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1. 

Most applications of active structural vibration and acoustic control to date have involved
the so-called feedforward control, which is depicted in Figure 1. In this approach, a
measurement coherent with the disturbance is fed through an appropriate filter and the
resulting signal is applied to the plant with the result that the outputs of certain error
sensors, which measure the vibration, are reduced. In practice, large amounts of vibration
suppression cannot be achieved without tuning the filter, and this process is usually
automated by using a simple adaptive algorithm that monitors the error sensors and tunes
the filter to optimize performance. This modification turns the open-loop system into a
closed-loop feedback system, but if the tuning rate is slow enough, the system can
profitably be viewed as an open-loop feedforward system.

The feedforward approach has provided significant levels of disturbance rejection in
experiments. This is due to its two major strengths: it is adaptive and stability is not
hard to maintain in many practical situations. Its major weakness is that it can be
used only in situations where an independent (of the control input) measurement
coherent with the disturbance can be obtained. In addition, the feedforward approach
provides no protection against fast, transient disturbances, since it cannot adapt quickly
enough.

In situations where the feedforward approach does not apply, one is led to consider some
form of feedback control. Assuming the properties of the disturbance source are not well
known, techniques that rely on a fixed model of the disturbance characteristics [1] are not
appropriate. Although fixed-feedback techniques that do not rely on a disturbance model
[2] will provide some disturbance attenuation, this paper considers adaptive feedback
techniques in the hope that better performance will be achieved by adapting to the existing
disturbance.

One proposed approach to adaptive feedback in acoustic control is to implement a
‘‘neutralization loop’’ so that the feedback connection between u and y is broken, resulting
in a situation resembling the standard feedforward approach [3]. This is illustrated in
Figure 2, which explicitly shows the four transfer functions between the two inputs, d and
u, and the two outputs, e and y. Without the neutralization loop, the controller output
u would feed back to its input y through Gyu with the potential of causing instability with
a stable open-loop controller. The neutralization loop feeds the control signal u through
a copy of Gyu , G
 yu , and subtracts the result from the actual output y prior to using the
output in the controller. This effectively eliminates the only feedback path in the system,
leaving only two forward paths: one from the disturbance directly to the error and the
other from the disturbance to y, through the controller to u, and then from u to the error.
Thus, if the controller and plant are stable, the overall system must be stable. Since the
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Figure 1. Feedforward control system.

neutralization loop will never provide perfect cancellation, stability will not be as easy to
maintain with this configuration as with the standard feedforward configuration.

In this paper, an adaptive feedback technique due to Tay and Moore [4], which arose
from a totally different theoretical setting, is applied to the structural disturbance rejection
problem. This approach uses a fixed feedback to provide suppression of transient
disturbances and an adaptive feedback to provide rejection of steady disturbances. It does
not require an independent measurement of the disturbance. Thus, the approach eliminates
two of the shortcomings of the feedforward approach, while maintaining the advantage
of adaptivity. The neutralization loop technique is a special case of this adaptive feedback
approach, and it appears that their ability to maintain stability should be equivalent.

Although this technique has been investigated via simulation on several second order
plants, its usefulness for problems typical of structural and acoustic control has not been
investigated. The contribution of the present paper is to investigate the usefulness of this
technique for structural and acoustic systems that exhibit relatively high order, have almost
all their poles close to the stability boundary, have non-minimum phase zeros and always
include unmodelled dynamics in the high frequency range. The performance of the
technique for harmonic, narrowband and broadband disturbances is explored via
simulation, and the results are compared to the theoretically optimal results that can be
obtained with feedback. The effect of system identification errors and unmodelled modes
is investigated and a modification of the technique is introduced to reduce the sensitivity
to unmodelled modes.

2.  -  

One approach to solving feedback control problems is to start by parameterizing the
set of all stabilizing controllers. One parameterization, based on a nominal feedback

Figure 2. Adaptive feedback control using a neutralization loop.



    123

Figure 3. Parametrization of all stabilizing feedback controllers.

controller J0, is shown in Figure 3. It can be shown [5] that as Q sweeps over the set of
all stable transfer matrices of dimension dim(u)×dim(y), the controller consisting of J0

and Q sweeps over all possible stabilizing controllers for the plant. Thus, the control design
problem reduces to choosing the best stable transfer function Q. This form of the
parameterization is useful for our purpose because it allows for a fixed controller to
provide rejection for transient disturbances, which occur too fast to be reduced by an
adaptive controller, and an adaptive part, Q, which one can tune to provide rejection for
steady disturbances.

The adaptive disturbance–rejection scheme proposed in reference [4] is shown in
Figure 4. One assumes that the plant can be modelled by a linear difference equation of
the form

xk+1 =Axk +Buk +Edk , yk =Cxk , ek =Cexk +Deuk ,

where uk is the control input, dk is the disturbance input, yk is the measured output and
ek is the signal to be minimized (and may be equal to yk). It is assumed that ek can be
measured directly or constructed from signals that are measured or known. The controller
is constructed using state estimate feedback and takes the form

x̂k+1 =Ax̂k +Buk +K(yk −Cx̂k), uk =−Fx̂k + sk , rk = yk −Cx̂k ,

where x̂k is the state estimate and rk is the output estimation error. In the standard LQG
framework, K would be the Kalman filter gain and F would be the LQR state feedback
gain. The new input signal, sk , is injected directly into the control input, uk . Since the state

Figure 4. Adaptive disturbance-rejection feedback controller.
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estimator has exact knowledge of the control input, sk produces no estimation error in
either the state or the output. Thus, the transfer function between sk and rk is identically
equal to zero and the fixed feedback controller provides the neutralization loop.

What remains in the controller design is to find a way to adapt Q. The error results from
the two inputs d and s, so that, using mixed notation,

ek =Teddk +TesQrk , (1)

where Ted is the transfer function from d to e with Q=0, and Tes is the transfer function
from s to e. If Q is chosen to be an FIR filter, which alleviates any worry about keeping
Q stable, this can be seen to be in the standard form of a problem to which the filtered-x
LMS algorithm applies.

In addition, the problem of minimizing e can be reformulated as a system identification
problem and the well developed algorithms from this field can be brought to bear on the
problem of adapting Q. For example, in the case in which y and u, and hence r and s,
are scalars, Tes and Q commute. Defining

ik =−Tesrk , zk =Teddk , (2)

equation (1) can be written in the form

zk =Qik + ek ,

which is the output error model used in system identification. In the remainder of this
paper Q will be considered to be an FIR filter.

Experience with hybrid controllers, those that incorporate both fixed feedback and
adaptive feedforward, has shown that the addition of a feedback loop to provide system
damping results in faster convergence of the adaptive filter and lower filter orders for the
same performance when compared with the undamped case [6, 7]. Thus, an added
advantage of the J0 feedback loop, as compared to a neutralization loop, may be shorter
convergence time and lower required filter order.

3.     

To assess the performance of this technique for structural vibration suppression, a modal
model of the form

d
dt $xp

xv%=$ 0
−V2

I
−2ZV%$xp

xv%+$ 0
Fu%u+$ 0

Fd%d,Ax+Bu+Ed, (3a)

y=[0 FT
y ] $xp

xv%,Cx, (3b)

is considered, where the inputs are forces and the measurements are velocities. The values
of the parameters are taken from experimental data for the simply supported plate
discussed in reference [8] and are given in Table 1. For simulation and control design
purposes, it is necessary to determine a discrete time equivalent model of the above system.
Consider first the simulation model. Although the control input will be held constant
between sample times, the disturbance input will not, since it is being generated by a
continuous time process. To form an accurate discrete time model, the disturbance will
be assumed to be generated by white, Gaussian noise that is passed through a shaping filter.
The equations of this filter are
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T 1

Parameters for the modal model

diag (V/2p) diag (Z) Fu Fd Fy

49·45 0·0077 0·7033 0·7033 0·4001
108·96 0·0117 0·3664 −0·3062 −0·2333
130·25 0·0083 0·1091 0·1353 0·8233
188·53 0·0027 0·2185 −0·0554 −0·1619
203·25 0·0027 0·5573 0·5246 0·3468
265·62 0·0024 0·6715 0·6389 −0·6213
285·78 0·0012 0·1343 0·1319 0·5346
326·08 0·0013 −0·4100 0·3292 −0·2604
338·30 0·0022 −0·5521 0·6070 0·4473

ż=Adz+Bdv, d=Cdz, (4)

where v is unit intensity white noise. The discrete time equivalent of the overall system is
given by

jk+1 =Aajk +Bauk +Eawk , yk =Cajk + nk , (5a, b)

where j=[xT
p xT

v zT]T is the augmented state, wk is a unit-intensity discrete time white noise
process, and to which the measurement noise term nk has been added.

To determine the optimal suppression obtainable by a feedback controller, consider the
problem of minimizing E[eT

k ek ], where E is the expected value operator and
ek =Cexk +Deuk . This is in the form of a Linear-quadratic Gaussian (LQG) control
problem. Typically, Ce and De are chosen to be of the form

Ce =$Q1/2

0 %, De =$ 0
R1/2%

and then the cost function takes the standard form

E[eT
k ek ]=E[xT

k Qxk + uT
k Ruk ].

In many cases, the control effort is not significant and does not need to be penalized.
In these cases, as R is decreased a point is reached where the performance of the controller
ceases to improve. This level of performance is the optimal suppression obtainable by
feedback, since the controller is using all of the a priori information about the disturbance
and is essentially unrestricted as to the amount of control effort that can be applied.

Although the discrete time system (5) is suitable for simulation, it cannot be used for
control system design because it contains information that will be unknown in an actual
application. The way in which the disturbance enters the plant, given by the matrix E, and
the dynamics of the noise, given by the shaping filter (4), will not be known and are subject
to change. Thus, the controller should not depend on these values. For control design, the
model

ẋ=Ax+Bu+$0I% v, y=Cx+ n, (6a, b)

will be used, where A, B, and C are defined in equation (3) and the disturbance is modelled
as white noise acting independently on each mode. This model requires no spectral
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information and no knowledge of how the disturbance enters the plant, but provides some
information about the disturbance for design of the state estimator. If an adaptive
controller can be made to work with this minimal amount of disturbance characterization,
it will truly be independent of a priori information. The actual design uses a discretized
version of equation (6).

Due to modelling inaccuracies and unmodelled modes, the transfer function from s to
r will not be zero in practice. It is now possible for a stable Q to drive the system unstable,
and this is indeed what will happen with an unmodelled mode. A simple fix is to prefilter
r, prior to sending it through Q, so that there is little energy in the inaccurate frequency
region. For example, in the case of unmodelled high frequency dynamics, one will low pass
filter r. This will re-establish the near zero transfer function from s to r, eliminating
instability due to a stable Q.

4.  

The continuous time plant described by equations (3) with the parameters given in
Table 1 is used as the test system. The frequency response of this system is shown in
Figure 5. To simulate and control the system, a discretized version of equations (3) is used
and the sampling frequency is 2000 Hz. The nominal controller, J0, is designed with the
LQG methodology using a process noise covariance of 1 and a measurement covariance
of 1×10−4. In all cases, the state weighting is Q=CT

nomCnom , where Cnom is the output matrix
of the nominal model, i.e., the model on which the control system design is based. The
value of the control weighting will vary with the cases considered. The error is taken to
be ek =Cactxk , where Cact is the output matrix of the actual plant. A standard RLS
algorithm is used for all adaptations and the starting covariance P is initialized as the
identity matrix multiplied by a suitable scalar.

In the first case, a harmonic disturbance is considered. It is assumed in this case that
the disturbance is held constant between sampling instants so that a simple discretization
of equations (3) can be used as the discrete time plant. For simplicity, only the first five
modes of the continuous time plant were used and it was assumed that the nominal plant
and the actual plant were identical. The adaptive feedback consisted of a three term FIR

Figure 5. Frequency response of the test system: nine mode plant.
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Figure 6. Simulation results for a harmonic disturbance. Dotted lines show the open loop response and solid
lines show the closed loop adaptive response. (a) Control weighting is 10−6 with P initialized at 1014 and
(b) control weighting is 10−3 with P initialized at 1012.

filter. The disturbance is at 30 Hz and the simulation results are shown in Figure 6. In
Figure 6(a), J0 was designed with a control weighting of 1×10−6 and the RLS routine
was initialized with P=1×1014. Clearly, the harmonic is greatly suppressed with respect
to the open loop response (shown dotted). It should also be noted that the response of
the closed loop system with no adaptation (s=0) has almost the same magnitude of
response as the open loop system. Thus, the suppression is coming from the adaptive
feedback and not from the fixed feedback.

Figure 6(b) shows the results for J0 designed with a control weighting of 1×10−3 and
the adaptive routine initialized with P=1×1012. The performance is much poorer than
in the first case. Although the harmonic is being suppressed, the convergence rate is much
slower than in the first case. If P is increased to 1014 the results are even worse. The reason
for this is that the fixed feedback provides much less damping in this case and the rapid
adaptations excite the first mode of the structure, which is close in frequency to the
disturbance. This added sinusoid in the output evidently makes it more difficult for the
adaptive feedback to converge.

The second case considered is that of a narrowband disturbance. Again, a 5-mode model
of the plant is used and the adaptive feedback is a 3-term FIR filter. The disturbance is
centered at 60 Hz and Figure 7 shows the frequency response of the shaping filter (4). The
transfer function of the filter is 120ps/(s2 +24ps+14400p2). Figure 8(a) shows the open
loop response of the system to the disturbance and Figure 8(b) shows the response of the
system with the fixed feedback (control penalty=1e-5) and no adaptation. The fixed
feedback provides some disturbance rejection and although this could be increased in
simulation, in practice there will be a limit to the reduction achievable while maintaining
stability. The additional rejection provided by the adaptive feedback is shown in
Figure 9(a). In addition, the optimal rejection achievable by feedback, as discussed in
section 2, is shown in Figure 9(b). It can be seen that the response with the three-term
adaptive loop is within a factor of 2 or 3 of the optimal possible response.
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Figure 7. Frequency response of narrowband shaping filter.

The third case involves a broadband disturbance. The disturbance has a bandwidth of
100 Hz and a center frequency of 80 Hz. The frequency response of the shaping filter is
shown in Figure 10. The open loop response of the five mode model of the system and
the response with the fixed feedback controller (control penalty=1e-3) are shown in
Figure 11(a) and (b). The fixed feedback provides very little suppression in this case. The
response of the adaptive feedback controller with a 12-term FIR filter is shown in Figure
12(a) and the optimal performance of a feedback controller is shown in Figure 12(b).
Although the suppression provided by the adaptive controller is not dramatic in this

Figure 8. (a) Open loop response to narrowband disturbance and (b) closed loop response without adaptation
to narrowband disturbance.
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Figure 9. (a) Closed loop response with adaptation to narrowband disturbance and (b) optimal closed loop
response to narrowband disturbance.

example, it is within a factor of 2 or so of the optimal suppression. The suppression could
be improved by changing the control actuator location, or adding an additional actuator,
but the point here is not to generate an example that shows dramatic rejection, but rather
to show that the adaptive mechanism approaches relatively closely to the optimal. Thus,
this control scheme appears to be capable of obtaining suppression near the optimal
obtainable with feedback for a given system configuration.

One question that needs to be addressed is the ability of the controller to perform well
when the system model used for control design is inaccurate. To get some idea of the

Figure 10. Frequency response of broadband shaping filter.
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Figure 11. (a) Open loop response to broadband disturbance and (b) closed loop response without adaptation
to broadband disturbance.

amount of uncertainty that could be tolerated, the parameters of the continuous time
system (3) were randomly varied by up to 210% to generate the control design model.
The resulting adaptive controller drove the system unstable. When the frequencies were
varied by up to 22% and the other parameters, including damping, by up to 210%, the
resulting controller was stable and achieved performance similar to that for the above
cases. Thus, the controller can tolerate some uncertainty, but is most sensitive to frequency

Figure 12. (a) Closed loop response with adaptation to broadband disturbance and (b) optimal closed loop
response to broadband disturbance.
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uncertainty. Presumably this sensitivity is due to the completely (180°) inaccurate gradient
information provided to the adaptive controller in the neighborhood of the perturbed
frequencies.

In practical situations it is relatively easy to measure the modal frequencies accurately.
But if these frequencies can change significantly during the operation of the controller, the
proposed control scheme is not adequate. In this case it is probably necessary to consider
a fully adaptive controller that adapts to both the plant and the disturbance.

Another situation to consider is the presence of unmodelled dynamics, so that the
control design model does not include some of the system dynamics. If the actual system
one considers is modelled with nine modes, but the control design model only includes five
modes, the resulting controller will be unstable in the broadband case discussed above.
There are two ways in which the controller can go unstable. First, since the transfer
function from s to r will no longer be even close to zero in the region of unmodelled
dynamics, even a stable Q can create an unstable system. Second, if there is significant noise
power in the unmodelled region to which the adaptation mechanism attempts to respond,
the incorrect gradient information, due to the inaccurate filter Tes in equation (2), can cause
the filter coefficients to diverge.

The first mechanism can be taken care of by filtering r as discussed in section 3. In the
case being considered, a fourth order Butterworth filter with a breakpoint of 100 Hz may
be used to reduce the effect of the unmodelled modes on the transfer function from s to
r. The second mechanism is most easily taken care of by making sure that the model is
accurate in the region where the noise power is significant. For simulation purposes, the
disturbance will be changed to have a center frequency of 60 Hz and a bandwidth of 30 Hz.
In practice, the system must be modelled well in the regions where there are disturbances
if this controller is to reject them. An alternative may be to filter the error signal so that
the adaptive mechanism does not respond to disturbances in poorly modelled regions.

Figures 13(a) and (b), and 14(a) and (b), show the result of a simulation in which the
control model contains inaccurate information about the first five modes of the system,

Figure 13. Results using an inaccurate control design model. (a) Open loop response to disturbance and
(b) closed loop response without adaptation to disturbance.
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Figure 14. Results using an inaccurate control design model. (a) closed loop response with adaptation to
disturbance and (b) optimal closed loop response to disturbance.

due to the random parameter perturbations discussed above, and no information about
the remaining four modes of the system. The nominal controller is designed with a control
penalty of 1e-3 and does not destabilize the actual plant. A 12 term MA filter is used for
the adaptive feedback and the adaptations are initialized at P=109 ( I. Again, it can be
seen that the controller provides significant suppression which is within a factor of 2 or
so of the optimal.

5. 

This paper has demonstrated the potential of an adaptive feedback technique to suppress
disturbances in structures. The proposed controller requires no more system modelling
than standard filtered-x LMS approaches and does not require an independent
measurement coherent with the disturbance source. In addition, the proposed controller
provides rejection of transient disturbances and speeds up the convergence of the
adaptive algorithm, features not available with straightforward neutralization loop
techniques.

Finally, this controller should significantly outperform fixed feedback controllers in
practice. It does not require specific knowledge of the disturbance spectrum or how the
disturbance enters the plant. With adaptation of simple, low order filters, this technique
appears capable of performance within a factor of 2 or so of the optimal performance
achievable with feedback.
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