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NON-LINEAR NORMAL MODES OF A LUMPED
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A method based on the power series technique is developed for the computation of
normal modes and frequencies of a non-linear conservative lumped parameter system. The
power series analysis is facilitated upon transforming the time variable into an harmonically
oscillating time. Recurrence relations are derived from the governing equations of motion
and used to determine the normal modes and frequencies iteratively. The oscillating time
frequency is obtained by satisfying Rayleigh’s energy principle. Excellent accuracy is
demonstrated by the method in predicting the modal amplitudes and frequencies.
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1. INTRODUCTION

The concept of non-linear normal modes was introduced in 1966 by Rosenberg [1] and
co-workers in relation to conservative lumped parameter systems, and formed the basis
of the works that followed. It was postulated that, during a modal motion, all the masses
move periodically with the same period and that they pass through the maximum
displacement position or through the static equilibrium position at the same time. This
concept was later generalized to include continuous systems.

For weakly non-linear systems, the perturbation method has commonly been used to
construct the mode shapes and natural frequencies [2–6]. The first order homogeneous
solution is normally assumed to be a single linear mode and corrections are made at higher
order due to other modes. Recently, Shaw and Pierre [7–9] have developed an invariant
manifold approach for determining the normal modes of conservative and non-conser-
vative weakly non-linear systems. The approach was first developed in relation to lumped
parameter problems [8] and later applied to continuous systems [9]. The normal mode was
defined as a motion which takes place on a two-dimensional invariant manifold in the
phase space. The manifold has the property that it is tangent to the linear eigenspace as
it passes through the static equilibrium position.

In this paper, the non-linear normal modes of a two-degree-of-freedom conservative
system, previously analyzed by the invariant manifold approach [8], are obtained using the
power series technique. The time variable is first transformed into an oscillating time,
which transforms the governing differential equations into a form suitable for power series
analysis. An important feature of this approach is that the form of the system’s time
behaviour in any mode is not prescribed a priori, but is generated from the differential
equations governing its modal dynamics. Additionally, whereas the invariant manifold and
perturbation methods involve asymptotic expansions about the equilibrium position, the
present method assumes a power series expansion about the maximum displacement
position and seeks to obtain accurate solutions iteratively.
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In a recent monograph [10], a method of non-smooth temporal transformation is
discussed which resembles, in principle, the present method. Such a transformation reduces
the problem of computing non-linear periodic solutions to the solution of a set of non-
linear boundary value problems which are solved using regular perturbation expansions.

2. FORMULATION

The non-linear conservative system to be considered is shown in Figure 1. Without loss
of generality, unit values are assigned to the inertia and stiffness elements. The leftmost
spring has, in addition to the linear stiffness of unity, a cubic non-linearity of coefficient
g. This system has been analyzed by Shaw and Pierre [8] using the invariant manifold
concept. The equations of motion are given by

ẍ1 +2x1 − x2 + gx3
1 =0, ẍ2 − x1 +2x2 =0, (1, 2)

where x1 and x2 are the displacement co-ordinates and the overdot denotes differentiation
with respect to time t. In order to facilitate the use of the power series method in the
analysis of the periodic motion of non-linear conservative systems, the time variable t is
transformed into an harmonically oscillating time t as

t=sin vt, (3)

wherein the infinite time domain 0E tEa is reduced to a finite time scale −1E tE 1
within which t oscillates harmonically at a frequency v to be determined. Upon using
equation (3) to transform equations (1) and (2), the governing equations of motion in the
new time variable become

v2(1− t2)x01 −v2tx'1 +2x1 − x2 + gx3
1 =0, (4)

v2(1− t2)x02 −v2tx'2 − x1 +2x2 =0, (5)

where the prime denotes differentiation with respect to t. This reduction of the independent
time variable into a finite scale permits power series expansions of the dependent
displacements x1 and x2 in terms of t. According to the theory of ordinary differential
equations [11], equations (4) and (5) have one ordinary point at t=0 and two regular
singular points at t=21. One may therefore write power series expansions for x1 and
x2 about the ordinary point as

x1(t)= a1 + a2t
2 + a3t

4 + · · ·= s
a

n=1

ant
2n−2 (6)

x2(t)= b1 + b2t
2 + b3t

4 + · · ·= s
a

n=1

bnt
2n−2 (7)

Figure 1. The non-linear vibratory system.
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where ai , bi are constant coefficients to be determined. Equations (6) and (7) are capable
of representing periodic motion since they repeat themselves every time t=0.
Furthermore, only even powers of t are admitted in the series so that the same motion
is repeated every half-cycle (positive or negative) of the oscillating time. This requires the
oscillating time frequency to be equal to one-half the vibration frequency

v=V/2. (8)

By substituting equations (6) and (7) into equation (4), one obtains

v2(1− t2) s
a

n=1

an(2n−2)(2n−3)t2n−4 −v2t s
a

n=1

an(2n−2)t2n−3

+2 s
a

n=1

ant
2n−2 − s

a

n=1

bnt
2n−2 + g s

a

n=1

cnt
2n−2 =0, (9)

in which the non-linear term x3
1 is expanded as

x3
1 = c1 + c2t

2 + c3t
4 + · · ·= s

a

n=1

cnt
2n−2, (10)

which results from the triple multiplication of equation (6). It will be noticed that the
constant cn can be computed once the constants a1, a2, . . . , an are known. A shift of indices
in the first two terms in equation (9) may now be introduced so that all terms have the
same power, as follows

s
a

n=1

[v2(2n)(2n−1)an+1 −v2(2n−2)(2n−3)an −v2(2n−2)an

+2an − bn + gcn ]t2n−2 =0. (11)

If equation (4) is to be satisfied exactly for all time, the coefficient of each power in
equation (11) must be identically zero. This condition introduces the recurrence relation

an+1 =
[v2(2n−2)2 −2]an + bn − gcn

2n(2n−1)v2 , n=1, 2, . . . (12)

between the series coefficients. By substituting equations (6) and (7) into equation (5) and
following the same steps described above, the following recurrence relation is established

bn+1 =
[v2(2n−2)2 −2]bn + an

2n(2n−1)v2 , n=1, 2, . . . . (13)

The recurrence relations (12) and (13) ensure that the modal dynamics satisfies the
equations of motion. Consequently, the system’s time behaviour is not prescribed a priori
but is generated by the differential equation governing its motion. The system of
differential equations (4) and (5) represents a non-linear initial value problem and requires
for its solution the initial displacements and initial velocities to be prescribed. It is
convenient to let the motion start at t= t=0 from the maximum displacement position
in which the velocities vanish. Consequently, the two constants a1 and b1 in equations (6)
and (7) are assigned the maximum displacement values a1 = x1(0) and b1 = x2(0). Also, the
zero initial velocity conditions are satisfied by equations (6) and (7) since
ẋ1(0)=vx'1(0)=0 and ẋ2(0)=vx'2(0)=0. The remaining constants an and bn depend
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recursively on the fundamental constants a1 and b1 and on the oscillating time frequency
in accordance with equations (12) and (13).

The oscillating time frequency is an auxiliary unknown that may be determined by
invoking Rayleigh’s energy principle. This principle states that, for conservative systems,
the maximum potential and kinetic energies are equal. The maximum potential energy Umax

is associated with the maximum displacement position, assumed to occur at the start of
the motion. For the system under consideration, this is given by

Umax = 1
2b

2
1 + 1

2(a1 − b1)2 + 1
2a

2
1 + 1

4ga4
1. (14)

The kinetic energies of the two masses are given by

T= 1
2ẋ

2
1 + 1

2ẋ
2
2 = 1

2v
2(1− t2)(x'21 + x'22 ). (15)

The maximum kinetic energy occurs at the equilibrium position for which vt= p/4, 3p/4,
5p/4, . . . etc. From equation (3), this position is reached at t=21/z2. By using this
result in equation (15), the maximum kinetic energy becomes

Tmax = 1
4v

2(x'21 + x'22 )=t=1/Z2 (16)

3. RESULTS AND DISCUSSION

The non-linear normal modes and frequencies of the system shown in Figure 1 were
computed using an iterative scheme. Because the results are dependent on amplitude, they
were obtained for specified values of the amplitude of the displacement x1. For a given
mode, the amplitude of x1 is specified and an initial guess is made on x2. The modal motion
is assumed to start at t=0 with maximum displacements and zero velocities so that a1 = x1

and b1 = x2. The recurrence relations (12) and (13) are then used to compute the ensuing
motion, which satisfies the equations of motion for a range of values of v. For each
candidate motion, the error o=Umax −Tmax , has only one stationary minimum at a single
value of v. This value of v is taken as the first approximation of the oscillating time
frequency and used in conjunction with the initial guess on the mode shape a1 and b1 to
compute the amplitudes x1 and x2 at t=1 from equations (6) and (7). It turns out that
these amplitudes, which represent maximum displacements on the opposite side of the
equilibrium position, provide an improved estimate of the mode shape. This improvement
results from satisfying the equations of motion exactly and Rayleigh’s energy principle
approximately. The computed values of x1 and x2 at t=1 are used, after being normalized

T 1

Convergence of second mode for amplitude x1 =2, g=0·5

Amplitudes at t=0 Amplitudes at t=1
ZXXCXXV ZXXXCXXXV

Iteration number x1 x2 v o=Umax −Tmax x1 x2

1 2 0·0000 1·0231 1·4830E-1 −1·6284 0·6133
2 2 −0·7533 1·0060 8·0786E-3 −1·9144 0·8951
3 2 −0·9351 0·9998 4·8065E-4 −1·9795 0·9694
4 2 −0·9794 0·9982 2·5749E-5 −1·9949 0·9881
5 2 −0·9906 0·9975 3·6602E-6 −1·9991 0·9930
6 2 −0·9934 0·9979 1·7490E-7 −1·9994 0·9937
7 2 −0·9940 0·9979 4·2551E-8 −1·9996 0·9941
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Figure 2. Second modal displacements x1 and x2 and velocities v1 and v2 versus time, for amplitude x1 =2,
g=0·5.

to the specified value of x1, as initial amplitudes in the next iteration, and the process is
repeated until the desired degree of accuracy is achieved.

In Table 1 is demonstrated the convergence of the second non-linear mode and
frequencies for amplitude x1 =2 and g=0·5. The number of terms used in the power series
was 20. It can be seen that as the results converge to the exact solution, the error o becomes
vanishingly small, which ensures that Rayleigh’s energy principle is satisfied. The modal
amplitudes at t=0 must then be identical to those at t=1, in accordance with
Rosenberg’s definition of non-linear normal modes [1]. It is shown in Table 1, that after
seven iterations the error in modal amplitude x1 is 0·02% and that in x2 is 0·01%.

In Figure 2 are shown the modal displacements and velocities in the second mode for
amplitude x1 =2 and g=0·5, simulated over one-half of the vibration cycle. As expected,
both masses attain their maximum displacements or maximum velocities simultaneously.
The series coefficients ai and bi are shown in Table 2. Two points are noted here. First,
the progressive decrease in absolute value of the coefficients characterizes a convergent
solution. Second, the number of significant coefficients for x1 is greater than those for x2,

T 2

Series coefficients of second mode for amplitude x1 =2, g=0·5

i=1 i=2 i=3 i=4 i=5

ai 2·0000 −4·5159 1·6856 −1·6019 0·8485
ai+5 −0·6291 0·3785 −0·2587 0·1635 −0·1084
ai+10 0·0698 −0·0458 0·0296 −0·0194 0·0126
ai+15 −0·0082 0·0053 −0·0035 0·0022 −0·0015

bi −0·9940 2·0024 −0·0456 0·0352 −0·0074
bi+5 0·0043 −0·0016 0·0009 −0·0004 0·0002
bi+10 −0·0001 0·0001 0·0000 0·0000 0·0000
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T 3

Comparison of first modal amplitudes and frequency, g=0·5

Amplitude x2 Vibration frequency
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

Amplitude x1 Invariant manifold Present method Invariant manifold Present method

0·25 0·2526 0·2526 1·0059 1·0060
0·50 0·5208 0·5214 1·0234 1·0226
0·75 0·8203 0·8236 1·0527 1·0486
1·00 1·1666 1·1805 1·0937 1·0804
1·25 1·5755 1·6163 1·1465 1·1164
1·50 2·0625 — 1·2109 —
1·75 2·6432 — 1·2871 —
2·00 3·3333 — 1·3750 —

which may be attributed to the direct connection of x1 to the non-linear spring. This last
point prompted an examination of the harmonic content of the series solution, equations
(6) and (7), by a Fourier expansion over one cycle. The solutions were integrated using
Simpson’s rule with 50 grid points. The results showed that the displacements were
dominated by the fundamental and third harmonic components, as approximated by

x1(t)=1·96780 cos Vt+0·03245 cos 3Vt,

x2(t)=−0·99346 cos Vt−0·00173 cos 3Vt, (17)

wherein the third harmonic component is significant in x1 and x2 is almost harmonic.
In Tables 3 and 4 are compared, for the first and second modes respectively, the

computed modal amplitude x2 and vibration frequency for specified values of x1 with those
obtained by Shaw and Pierre [8] using the invariant manifold approach. The coefficient
g was 0·5, which represents a significant cubic non-linearity. For the linearized system
(g=0·0), the first mode shape x2/x1 =1 and the vibration frequency V=1, whereas for
the second mode x2/x1 =−1 and V=z3. In all the results, the initial guess used for x2

was x2 = x1 in the first mode and x2 =0·0 in the second mode. The errors in the computed
modal amplitudes were all within 0·04%. The corresponding errors in the vibration
frequency were smaller than 0·04%. In Tables 3 and 4 it is shown that the agreement
between the two methods in modal amplitudes and frequency is good up to an amplitude
x1 of unity. To estimate the error in the invariant manifold method, the predicted modal

T 4

Comparison of second modal amplitudes and frequency, g=0·5

Amplitude x2 Vibration frequency
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Amplitude x1 Invariant manifold Present Invariant manifold Present

0·25 −0·2470 −0·2467 1·7354 1·7354
0·50 −0·4759 −0·4761 1·7455 1·7460
0·75 −0·6689 −0·6733 1·7624 1·7638
1·00 −0·8077 −0·8271 1·7861 1·7898
1·25 −0·8744 −0·9315 1·8166 1·8248
1·50 −0·8509 −0·9892 1·8538 1·8725
1·75 −0·7194 −1·0068 1·8978 1·9280
2·00 −0·4616 −0·9940 1·9485 1·9958
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amplitudes and frequency were used to simulate the modal motion in accordance with
equations (12) and (13), which was used to determine the modal amplitudes at t=1 from
equations (6) and (7) and then compared with the initial amplitudes. In the first mode and
at x1 =1, the errors in x1 and x2 by the invariant manifold method were 1·48% and 0·086%
respectively, compared with 0·001% and 0·017% respectively by the present method. At
amplitudes larger than x1 =1, the accuracy of the invariant manifold prediction of the
non-linear normal modes deteriorates rapidly. For example, in the second mode with
x1 =2, the invariant manifold errors in x1 and x2 were 6·61% and 66·66% respectively,
with the present method giving corresponding errors of 0·02% and 0·01% respectively.
However, for the first mode, convergent power series solutions could not be obtained for
amplitudes between x1 =1·5 and x1 =2. This indicates the existence of an unstable region
in which bifurcation of the normal mode occurs [6]. To investigate the nature of such
bifurcations, a stability of the periodic solution, equations (6) and (7), must be carried out,
but this is beyond the scope of this paper. Finally, to demonstrate the applicability of the
power series solution to strongly non-linear problems, the value of g was increased to
g=2. The corresponding amplitudes for the second mode, x1 =1 and x2 =−0·4978, were
accurate to within 0·06% and the vibration frequency was 1·9952.

4. CONCLUSIONS

A power series method has been developed for the computation of non-linear normal
modes and frequencies of two-degree-of-freedom conservative systems. The time variable
is transformed into an oscillating time, which transforms the equations of motion into a
form suitable for power series analysis. Recurrence relations derived from the equations
of motion enable the normal modes to be computed iteratively. Extension of the method
to multi-degree-of-freedom systems is straightforward. The computational labour involved
is minimal and convergence of the normal modes can be obtained over a broad range of
vibration amplitudes.
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