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1. 

Circular plates on elastic foundations are used in footings and raft foundations of various
structures. In addition, tubesheets used in various shell-and-tube type heat exchangers, can
be modelled as circular plates on elastic foundations.

The static response of a circular plate on an elastic foundation is well studied [1–3, for
example]. The axisymmetric dynamic response of a circular plate has been analytically
studied [4, for example]. Free vibration of circular footing has been studied by some
authors [5, for example].

This paper presents an analysis and numerical results for the axisymmetric free and
forced vibration of a circular plate on an elastic foundation.

2. 

The axisymmetric equilibrium of a circular plate represented by Poisson-Kirchhoff plate
theory and resting on a Winkler medium [1] is represented in terms of the non-dimensional
deflection, y and radius x as
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where

y=w/a and x= r/a

where w is the deflection of the plate of radius a, thickness h, density r and flexural rigidity
D. p is the uniformly distributed load per unit area of the plate. k is the spring constant
for the foundation medium. The boundary conditions are:

For clamped edge,

y=0 at x=1, and 1y/1x=0 at x=1. (2, 3)

For a simply supported edge,

y=0 at x=1, 12y/1x2 + (n/x) 1y/1x at x=1. (4, 5)

where n is Poisson’s ratio of the plate material. The solution is required to be bounded
everywhere.
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2.1. Solution for free vibration
A solution is sought in the following form:

y=R(x) eivt; i=z−1.

Then equation (1) with the RHS set equal to zero yields

(92 + a2)(92 − a2)R=0. (6)

where,

a4 = (1/D)(rha4v2 − ka4) (7)

The frequency v is non-dimensionalised as

b4 = rha4v2/D (8)

From equation (7)

b4 = a4 +K; K= ka4/D, (9)

The solution to equation (6) is

R=AJ0(ax)+BY0(ax)+CI0(ax)+DK0(ax) (10)

where the constants A, B, C and D are to be determined from the boundary conditions.
J0 and Y0 are the zeroth order Bessel functions of the first and the second kind
respectively. I0 and K0 are the zeroth order modified Bessel functions. From the
boundedness of the solution at x=0 it is required that B=0 and D=0, and hence
the solution reduces to

R=AJ0(ax)+CI0(ax).

For both simply supported and clamped boundaries y=0, hence R=0 at x=1.
Without any loss of generality,

R=I0(a)J0(ax)− J0(a)I0(ax). (11)

2.1.1. Frequency equation for clamped edge. 1y/1x=0 i.e., dR/dx=0 at x=1. From
equations (11), the characteristic equation is

J0(a)I1(a)+ I0(a)J1(a)=0. (12)

From the solutions, ai’s of equation (12), the non-dimensional natural frequencies bi’s
are obtained by using equation (9).

2.1.2. Frequency equation for simply supported edge. From equation (5) it follows
d2R/dx2 + (n/x) dR/dx=0 at x=1. From equation (11), the characteristic equation for
simply supported edge is obtained as

2aI0(a)J0(a)+ (n−1)[I0(a)J1(a)+ J0(a)I1(a)]=0. (13)

The usual recurrence relationships [6] have been used in deriving equations (12) and (13).

2.2. Analysis of forced vibration
A solution of the forced vibration equation (1) is sought in the form

y(x, t)= s Rj(x)gj(t) (14)
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where Rj(x) is the natural mode shape of the jth mode. Thus it is evident that the boundary
conditions are automatically satisfied by equation (14). The unknown function of time gj(t)
is to be determined. Substituting equation (14) in equation (1) one obtains by making use
of equations (6) and (7),

s
j 0d

2gj

dt2 +v2gj1Rj =
p

rha
(15)

Each side of equation (15) is multiplied by xRi(x) and integrated between the limits
0 and 1.
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Nij has been evaluated making use of the orthogonality of the natural modes [4, 6]. For
the plate with a clamped edge,

Nij = {1
2[I

2
0(ai)J2

1(ai)− J2
0(ai)I2

1(ai)]+ I2
0(ai)J2

0(ai)}dij . (17)

For simply supported edge,

Nij = {1
2[I

2
0(ai)J2

1(ai)− J2
0(ai)I2

1(ai)]− [(1+ n)/(1− n]I2
0(ai)J2

0(ai)}dij , (18)

where dij is the Kronecker delta. Hence equation (16) reduces to

d2gj

dt2 +v2
j gj =

1
Njjrah g

1

0

p(x, t)xRj(x) dx. (19)

For uniform pressure, p= p0f1(t) the integral on the right side of equation (19) is

= p0f2(aj)f1(t), (20)

f2(aj)= [I0(aj)J1(aj)− J0(aj)I1(aj)]/aj . (21)

So equation (19) is rewritten as

d2gj/dt2 +v2
j gj =(p0f2(aj)/Njjrah)f1(t). (22)

For zero initial conditions, the solution to equation (22) is

gj =
p0f2(aj)

vjNjjrah g
t

0

f1(t− t) sin (vjt)dt. (23)

Non-dimensional time u is defined as

u=v1t and gj =vj/v1 = b2
j /b2

1. (24, 25)

For step loading i.e., f1(t)=1,

gj =(p0a3/D)(f2(aj)/b4
j Njj)[1−cos (gju)]. (26)
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For sinusoidal loading,

f1(t)= sin (Vt)= sin (fv1t)= sin (fu); (V= fv1), (27)

gj =
p0a3f2(aj)

Db4
j Njj(f 2/g2

j −1) $ f
gj

sin (gju)− sin (fu)%; (V$vj), (28)

gj =
p0a3f2(aj)

D2fb2
1b

2
j Njj

[sin (fu)− fu sin (fu)]; (V=vj). (29)

From equations (26)–(29) it is seen that gj can be written in the form
gj =(p0a3/D)f3(aj)f0(u), where f3(aj) and f0(u) depend on the type of loading. Pressure
loading having other types of dependence on time may be represented by a sine series
and the above results can be used. The deflection and the moments are normalised
as follows.

wn =w/(p0a4/D)= ya/(p0a4/D)

= s
j

[I0(aj)J0(ajx)− J0(aj)I0(ajx)]f3(aj)f0(u), (30)

Mr =−D$sj

d2Rj

dx2 +
n

x
dRj

dx1gj%>a,

Mr,n =Mr/p0a2 = s
j 0d

2Rj

dx2 +
n

x
dRj

dx1f3(aj)f0(u), (31)

Mt,n =
Mt

p0a2 = s
j 0ṅ d2Rj

dx2 +
1
x

dRj

dx1f3(aj)f0(u). (32)

At x=0, Mr =Mt .

3.  

3.1. Vibration of a plate with clamped edge

3.1.1. Free vibration. Equation (12) is solved for the eigenvalues a’s from which the
non-dimensional natural frequencies b’s are evaluated by equation (9). In this case, b is
found to be dependent only on the non-dimensional parameter K= ka4/D. The values of
b for the first ten modes are presented in Table 1 for five different values of K. It is seen
that b increases with K. This is due to the increase in the overall stiffness of the
plate–foundation system. The solution of the forced vibration equation converges quite
rapidly. The results for K=0 i.e., no foundation are in agreement with those presented
in [4]. The analytical results are a special case of those presented in [5].

3.1.2. Forced vibration. As a typical transient response to a uniformly distributed
pressure varying as a step function of time the normalised radial moment at the centre
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T 1

Non-dimensional natural frequencies (b) of a plate with clamped edge

K
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

Mode no. 0·000E+00 0·100E+02 0·500E+02 0·100E+03 0·200E+03

1 0·319E+01 0·327E+01 0·352E+01 0·378E+01 0·418E+01
2 0·630E+01 0·631E+01 0·635E+01 0·640E+01 0·650E+01
3 0·944E+01 0·944E+01 0·945E+01 0·947E+01 0·950E+01
4 0·126E+02 0·126E+02 0·126E+02 0·126E+02 0·126E+02
5 0·157E+02 0·157E+02 0·157E+02 0·157E+02 0·157E+02
6 0·189E+02 0·189E+02 0·189E+02 0·189E+02 0·189E+02
7 0·220E+02 0·220E+02 0·220E+02 0·220E+02 0·220E+02
8 0·251E+02 0·251E+02 0·251E+02 0·251E+02 0·251E+02
9 0·283E+02 0·283E+02 0·283E+02 0·283E+02 0·283E+02

10 0·314E+02 0·314E+02 0·314E+02 0·314E+02 0·314E+02

is presented in Figure 1 for the case K=0 and n=0·2. It is seen that the results oscillate
about the static solution, Mr,n =(1+ n)/16=0·075 [1]. This oscillation being undamped,
the maximum amplitude remains unaltered. It is seen that the maximum dynamic radial
moment is a significantly amplified version of the corresponding static value.

The maximum values of the normalised deflection and radial and the tangential
moments due to the step loading for various values of K and n=0·2 are presented in
Table 2.

The response to sinusoidal loading is studied next. It is found that the peak deflection
and the peak moments depend on the frequency ratio f (see equation (27)) and K. The
peak moments depend on Poisson’s ratio n as well. The peak deflection and the peak

Figure 1. Variation of Mr,n with u; clamped edge; x=0; step loading; K=0; n=0·20.
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T 2

Normalised values of peak deflection and moments at the centre of the plate for step function
loading (clamped edge)

n=0·20
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

K 0·000E+00 0·100E+02 0·500E+02 0.100E+03 0·200E+03

wn 0·329E−01 0·300E−01 0·222E−01 0·168E−01 0·113E−01
Mr,n 0·193E+00 0·183E+00 0·132E+00 0·105E+00 0·766E−01

tangential moment occur at the centre. However, the location of the peak radial moment
varies with f and K.

The magnitudes of peak wn and Mr,n respectively as a function of f are presented in
Table 3 for various values of K. The peak deflection is independent of the value of n. The
results for the moments are presented for n=0·2. Figure 2 shows the peak radial
moment as a function of f for K=50 and n=0·2.

3.2. Vibration of a plate with simply supported edge

3.2.1. Free vibration. Equation (13) is solved for the eigenvalues a’s from which the

T 3

Peak amplitude under sinusoidal loading (clamped edge)
(A) Normalised deflection (wn)

K
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

f 0 10 50 100 200

0·200E+00 0·171E−01 0·156E−01 0·114E−01 0·848E−02 0·557E−02
0·400E+00 0·259E−01 0·236E−01 0·173E−01 0·129E−01 0·847E−02
0·600E+00 0·401E−01 0·366E−01 0·270E−01 0·202E−01 0·135E−01
0·800E+00 0·798E−01 0·727E−01 0·537E−01 0·405E−01 0·267E−01
0·900E+00 0·162E+00 0·148E+00 0·109E+00 0·825E−01 0·550E−01
0·950E+00 0·325E+00 0·297E+00 0·219E+00 0·165E+00 0·111E+00
0·105E+01 0·327E+00 0·298E+00 0·221E+00 0·167E+00 0·112E+00
0·110E+00 0·164E+00 0·149E+00 0·111E+00 0·839E−01 0·562E−01
0·120E+01 0·818E−01 0·747E−01 0·555E−01 0·424E−01 0·285E−01
0·150E+01 0·322E−01 0·295E−01 0·221E−01 0·172E−01 0·124E−01

(B) Normalised radial moment (Mr,n) (n=0·20)

0·200E+00 0·131E+00 0·121E+00 0·953E−01 0·771E−01 0·583E−01
0·400E+00 0·189E+00 0·175E+00 0·136E+00 0·108E+00 0·801E−01
0·600E+00 0·279E+00 0·257E+00 0·197E+00 0·155E+00 0·113E+00
0·800E+00 0·524E+00 0·481E+00 0·364E+00 0·280E+00 0·198E+00
0·900E+00 0·103E+01 0·943E+00 0·708E+00 0·541E+00 0·367E+00
0·950E+00 0·204E+01 0·187E+01 0·139E+01 0·106E+01 0·716E+00
0·105E+01 0·200E+01 0·182E+01 0·133E+01 0·101E+01 0·662E+00
0·110E+00 0·982E+00 0·897E+00 0·657E+00 0·493E+00 0·321E+00
0·120E+01 0·478E+00 0·435E+00 0·319E+00 0·251E+00 0·172E+00
0·150E+01 0·196E+00 0·182E+00 0·143E+00 0·118E+00 0·978E−01
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Figure 2. Variation of maximum Mr,n; clamped edge; K=50; n=0·20.

non-dimensional natural frequencies b’s are evaluated: a and b are dependent on both n

and K. Table 4 presents the non-dimensional natural frequencies for different values of
n and K. It is observed that b is practically insensitive to K beyond the first three modes.

T 4

Non-dimensional natural frequencies (b) of a plate with simply supported edge

K
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV

Mode no. n 0·000E+00 0·100E+02 0·500E+02 0·100E+03 0·200E+03

1 0·15 0·217E+01 0·238E+01 0·291E+01 0·332E+01 0·386E+01
2 0·554E+01 0·545E+01 0·551E+01 0·559E+01 0·572E+01
3 0·860E+01 0·861E+01 0·862E+01 0·864E+01 0·868E+01
4 0·118E+02 0·118E+02 0·118E+02 0·118E+02 0·118E+02
5 0·149E+02 0·149E+02 0·149E+02 0·149E+02 0·149E+02
6 0·180E+02 0·180E+02 0·180E+02 0·181E+02 0·181E+02
7 0·212E+02 0·212E+02 0·212E+02 0·212E+02 0·212E+02
8 0·243E+02 0·243E+02 0·243E+02 0·243E+02 0·243E+02
9 0·275E+02 0·275E+02 0·275E+02 0·275E+02 0·275E+02

10 0·306E+02 0·306E+02 0·306E+02 0·306E+02 0·306E+02

1 0·20 0·219E+01 0·239E+01 0·292E+01 0·333E+01 0·386E+01
2 0·544E+01 0·546E+01 0·552E+01 0·559E+01 0·573E+01
3 0·861E+01 0·861E+01 0·863E+01 0·864E+01 0·868E+01
4 0·118E+02 0·118E+02 0·118E+02 0·118E+02 0·118E+02

1 0·25 0·220E+01 0·241E+01 0·293E+01 0·333E+01 0·387E+01
2 0·545E+01 0·546E+01 0·552E+01 0·560E+01 0·573E+01
3 0·861E+01 0·861E+01 0·863E+01 0·865E+01 0·869E+01
4 0·118E+02 0·118E+02 0·118E+02 0·118E+02 0·118E+02
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T 5

Normalised values of peak deflection and moments at the centre of the plate for step function
loading (simply supported edge)

K
ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

n 0·000E+00 0·100E+02 0·500E+02 0·100E+03 0·200E+03

wn – 0·142E+00 0·981E−01 0·436E−01 0·259E−01 0·143E−01
Mr,n 0·15 0·439E+00 0·301E+00 0·141E+00 0·872E−01 0·553E−01
wn – 0·138E+00 0·958E−01 0·433E−01 0·257E−01 0·142E−01

Mr,n 0·20 0·438E+00 0·309E+00 0·145E+00 0·894E−01 0·564E−01
wn – 0·134E+00 0·938E−01 0·429E−01 0·256E−01 0·142E−01

Mr,n 0·25 0·458E+00 0·321E+00 0·153E+00 0·965E−01 0·602E−01

Hence detailed results are presented only for n=0·15. The results for K=0 are in
agreement with those presented in [4].

3.2.2. Forced vibration. The maximum values of the normalised deflection and radial
and tangential moments due to a step loading for various values of n and K are

T 6

Peak amplitude under sinusoidal loading (simply supported edge)
(A) Normalised deflection (n=0·2)

K
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

f 0 10 50 100 200

0·200E+00 0·736E−01 0·509E−01 0·225E−01 0·131E−01 0·685E−02
0·400E+00 0·111E+00 0·767E−01 0·342E−01 0·200E−01 0·106E−01
0·600E+00 0·171E+00 0·119E+00 0·531E−01 0·309E−01 0·170E−01
0·800E+00 0·338E+00 0·235E+00 0·105E+00 0·620E−01 0·340E−01
0·900E+00 0·684E+00 0·476E+00 0·214E+00 0·127E+00 0·696E−01
0·950E+00 0·137E+01 0·955E+00 0·430E+00 0·255E+00 0·140E+00
0·105E+01 0·137E+01 0·957E+00 0·432E+00 0·256E+00 0·142E+00
0·110E+01 0·687E+00 0·478E+00 0·216E+00 0·128E+00 0·716E−01
0·120E+01 0·341E+00 0·238E+00 0·108E+00 0·647E−01 0·361E−01
0·150E+01 0·132E+00 0·923E−01 0·427E−01 0·264E−01 0·161E−01
0·200E+01 0·610E−01 0·430E−01 0·208E−01 0·143E−01 0·160E−01

(B) Normalised radial moment (Mr,n) (n=0·20)

0·200E+00 0·221E+00 0·150E+00 0·616E−01 0·328E−01 0·128E−01
0·400E+00 0·337E+00 0·228E+00 0·975E−01 0·543E−01 0·245E−01
0·600E+00 0·526E+00 0·361E+00 0·157E+00 0·852E−01 0·470E−01
0·800E+00 0·105E+01 0·726E+00 0·317E+00 0·183E+00 0·996E−01
0·900E+00 0·214E+01 0·148E+01 0·658E+00 0·391E+00 0·211E+00
0·950E+00 0·430E+01 0·298E+01 0·133E+01 0·790E+00 0·430E+00
0·105E+01 0·433E+01 0·302E+01 0·137E+01 0·820E+00 0·467E+00
0·110E+01 0·217E+01 0·152E+01 0·699E+00 0·417E+00 0·242E+00
0·120E+01 0·109E+01 0·756E+00 0·358E+00 0·221E+00 0·132E+00
0·150E+01 0·432E+00 0·308E+00 0·156E+00 0·110E+00 0·876E−01
0·200E+01 0·211E+00 0·157E+00 0·954E−01 0·923E−01 0·197E+00
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Figure 3. Variation of peak Mr,n with f; simply supported edge; K=50; n=0·20.

presented in Table 5. Unlike the case of the clamped edge, the deflection is also
dependent on n.

The values of normalised peak deflection and moment at x=0 for sinusoidal
loading are presented in Table 6 for various values of K. Expectedly, the peak
responses reduce with increase in K. Figure 3 shows the peak Mr,n as a function of
f for K=50 and n=0·2.

4. 

Analytical results have been presented for the free and forced vibration of a circular plate
on an elastic foundation. The various numerical results presented should be useful for
practical applications.
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