t)+ g g
1

0

(xyxtyt + xyxxyx + 3
2bxyxxy3

x) dx, (27)

for all te 0. Using equations (20), (14c), (14d), and (14e) in equation (27), one obtains

V� (t)=−gE(t)−
gb
4 g

1

0

y4
x(x, t) dx− ky2

t (1, t)+
g

2
y2

t (1, t)−
gk2y2

t (1, t)
4[1+ by2

x(1, t)/2]2

+
3gk2y2

t (1, t)
4[1+ by2

x(1, t)/2]2 $1+
bk2y2

t (1, t)
2[1+ by2

x(1, t)/2]2% , (28)

for all te 0. Neglecting the second and fifth terms of equation (28) and using equation
(13b) in the last term of this equation, one obtains

V� (t)E−gE(t)− ky2
t (1, t)+

g

2
y2

t (1, t)+
3gk2y2

t (1, t)
4[1+ by2

x(1, t)/2]
, (29)

for all te 0. Therefore,

V� (t)E−gE(t)−F(t), (30)

for all te 0, where

F(t)M[k− g(3k2 +2)/4]y2
t (1, t). (31)

Having inequality (24), one concludes that F(t)e 0 for all te 0. Using the
non-negativeness of F in inequality (30), one obtains

V� (t)E−gE(t), (32)

for all te 0. Since 4k/(3k2 +2)Ez(2/3)Q 1 for all kq 0, from inequality (24), one
concludes that gQ 1. Therefore, inequalities (8) and (9) hold. Using inequality (9) in
inequality (32), one obtains the differential inequality

V� (t)E−(g/K2)V(t), (33)
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for all te 0, with the initial condition V(0)q 0 given in equation (7b). By a comparison
theorem given in references [14, p. 2] or [15, p. 3], one concludes that V in inequality (33)
satisfies V(t)EV(0) e−(g/K2)t for all te 0. Note that by inequality (9), one has V(t)e 0 for
all te 0. Thus, inequality (25a) holds. By inequalities (9) and (25a), one concludes that
inequality (25b) holds. q

Finally, it is shown that the boundary control u in equation (4) stabilizes the non-linear
string in equations (1)–(3).

Corollary 2.5. The solution of the system (1a), (1d), and (13) (equivalently, the system
(1)–(4)) y(x, t):0 as t:a for all x$[0, 1].

Proof. For the system (1a), (1d), and (13), one chooses the Lyapunov function V in
equation (5), and lets g in equation (5) satisfy inequality (24). Then, by Theorem 2.4, the
function E tends to zero exponentially. From equation (6), one concludes that yx(x, t):0
as t:a for all x$[0, 1]. Since y(0, t)=0 for all te 0, one concludes that y(x, t):0 as
t:a for all x$[0, 1]. q

3. 

In this note, it was proved that the non-linear stretched string represented by equations
(1)–(3) can be stabilized by the linear boundary control in equation (4). The boundary
control is the negative feedback of the transversal velocity of the string at one end.
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