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A method of determination of the Young’s and shear complex moduli of viscoelastic
materials using a transmissibility function is presented. The experimental set-up shows that
it is possible to evaluate both moduli on the same samples. We will show that, with
appropriate inverse methods, isothermal complex moduli are obtained over a large range
of frequencies.
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1. INTRODUCTION

The determination of the Young’s and shear complex moduli of beams has given rise to
an abundant literature since 1950. Most of the commercially available apparatus uses
off-resonance methods in which the vibrating sample is assimilated to a one-degree-of-free-
dom mechanical system. The evaluation of complex stiffness allows the determination of
complex moduli. This method imposes drastic validity conditions: for example, short
sample in tension–compression tests to avoid buckling, and a restricted range of frequency
which covers less than one decade of frequency. To obtain a larger range of frequency,
the Williams–Landel–Ferry method using the equivalence principle between temperature
and frequency [1] is referred to. Often force and displacement (or acceleration) are
measured and this raises the problem of the stiffness of the load frame [2], which is finite
and has an influence on the measurements themselves. Correction factors due to test
fixture, stiffness and inertia have been proposed [2, 3].

The difficulty of taking into account the real boundary conditions imposed on a short
sample, with respect to the ideal boundary conditions, constitutes an obstacle in
many cases for obtaining the correct value of the complex modulus; to mention one
example, the three-point bending test in which short samples are often used and shear
deformation is neglected. Moreover, damping measurements in this method are affected
by large errors due to the contacts and Coulomb friction between the knife edges and
sample.

Pritz [4] used the Love theory of longitudinal vibration of a viscoelastic rod to evaluate
the complex Young’s modulus. The geometric dispersion of the phase velocity (i.e., its
dependence on the frequency) due to the finite dimensions of the rod and the viscoelastic
dispersion, due to the material itself, are taken into account. The practical application of
this study resides in the range of frequency in which the so-called apparent Young’s
modulus is valid, if the lateral dimension of the sample is accounted for. Read and Dean
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[5], adopting considerations similar to those of Pritz, proposed correcting factors for
complex moduli in different kinds of vibrations (longitudinal, flexural, etc.).

Oyadiji and Tomlinson [6] have presented resonance and non-resonance methods using
longitudinal vibrations. With the resonance method, from the complex transmissibility
function, defined as the quotient of output to input displacements (or velocities or
accelerations), the complex Young’s modulus at the first four resonance frequencies was
evaluated with a low mass at the output. The non-resonance method valid for low
frequencies requires a correction shape factor for evaluation of the Young’s modulus. The
frequency range does not exceed 100 Hz.

Lundberg and Blanc [7] used progressive longitudinal waves created by impacts on long
rods. Two methods utilized strains and particle velocities respectively. Discussions
concerned various cases of reflection coefficient of waves. The range of frequencies for the
evaluation of the Young’s modulus was between 0·2 and 10 kHz. The materials tested were
Nylon and vulcanized rubber.

O� deen and Lundberg [8] proposed a method in which impact on a rod specimen
permitted the evaluation of the complex modulus from measured end-point accelerations.
Stationary waves were created in the samples. The materials used were polyamide and
polypropylene. The range of frequencies extended from 300 Hz to 10 000 Hz.

Beda [9] used an experimental set-up similar to that of O� deen and Lundberg, but the
excitation signal was white noise instead of impacts. The Newton–Raphson method
permits the evaluation of complex roots of transcendental functions of the complex
variables from which the complex Young’s modulus is deduced. The range of frequencies
is similar to that obtained by O� deen and Lundberg [8].

Jimenez and Uberal [10] decomposed the response of the viscoelastic rod into a sum of
individual resonances. The transfer function is represented as a meromorphic function of
frequency with complex poles. However, the authors adopted the hypothesis of very low
damping of the material to evaluate real poles. In the concept of an inverse problem, the
proposed method is similar to that used in classical modal analysis.

The first part of this paper is devoted to the identification problem. We will present two
classes of methods of finding complex roots of transcendental functions deduced from the
transmissibility function. All of the methods presented below are used by us to evaluate
the Young’s and shear complex moduli.

In the second part, the experimental set-up and some experimental results will be
presented and discussed.

2. IDENTIFICATION OF COMPLEX MODULI FROM DYNAMIC RESPONSE OF THE
VISCOELASTIC SAMPLE

The sample, of length L, with two accelerometers attached to its ends, is shown
schematically in Figure 1. Let M1 and M2 be their masses. At x=0, the rod is excited by
a white noise acceleration. If the wavelength l of the stationary waves created in the rod
specimen is much larger than the lowest transverse dimension D of the rod.

l/Dw 10, (1)

the one-dimensional elementary theory of longitudinal vibration of rod can be used
[4, 9, 11]. With the boundary conditions at both ends taken into account, the Fourier
transform of the equation of motion is

E*(v) 12u*(x, v)/1x2 =−rv2u*(x, v), (2)
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Figure 1. (a) The longitudinal vibration of a rod with two attached accelerometers to its ends. (b) The
torsional vibration of a rod with two inertias attached to its ends.

where u*(x, v) is the Fourier transform of the displacement u at abscissa x, v is the
angular frequency and E*(v) is the complex Young’s modulus (a list of nomenclature is
given in Appendix C). The Fourier transform of u is defined as

u*(x, v)=g
+a

−a

u(x, t) e−jvt dt. (3)

The constitutive equation relating axial stress sxx and the axial strain oxx for viscoelastic
material is a Stieljes convolution,

sxx(x, t)=
d
dt g

t

0

Er(t)oxx(x, t− t) dt, (4)

where Er(t) is the time relaxation function. If one takes the Fourier transforms of both
members in equation (4), one has

s*xx(x, v)= jvE*r (v)o*xx(x, v), s*xx(x, v)=E*(v)o*xx(x, v). (5, 6)

The Young’s complex modulus E*(v) used in equations (6) and (2), is in view of equation
(4) the Fourier transform of the time derivative of the relaxation function:

F−1[E*(v)]=dEr(t)/dt. (7)

The transmissibility function is defined as the quotient of the Fourier transforms of output
acceleration ü(L, t) and input acceleration ü(0, t):

H*(v)=F[ü(L, t)]/F[(ü(0, t)]. (8)

H*(v) is evaluated as

H*(v)=1/{cos (b*)− g2b* sin (b*)}, (9)

in which g2 is defined as the quotient of the mass of the second accelerometer to the mass
of the rod:

g2 =M2/rSL (10)
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Figure 2. The experimental transmissibility function H*(f) of polyamide 6 (PA6), phase and gain (circular
cross-section, diameter 10·5 mm and length L=200 mm; longitudinal vibration tests).

and

u*(x, t)= (A cos (b*x/L)+B sin (b*x/L)) ejvt. (11)

Bringing equation (11) into equation (2) yields

b*2 = rv2L2/E*(v), (12)

or

b*= (vL/=v=) exp (−jd/2), (13)

=v==[=E*=/r]0·5, =E*==[(Re E*)2 + (Im E*)2]0·5,

tg d=Im E*/Re E*. (14)

It is more convenient, due to equation (9), to use the reciprocal of H*(v):

1/H*E (v)=T*(v)= cos b*− g2b* sin b*. (15)

The identification problem consists of evaluating E*(v) for a given angular frequency
v, the complex quantity of the first member of equation (13) being known.

An example of the experimental transmissibility function H*(v) obtained from tests on
polyamide 6 (PA6) is given in Figure 2.

2.1. – 

2.1.1. First method
Equation (15) can be decomposed into two functions, f1(b1, b2) and f2(b1, b2), of two real

variables b1, and b2. One has, from equation (12),

b*= b1 − jb2, (16)

f1(b1, b2)=Re (T*)−cos (b1) cosh (b2)+ g2b1 sin (b1) cosh (b2)−g2b2 cos (b1) sinh (b2), (17)

f2(b1, b2)=Im (T*)− sin (b1) sinh (b2)− g2b1 cos (b1) sinh (b2)−g2b2 sin (b1) cosh (b2). (18)
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The first method allows the calculation of increments of b1 and b2:

Db1 = bi+1
1 − bi

1 =
−f1 f2,b2 − f2 f1,b1

f1,b1 f2,b2 − f2,b1 f1,b2

, (19)

Db2 = bi+1
2 − bi

2 =
f1 f2,b1 + f2 f1,b1

f1,b1 f2,b2 − f2,b1 f1,b2

. (20)

The subscript b’s in equations (19) and (20) after the comma denote the derivatives with
respect to the variable concerned.

2.1.2. Second method
The second method makes direct use of equation (15), which is written in the form

f(b*)=T*−cos b*+ g2b* sin b*=0. (21)

f(b*) is considered as a function of the complex variable b* and the Newton–Raphson
formula gives

b*i+1 = b*i −
f(b*i)

f,b*i(b*i)
, f,b*i =

1f
1b*i =

1(Re f )
1bi

1
+ j

1(Im f )
1bi

1
. (22, 23)

The superscript i designates the value of b* at the angular frequency vi ; see equation (13).
The experimental transmissibility curve H*(v) is obtained as a function of v and b*.

Equation (13) shows that b* is function of three variables: v, =v= and the damping angle
d. One can write the first derivative of f in equation (21) as

df
db*

=
1f
1v

1v

1b*
+

1f
1v

1v
1v

1v

1b*
+

1f
1d

1d

1v

1v

1b*
. (24)

In the two last terms of equation (24), the variations of the velocity v and the damping
angle d versus the angular frequency v are very low, so one can neglect them and retain
for the first derivative the first term in equation (24):

df/db*3 (1f/1v)(1v/1b*). (25)

The main difficulty when using equation (22) to find the root b* in equation (21) resides
in the fact that H*(v) includes many maxima (resonance) and minima (antiresonance);
see Figure 2. The number of extrema is related to the damping of the sample. In equation
(22) the second term tends to infinity when f(b*) reaches an extremum.

2.1.3. Improvements for the second method
If no caution is taken, Newton–Raphson formula (22) inevitably gives rise to oscillations

for b1 as well as b2, and consequently unadmissible oscillations of the curve of the complex
modulus E* (see equation (12)) are obtained. An example of such kinds of calculations
of the complex Young’s modulus of polyamide 6 (PA6) is shown in Figure 3. O� deen and
Lundberg [8] obtained similar results with oscillations. Curve-fitting is not a good solution
to obtain monotonic curves. An improved complex Newton–Raphson method is as
follows.

In equation (22), one has to discard frequencies corresponding to resonances and
antiresonances. At a resonance frequency the real part of T* goes to zero, and equation
(17) is rewritten as

−cos (b1) cosh (b2)+ g2b1 sin (b1) cosh (b2)− g2b2 cos (b1) sinh (b2)=0. (26)
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Figure 3. The complex Young’s modulus obtained by complex Newton–Raphson, second method equation
(22); material, polyamide 6 (PA6). . . . . . . , Parasitic oscillations are present on both curves; +++++, O� deen
and Lundberg [8] obtained similar results on the same material.

The imaginary part reaches a maximum:

Im (T*)−sin (b1) sinh (b2)− g2b1 cos (b1) sinh (b2)− g2b2 sin (b1) cosh (b2)=0. (27)

Equations (19) and (20) are reduced to

Db1 = bi+1
1 − bi

1 =
f1f2,b2

f2,b1 f1,b2

, Db2 = bi+1
2 − bi

2 =
f1 f2,b1

−f2,b1 f1,b2

. (28, 29)

Equations (28) and (29) allow the evaluation of b*r at a resonance frequency.
At antiresonance frequencies, equations (17) and (18) are rewritten with the imaginary

part of T* equal to zero. Equations (19) and (20) are reduced to

Db1 = bi+1
1 − bi

1 =
−f2 f1,b1

f1,b1 f2,b2

, Db2 = bi+1
2 − bi

2 =
f2 f1,b1

f1,b1 f2,b2

. (30, 31)

Equations (30) and (31) allow one to evaluate the root b*ar at an antiresonance frequency.
Calculations of complex moduli through resonance and antiresonance frequencies are

possible by using equation (22) if the frequency range is decomposed into intervals
excluding resonance and antiresonance frequencies. In each of these intervals, T*(v) varies
monotonically and calculations based on equation (22) give rise to a complex modulus
curve with reduced oscillations. In the last section of the paper, the application of the two
Newton–Raphson methods will be presented.

3. NEW METHOD OF COMPLEX MODULUS COMPUTATION BY USING AN ADAPTED
BLACK’S CHART

Black’s chart, a popular method in control engineering, is the curve of amplitude of the
transmissibility (evaluated in decibels) versus the phase angle F between input and output
signals. This graphical representation of =T*= (in dB) vs. F (in degrees) is adapted here to
equation (21).

The two families of curves are contours of equal b1 (the real part of b*) and contours
of equal b2 (the imaginary part of b*) respectively; see equation (16).
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Figure 4. Black’s chart adapted to the longitudinal vibration of a rod, Abscissa phase angle F, ordinate gain
(in dB). Two families of curves are represented: Re [b*]= b1 and Im [b*]= b2 and allow direct evaluation of
complex modulus. (a) First mode; (b) second mode; W, experimental results.

Such charts, corresponding respectively to the two first resonance zones, are presented
in Figures 4(a) and (b). For a set of values (b1, b2) it is easy to evaluate from equations
(17) and (18) the amplitude T* and the phase F.

The presence of hyperbolic functions in equations (17) and (18) makes the chart
non-symmetric with respect to the phase angle F. Consequently, the preliminary
calculations permitting the graphical representation must be carried out for each vibration
mode independently.
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The experimental curve T* in gain and phase is graphically superposed on the Black’s
chart. By interpolation one obtains easily the set of value, b1 and b2 for given values of
angular frequency v, =T= and phase F.

4. CORRECTION OF COMPLEX YOUNG’S MODULUS TAKING INTO ACCOUNT THE
ROD LENGTH, THE TRANSVERSE INERTIA AND THE TRANSVERSE SHEAR

One of the weaknesses of the elementary theory of longitudinal rod vibration is that,
for the elastic case, there is no geometric dispersion of the phase velocity, defined as

v=(E/r)0·5. (32)

This approximation is valid for very long wavelengths. With increasing frequency,
equation (32) is not valid and one has to replace elementary theory by more refined theory
[12]. The majority of researchers used Love theory [3, 4] which takes into account only the
inertia effect and not the shear effect. To obtain a more general correction formulae,
Bishop’s equation [12] takes both effects into account, and consequently is more
appropriate over a large range of frequencies. Read and Dean [5] presented appropriate
formulae for correction; the equations to be presented here constitute improvements on
those they proposed.

Bishop’s equation of longitudinal elastic rod vibratoin is, r being the radius of gyration,
G the shear modulus and n the Poisson ratio,

r 12u/1t2 −E 12u/1x2 − rn2r2 14u/1x2 1t2 +Gn2r2 14u/1x4 =0. (33)

For a viscoelastic rod in the harmonic regime, one has

−rv2u*−E* 12u*/1x2 + rn2v2r2 12u*/1x2 +G*n*2r2 14u*/1x4 =0. (34)

Equation (33) is the fourth order with respect to the x. The solution of equation (34) is
a linear combination of trigonometric functions and hyperbolic functions. Closed form
solutions for elastic rods exist [12]. Their computation is tedious. The additional difficulty
resides in the simultaneous presence of the Young’s and shear complex moduli as well as
the Poisson ratio. If one admits that E* and G* are two complex variables, the problem
is practically intractable. For viscoelastic isotropic material, one can reasonably
hypothesize that the Poisson ratio is nearly constant, real and practically independent of
frequency. Equation (34) can be simplified by adopting

G*=E*/2(1+ n). (35)

In Appendix B additional comments concerning the Poisson ratio are provided.
In equation (34) one has only one complex variable E*, n being known. Instead of using

a closed form solution for equation (34), the following approximation is suggested.
The phase velocity vB corresponding to Bishop’s equation and the phase velocity for

elementary theory vE are evaluated by using progressive wave for a semi-infinite rod,

u*(x, v)=U0 exp(jvt−jk*x), (36)

with complex phase velocity defined as

v*=v/k*. (37)

Bringing equation (36) into equation (33) yields

E*b =E*a
1+ n2r2k*2

a

1+ n2r2k*2
a /2(1+ n)

,
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with k*= b*/L. Subscript a refers to an apparent experimental value obtained with
elementary theory:

E*b =E*a
1+ n2r2b*2

1+ n2r2b*2/2(1+ n)L2. (38)

E*b is the corrected complex modulus with three corrections (inertia, shear and length).

5. SHEAR COMPLEX MODULUS

By using the same sample and choosing an appropriate excitation, it is possible to
evaluate the complex shear modulus. In Figure 1(b) is shown a schematic diagram of the
sample excited in torsion at the upper end of the sample. A specimen which is maintained
vertical is not subject to parasitic flexural vibrations by using an appropriate mechanical
device. Two contactless angular displacement transducers are used here to avoid additional
damping due to cable connections.

5.1.   

The Saint-Venant elementary torsional vibration theory is used:

CT 12u/1x2 = rIp 12u/12t. (39)

CT is the torsion stiffness given by, G being the shear modulus,

CT =KG. (40)

For a circular cross-section,

K= Ip = pR4/2,

where Ip is the polar second moment of area of the rod. For a rectangular cross-section,
warping is taken into account. Saint-Venant’s theory gives

K= bh3j(c), (41)

where b is the width, h is the thickness and c= b/h. j(c) is given by the series

j(c)= 1
3 −

64
p5c

s
a

n=0

1
(2n+1)5 th 0(2n+1)pc

2 1, (42)

where th designates the hyperbolic tangent. The series (42) has fast convergence.
In the harmonic regime equation (39) is as

C*T d2u*(x)/dx2 =−rv2Ipu*(x), C*T =KG*. (43, 44)

Comparing equation (43) to equation (2), one can say that the equations of motion are
similar. The boundary conditions are also similar, if one replaces the additional mass M2

at the free end by an additional rotational inertia I2 for torsional forced vibration.
Consequently, one can use the methods previously presented and discussed to evaluate

the shear complex modulus.

5.2.     

One has to replace the elementary Saint-Venant’s theory of rod torsion by Barr’s theory
[13], which is valid only in the case of a non-circular cross-section. For a circular
cross-section, there is no velocity geometric dispersion at all and consequently, in this case,
no correction is necessary.
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Barr’s equation of motion in the elastic case is

x2 14u

1x4 −0r

G
+

rx2

E 1Ip
14u

1x2 1t2 −
K(1−K)G

m2

12u

1x2 +
r(1−K)

m2E
12u

1t2 +
r2

EG
14u

1t4 =0, (45)

where E and G are the Young’s and shear moduli and x is a coefficient introduced to adjust
the asymptotic behaviour of the wave velocity when the frequency goes to infinity. x

depends on the Poisson ratio. m is a factor introduced to take into account the transverse
dimension of the sample. Its expression is given in Appendix A.

K, present in equations (40) and (41), takes into account the warping of the cross-section.
As for longitudinal waves, one can use the approximation using progressive torsional wave
for the correction of the shear complex modulus. In the harmonic regime equation (45)
is rewritten as

u*(x, v)= u0 exp(jvt− k*x). (46)

Bringing expression (46) into equation (45) yields the following correction for the complex
shear modulus (G*a is the apparent modulus deduced from equation (39) and G*c is the
corrected modulus):

G*c =G*a
1+

2+(1+ n)+ x2

1−K
m2k*−

KL2

(1−K)
k*2

1+
2+(1+ n)x2

K(1−K)
m2k*2

. (47)

For viscoelastic material, k and G* become complex quantities in equation (45):

k*= b*/L, G*= rv2L2/b*2,

where L is the length of the sample.
Note that in equation (47) if one sets the term {KL2/(1−K)}k*2 equal to zero, one

obtains the correction formula proposed by Read and Dean [5].

6. THE EXPERIMENTAL SET-UP

In a climatic box, see Figure 5, the temperature of which can be adjusted from −100°C
to +100°C, two vertically suspended samples were used respectively to measure the
complex Young’s modulus by using stationary longitudinal waves (on the right) and the
complex shear modulus by using stationary torsional waves (on the left).

Long rods were used so as to adopt a one-dimensional elementary theory of vibrations.
The upper end of the right specimen was connected to an electrodynamic exciter. The
excitation signal is a broadband white noise. The lower end was free and connected to a
mass M2, which was the mass of the second accelerometer.

A second electrodynamic exciter, the moving coil of which acts horizontally, applied
through a lever a torsional displacement to the sample. Two displacement transducers were
connected to two additional torsional inertia and measured the excitation and the response
of the rod. Contactless transducers were used here so as to avoid connections with cables
which would strongly influence damping measurement and also would introduce
additional stiffness with respect to the low stiffness of the specimen, if measurements were
made on soft elastomers.

The reciprocal of the transmissibility function T* (equation (15)) was directly evaluated
by a two-channel analyzer. A microcomputer with special programs for finding roots b*
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Figure 5. In a climatic chamber: on the right, longitudinal vibrations at both ends of the specimen are
measured by two accelerometers g1 and g2; on the left, torsional vibration of the specimen, angular oscillations
D1 and D2 at both ends, are measured by contactless displacement transducers. The electronic set-up is not
presented. The Fourier analyzer furnishes H*(v) or T*(v). Special programs on a microcomputer give E*(v)
or G*(v).

permitted one to obtain the complex Young’s modulus E* and/or the complex shear
modulus G*.

By varying the temperature of the specimen, one could extend the frequency range to
more than six decades using the Williams–Landel–Ferry method [1].

7. RESULTS

Three examples of complex moduli measurements are presented.

7.1.     

The material is a viscoelastic and high damping material. The first Newton–Raphson
method presented in section 2.1 is used here with two real variables b1 and b2.
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The real and imaginary curves for T*(v) are presented in Figure 6. The frequency range
goes from 30 Hz to 7000 Hz. With a piezoelectric exciter one can extend the higher
frequency beyond 10 000 Hz; see Figure 6(b).

For this material the first Newton–Raphson method with two real variables b1 and b2

was used. This method is stable and gives rise to a monotonically increasing Young’s
modulus E*. In Figure 7, the real and imaginary parts of E* are presented.

7.2.       

7.2.1. High damping elastomers
Figures 8(a and b) show the transmissibility H*( f ) in gain and phase versus the

frequency f. Note that one has to unfold the phase curve. Each portion of this curve must
be situated in the right quadrant and not necessarily between (−p, +p) as usual. The
second Newton–Raphson method was used here with b* as a complex variable.

The absolute value of Young’s modulus E* and the damping coefficient tg dE in the range
of frequency 30–7000 Hz are shown in Figures 9(a) and (b).

Figure 6. Tests on solid propellant using longitudinal vibrations. (a) With electrodynamic exciter; (b) with
piezoelectric exciter. Linear representations of real and imaginary parts of T*( f ); calculation of T*( f ) by first
Newton–Raphson method, equations (28) and (29).
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Figure 7. Test on solid propellant at various temperatures. (a) Real Part E'( f ) of Young’s modulus; (b)
imaginary part E0( f ).

7.2.2. Low damping elastomers
In Figures 8(c) and (d) are shown the curves of the transmissibility function. Attention

is focused on the presence of five resonance frequencies. The Young’s modulus is presented
in Figure 10. The existence of many successive transition zones is visible on the tg dE curve

Figure 8. High damping elastomer: transfer function (a) amplitude and (b) phase versus frequency; the phase
representation has to be unfolded from curve drawn between 2p. Low damping elastomer: (c) gain; (d) unfolded
phase.
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Figure 9. High damping elastomer. (a) Young’s modulus (absolute value); (b) damping coefficient tg dE ; (c)
shear modulus (absolute value); (d) damping coefficient tg dG .

with many maxima and on the Young’s modulus (in absolute value) by the presence of
different slopes.

7.2.3. Correcting Young’s modulus by using equation (38)
For materials with low damping coefficients, the resonance frequencies can be high and

the correcting formula is necessary, to take into account transverse inertia and transverse
shear. The apparent modulus E*a and the corrected modulus E*c are shown in Figure 11.

7.3.     

For this kind of polymer one can have more than six resonance frequencies. If the
complex variable Newton–Raphson method, equations (22) and (23), is used without

Figure 10. Low damping elastomer. (a) Young’s modulus (absolute value); (b) damping coefficient tg dE .
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Figure 11. Low damping elastomer. (a) . . . . , Inertia and transverse shear correction; ——, without correction.
(b) . . . . , Length correction; ——, without correction.

caution, one can obtain E* curves with parasitic oscillations as presented in Figure 3,
particularly for the imaginary part of E*.

With the improvements proposed for the complex Newton–Raphson method by
evaluating E* directly at resonance and antiresonance frequencies and by evaluation of
E* in frequency intervals with monotonic variation of =T*=, the parasitic oscillations are
reduced.

Figure 12. Young’s modulus absolute value and damping evaluated by three methods. wwww,
Newton–Raphson method without division of frequency range into intervals; RRRR, Newton–Raphson
method with decomposition into frequency intervals excluding resonance and antiresonance frequencies;
((((((((, Black’s chart method. Material, polyamide 6 (PA6).
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Figure 13. The shear modulus G*( f ) and the Young’s modulus E*( f ) are evaluated on the same specimen;
Poisson ratio n* (from equation (35)). Material, polyamide (PA6). The Poisson ratio is practically constant over
the range of frequencies presented.

In Figure 12 is presented the Young’s modulus of polyamide 6 (PA6), as obtained from
the Newton–Raphson method (equations (22)); the parasitic oscillations are visible on the
curve =E*=. Figure 12 is obtained from results presented in Figure 2.

Using Black’s chart as presented in Figure 4 one obtains the monotonically increasing
Young’s modulus shown in Figure 11.

The Young’s and shear moduli can be obtained on the same specimen. The variations
of =E*= and =G*= versus frequency are shown in Figure 13.

Poisson’s ratio is practically constant in the range of frequency 100–10 000 Hz.

8. CONCLUDING REMARKS

Complex moduli (Young’s and shear) can be obtained over a large range of frequency,
exceeding three decades, by measuring transmissibility function with many resonance and
antiresonance frequencies.

The same samples are used to evaluate both moduli E* and G*.
The experimental set-up is simple to realize. Boundary conditions adopted (free end with

additional mass or inertia) also are simple to obtain. It is not necessary to have a rigid
frame as in the impedance method.

Two Newton–Raphson methods have been used and discussed with appropriate
cautions to avoid oscillations of the complex moduli curves.

Black’s chart is a new method to evaluate complex moduli.
Correction formulae are available to obtain correct values of complex moduli at higher

frequency.
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APPENDIX A: EXPRESSION FOR m IN BARR’S EQUATION OF MOTION [13]

The expression for m is
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Here b is the width of the sample, c= b/h, h being the thickness, and th is the hyperbolic
tangent.

The coefficient m takes into account the warping of the rectangular cross-section.

APPENDIX B: IS THE POISSON RATIO FREQUENCY DEPENDENT OR NOT?

Strictly speaking, for viscoelastic and isotropic material, two complex independent
moduli are necessary for mechanical characterization; for example, the Young’s modulus
E*( f ) and the shear modulus G*( f ). Both moduli, in principle, are frequency dependent.
This method of reasoning brings with it many difficulties in the interpretation of
experimental results. Equation (34) shows that one has to deal with two unknown
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frequency dependent functions E*( f ) and G*( f ) with only one available equation of
motion.

Practically, the hypothesis of a constant Poisson ratio is often adopted so as to permit
the evaluation of E*( f ). It requires independent measurements of E*( f ) and G*( f ) and
the checking of constant n in the range of frequency used. A variety of experiments have
been carried out to validate or invalidate this hypothesis [1].

In the present study, the experimental set-up was arranged so as to use an elementary
equation of motion (2), subject to the restriction (1). The Poisson ratio is used only in
correction formulae (38) and (47).

For elastomers, the Poisson ratio is often supposed to have the value 0·5. That means
that the material is incompressible. In reality, elastomers are more or less compressible and
the Poisson ratio is less than 0·5.

To find an asymptotic value of n, ultrasonic methods have been used with success [14].

APPENDIX C: NOMENCLATURE

E*( f ), G*( f ) complex Young’s and shear
moduli

H*( f ) transmissibility function
u*(x, t) harmonic displacement
L rod length
b, h width and thickness of the rod
f frequency
T*( f ) reciprocal of H*( f )
v phase velocity of wave

b* = b1 − jb2, complex wavenum-
ber in equation (12)

tg d damping coefficient (14)
g2 =M2/rSL quotient of the ac-

celerometer mass to the mass of
the rod

n Poisson ratio
v angular frequency


