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Results of a numerical investigation are presented of the behaviour of a mathematical
model which approximates the response of a thin metal strip, or beam, held vertically and
clamped at its base, which is driven to impact against a motion limiting constraint. Previous
theoretical analyses, in conjunction with numerical studies, have highlighted the
complicated dynamics that the system exhibits following a single or series of grazing
bifurcations. Under certain conditions subharmonic solutions and chaotic impacting
motions are unavoidable. These solutions, which involve several impacts per orbital period
introducing relatively large impact velocities, have been viewed experimentally. Meanwhile
research into the control of chaos, in which unstable orbits embedded within chaotic
motions are stabilized, has advanced over recent years. New control methods have been
developed and experimentally implemented. The present work brings these two fields
together for the first time. Numerical evidence is given for the use of control to eliminate
complicated motions by tracking lower periodic solutions. The stabilized motions near the
grazing incidence have lower impact velocities than the naturally existing stable solutions
leading to a significant reduction of the impact force which may have significant engineering
relevance.
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1. INTRODUCTION

The study of systems which include impact dates back some considerable time with
significant advances made by researchers in the former Soviet Union and Eastern Block
countries, usually under the title of vibro-impact systems [1]. Typically written in Russian,
this research has been brought to wider attention through further works [2–4] and others.
Interest in driven systems which incorporate impacts was rekindled through the discovery
of chaotic motions [5–8] and the need to solve practical problems in rattling gears [9],
impact print hammers [10], heat exchanger tubes [11, 12], vibration absorbers [13], high
speed machinery with clearance connections [14], the articulated mooring tower [15], and
more [16].

In many of these studies low dimensional mathematical models were proposed which
adequately modelled much of the qualitative behaviour of a physical system with par-
ticular emphasis on the classification of bifurcational events. This approach was con-
tinued with both experiments [17, 18] and numerical evidence used to verify theoretical
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predictions [19, 20] (also see the theoretical approach to motions of a rocking block [21]).
A significant advance was made by Nordmark [22] who proposed a two dimensional
mapping which characterised the behaviour of a simple impacting system close to the point
where impacting first begins. This latter article has in turn sparked off considerable interest
with regards to iterative maps with square root singularities. Specifically, period-adding
bifurcations were noted in numerical [23] and experimental [24] investigations.

Impacts, particularly those with high velocities, often lead to excessive loads or wear,
unacceptable noise, or give rise to resonance phenomena such as rattling and chattering
[20]. The cost of any resulting failure, and subsequent environmental ramifications impose
considerable restraints on designers trying to avoid or reduce such responses. In this paper
a particular physical system is considered for which there is already detailed information
[25] and yet the approach will be valid for the whole class of impact oscillators. The
purpose of the research is to evaluate the use of a control strategy, based on the
stabilisation of unstable orbits, which limits both the number of impacts and the force
exchanged on impact. The proposed control method [26] is borrowed from research into
the control of chaos stimulated by the work of Ott, Grebogi and Yorke [27]. A scheme
for tracking the stabilized solution is established as a parameter is varied [28]. It is shown
here, for the first time numerical evidence that the two topics of impacting systems and
control of chaos can be combined to improve the system response. To date, this success
has been achieved only numerically but the fact that control of chaos has been achieved
experimentally in other mechanical systems [29] gives rise to the hope that these results
will be reproducible in a physical system such as the vibrating beam used here.

2. PHYSICAL SYSTEM AND MATHEMATICAL MODEL

The physical system under consideration consists of a thin metal strip, or beam, which
is clamped in a vertical position with the upper end free to vibrate under the influence of
a periodic driving force [18, 25]. When a motion-limiting constraint (e.g., a rigid stop) is
introduced, for sufficiently large amplitude of oscillations, impacts will occur as the beam
makes contact with the constraint. Idealized elastic collisions instantaneously change the
direction of the velocity introducing discontinuity into the system [22]. Such a set-up will
display many of complicated features common to other non-linear dynamical systems
but, of particular interest, the impact introduces features not seen in smooth counterparts
[22, 23].

This driven beam is a simple mechanical system originally devised specifically to
investigate the impacting process. The beam is stiff thereby, allowing torsional motions to
be ignored. The excitation frequency is chosen to be close to the natural frequency so that
vibrations in the fundamental mode by far exceed the beam’s response in other modes [25].
Thus the beam’s displacement x for present purposes, can be adequately modelled by a
(scaled) single degree of freedom linear oscillator

ẍ+ cẋ+ x= f cos vt (1a)

with a motion constraint on the rigid stop where a coefficient of restitution rule is applied:

x=1, ẋ+ =−rẋ−, 0Q rQ 1. (1b)

The parameters c, f and v are dimensionless damping, forcing magnitude and forcing
frequency, and x=1 refers to the position of the rigid stop. When the amplitude of
oscillation reaches the rigid stop, an impact occurs such that the velocity ẋ− (before the
impact) is immediately altered to the velocity ẋ+ (after the impact) with a restitution of
the velocity defined by the coefficient r. The model (1), to some extent, has successfully
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been used to approximate the response of an experimental apparatus of an impacting beam
[18, 25], and also studied both theoretically and numerically by Foale and Bishop [17, 19].

It should be noted that, in order to match the occurrence of bifurcations which bound
the motions, a reduced value for the coefficient of restitution of r=0·2 was applied rather
than an expected value of r1 0·7 in these earlier studies [18, 25]. This requirement appears
to indicate that during impact energy is lost to, among others things, higher modes. A
different choice for the value of r (and indeed a more complex, higher order model) would
merely shift the behaviour in parameter space; it should also be borne in mind that similar
behaviour has been noted experimentally [24]; therefore in line with these earlier studies,
here the value is fixed at r=0·2. Further discussion as regards modelling, and
improvements to the simple description used here, have been carried out by Van der Vorst
et al. [30] analyzing the response of a beam via a multi-degree of freedom model. In their
work a continuous Hertz type model (also see reference [31]) was selected for the impact
process in conjunction with a finite element method after a component mode synthesis
analysis to reduce the dimension of the system. Such a model, while more accurate, is
thought not to be necessary here to explain the control strategy.

3. GRAZING BIFURCATIONS

When the system evolves from a non-impacting motion towards the stop as a result of
a variation in a parameter (e.g., the forcing frequency is used here while others have used
clearance between the beam and the stop [4, 32]) a notional zero velocity impact is
approached. At this point the system may jump discontinuously (via a bifuration of the
supercritical type) into a motion which might be periodic (of period-1 or more typically
of longer period involving multiple impacts) or chaotic depending upon other system
parameters [20, 22, 33]. A change in the state of the system has occurred: the so-called
grazing bifurcation. For further variation of the driving frequency large numbers of
unstable, multiple impact periodic orbits exist with windows of stable period-adding
solutions. The response following the grazing bifurcation for the Nordmark map [21] was
classified by Chin et al. [23] which, for the problem at hand, basically equates to three
different scenarios for the impact oscillator: I, high r—system jumps directly to chaos with
few periodic windows and ultimately chaos; II, intermediate r—windows of chaos and
periodic behaviour alternate with reverse period-adding; III, low r—periodic windows
effectively overlapping. In a careful experiment Weger et al. [24] viewed some of this
bifurcational structure and associated the response with a Nordmark map equivalent to
r=0·2. The existence of large numbers of unstable orbits after the supercritical bifurcation
can be numerically verified for the system (1) but have been more rigorously discussed in
the work of Budd and co-workers [20, 32, 33], through the behaviour of a similar system
and the approximating maps, where the existence of various impacting solutions are
mathematically proved. Of particular note is the scaling of the largest Liapunov exponent
as the bifurcation is approached [34].

In the case of the beam in question some of these solutions may be seen as undesirable
behaviour. Furthermore, immediately after the grazing bifurcation the response (for
certain levels of forcing amplitude and certainly for different values of the coefficient of
restitution) is extremely sensitive to further variations in the frequency so that prediction
of the number of impacts and the impact force becomes (effectively) impossible unless a
fine scale numerical analysis is performed.

The global dynamics of the system (1) in the (v, f ) parameter space was initially studied
by Thompson et al. [18; also see 25] both theoretically and experimentally. Here particular
interest is in the parameter regime just after the lower grazing bifurcation which leads to
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complicated impacting motions. Notwithstanding the previous remarks regarding the
inadequacy of this simple model, as an example, the parameters used in this present
numerical study are taken as representative of a real beam. A bifurcation diagram is shown
in Figure 1 with the fixed parameters f=0·26, c=0·1, r=0·2 and a variation of the
forcing frequency v from 0·8 to 1·3. The vertical co-ordinate of Figure 1 represents the
maximum displacement =xmax = of oscillations from the original equilibrium point (x=0).
The value of =xmax = is the maximum absolute value of the displacement during a single
forcing period (once transients have decayed) which is then plotted over several periods
to allow subharmonic solutions to be recognised. Figure 1 thus shows the overall behaviour
of the system (1) or resonance response diagram. Within the range of v1 0·8–0·86885,
the system undergoes a period-1, non-impacting motion (NI-P1). The oscillator impacts
the rigid stop with zero velocity at the critical value of vc 1 0·86885 (the grazing point
G corresponding to x=1), After the grazing impact, a series of further bifurcations occur
(some of which are additional grazing bifurcations [20, 22, 29]) producing windows of
subharmonic orbits of increasing period and chaotic impacting motions (P&C) in the range
of v1 0·86885–0·94. Subsequently, following a period doubling bifurcation [25] the
system exhibits a simple period-1 motion with one impact per period (P1) which loses
stability due to a saddle–node bifurcation (denoted by SN at the value of v1 1·21). After
the saddle-node bifurcation as the forcing frequency v increases, the system settles onto
the non-impacting period-1 (NI-P1) motion once again. On the other hand, if the value
of v decreases, say from the value of v=1·3, then the NI-P1 motion continues until at
the value of v1 1·11 when the oscillator hits the rigid stop resulting in a jump to the
impacting period-1 P1 motion. This jump is associated with another grazing bifurcation
but here of a saddle–node or fold type [19].

Figure 1. Bifurcation diagram for c=0·1, f=0·26, r=0·2 with the variation of v from 0·8 to 1·3, where G
indicates the point of grazing bifurcation, SN the saddle–node bifurcation, and the arrows indicate how the
system would evolve as the parameter v varies through the bifurcation points. The label NI-P1 denotes a period-1
non-impacting motion, P&C denotes periodic and chaotic impacting motions, and P1 a period-1 impacting
motion.
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Figure 2. A close-up view of the bifurcation diagram within the parameter range 0·85QvQ 0·95. The motions
are indicated by the symbol P (periodic motion) followed by an integer which indicates the number of the forcing
periods contained in an orbital period of the motion. G represents the grazing point.

Figure 2 displays a close-up view of the system response within the parameter range
(v=0·85–0·95). Different types of motion are marked by a symbol P followed by an
integer which denotes the periodicity of the motion. For instance, P2 denotes a motion
which repeats itself every two forcing periods. In the figure, apart from the non-impacting
motion NI-P1 located within the range of vQ 0·86885, all other solutions are impacting
motions such as the P4, P3, P2 and P1 located on the right side of G in Figure 2. Chaotic
impacting motion occurs following the P3 motion and disappears with emergence of the
P4 motion which itself evolves into an P2 motion after an inverse period-doubling
bifurcation. As the system passes from the NI-P1 motion to the P4 orbit a grazing
bifurcation occurs (at G) which plays a crucial role in determining the subsequent response
[17, 22, 23]. At the grazing point, the map of the system is continuous but not differentiable
(a singularity in the Jacobian of the map), and one of the eigenvalues of the Jacobian may
be infinite [19]. The stable NI-P1 orbit becomes an unstable P1 orbit after the grazing point,
the existence of which has been verified using analytical methods [18, 19].

The pattern of impacting motions close to the grazing point is complicated and sensitive
to small changes in the parameter. To illustrate this, Figure 3 explores a finer view to reveal
the detailed structure of the solution paths between the P4 and P3 orbits of Figure 2. In
Figure 3(a), one can see the family of bifurcatons leading to a series of impacting motions:
P4:P16:P12:P8:P4:chaos:P6:P3. Qualitative changes in these motions are due
to further bifurcations, including grazing impacts, as the forcing frequency increases. The
grazing impacts, as before, produce new higher order impacting orbits with different
numbers of impacts during an orbital period of the solution, shown in Figure 3b. The
overall effect of each of these further grazing bifurcations is not so severe as the grazing
at G but these have not been investigated in detail here. In the figure one can see a
transition P4:P16:P12:P8:P4, within a very narrow parameter regime (v1 0·87–
0·8705) close to the grazing point G at vc 1 0·86885. Numerical results indicate that this
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is a cascade of reverse period-adding bifurcations and the periodicity of the orbits after
each bifurcation changes by the base of four. Individually, observing any branch of the
bifurcation cascade, shows that the number of paths decreases by one through each

Figure 3. (a) A finer view of a group of higher periodic and chaotic impacting motions in the range of
0·8698QvQ 0·8708. (b) Impact velocity, just before impact occurs, showing the number of impacts for the
different impacting motions.
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bifurcation. The scenario of this bifurcation pattern is very similar to the Nordmark map
studied by Chin et al. [23] in which this typical phenomenon is regarded as a universal
property for the impacting systems. In Figure 3(b) the P4 orbit (v1 0·86885–0·87) with
one impact during an orbital period differs from the P4 orbit (v1 0·87043–0·87052) which
has two impacts per orbital period (four forcing periods). It is clear that the P16 orbit has
five impacts per orbital period and subsequently the number of impacts for the orbits
reduces by one through each bifurcation. In Figure 3(b) the P3 and P6 orbits have one
and two impacts respectively.

The bifurcation diagrams (Figures 1, 2 and 3) confirm the analytical prediction that there
is no stable P1 orbit in the parameter regime (v1 0·86885–0·94) within which chaotic
impacting motions occupy a relatively large portion. Close to the grazing point G, higher
periodic orbits and chaotic orbits with larger number of impacts appear. The P4 orbit with
one impact per orbital period is the stable orbit nearest to the grazing point G but this
orbit has a relatively large impact velocity compared with other solutions. As stated, large
impact velocities may cause excessive loads accelerating wear or resulting in structural
damage.

4. TRACKING LOWER PERIODIC IMPACTING ORBITS

The goal of this study is to eliminate the complicated impacting motions that occur
during a variation of the parameters (e.g., forcing frequency) close to the grazing
bifurcation (such operations are common in engineering systems during start-up or
shut-down procedures). In particular, a tracking control technique is applied to extend
lower periodic impacting motions towards the grazing bifurcation for the parameter
range where these orbits are initially stable but then become unstable such that
(uncontrolled) higher periodic or chaotic impacting motions dominate the system
performance. An unstable periodic impacting orbit stabilized near grazing has lower
impact velocity which can greatly reduce the impact force. Thus the use of control leads
to certain advantages of longer fatigue life, less wear and noise etc., under engineering
considerations.

The use of newly developed control techniques [26–29, 35–39] can change the
behaviour of the system either to specifically enhance the response, or in this case, to avoid
the complicated impacting motions improving the system performance. Conceivably
any one of these control measures (or other suitable methods) might be applied in
conjunction with tracking techniques [28] which can extend a selected motion from
the initially stable state to an unstable state through the parameter regimes where
complicated impacting motions govern the system response. By so doing, the system
behaviour can be greatly altered displaying a desired response over almost all the
parameter range.

Here, to carry out the control, a so-called self-locating control scheme [26, 37] is used.
This method is based on the Newton root finding algorithm and utilizes the feedback of
an output sequence on accessible parameters. Before the control only an approximate
location of the desired periodic orbit is required which can subsequently be automatically
and accurately detected in the control process. Because of the self-locating function, the
control method can be applied to track a periodic orbit with the variation of the parameter.
In this particular application, the amplitude of the driving force f is taken as an accessible
control parameter and, for completeness, some details are given below.

Consider an n-dimensional map, which may be written in the general form

xi+1 = f(xi , p), x$Rn, p$Rl, (2)
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where xi is an n×1 vector and p is an accessible system parameter vector which may be
perturbed within a limiting range p$(p*−Dp, p*+Dp), with p* the nominal value at
which the system f is currently placed and where Dp is the maximum possible perturbation.

Suppose that only an approximate region is known within which lies an
unstable periodic orbit x* which is to be stabilized. To accurately locate this periodic
solution, consider the residual map F(x),

F(x)=F(x, p*)− x, F(x, p*)= fm(x, p*), (3)

where f(x, p*) denotes the m-th iterate of f. A period-m orbit x* of the map f corresponds
to one of the solutions of

F(x*)=0. (4)

Upon starting from a point xk in the neighbourhood of the unknown periodic orbit x*,
this initial estimate of solution x* is improved by using the Newton root finding algorithm,

x̄k+1 = xk −[dF(xk )/dx]−1 · F(xk )= xk −[Dk − I]−1(F(xk , p*)− xk ) (5)

where Dk is the Jacobian matrix estimated at xk provided that [D−I] is not singular. Here
x̄k+1 is the new prediction of the solution x*. Provided that the system F can be adjusted
from the state xk to the new state x̄k+1 (i.e., let xk+1 = x̄k+1), then iterating the process (5)
results in convergence to the solution x*.

We control the system F from xk to x̄k+1 by means of a perturbation dpk of the parameter
p so that

x̄k+1 =F(xk , p*)+Gkdpk, Gk =(1F(xk , p*)/1p), dpk =(pk − p*). (6)

Substituting expression (6) into equation (5) yields the perturbation dpk of the parameter
p as

dpk =−(GT
k Gk )−1GT

k ([Dk − I]−1 + I) (F(xk , p*)− xk ). (7)

Introducing the input pk = p*+ dpk into the system (2) during the time from k to k+1
forces the system from xk to x̄k+1. In the next control step, starting from xk+1(xk+1 = x̄k+1),
dpk+1 may be calculated by (7) and pk+1 = p*+ dpk+1 fed into the system (2) and so on.
Continued iteration of this control process eventually brings the system onto the periodic
orbit x* provided that the initial xk is sufficiently close to the solution x*. With this caveat
satisfied, convergence is rapid following the ‘‘quadratic convergence’’ property of the
Newton method. No special account is taken of any grazing events during the control
process. The control method is based on a continuous map and therefore, despite the
discontinuity in the derivative of the mapping at G, the scheme is successful. Of course
it may be that although if one follows a stable path grazing bifurcations will occur, the
unstable path itself remains unaffected.

The control signal is renewed once during each period of the tracked orbit. Considered
here are three lower periodic impact orbits (P1, P2 and P3) and these are extended towards
the grazing point G in place of the stable higher periodic and chaotic impacts orbits which
would naturally exist.

Figure 4 demonstrates the loci of the stabilized P1, P2 and P3 orbits by plotting the
maximum displacement of the orbit during an orbital period. These impact orbits have
only one impact for each orbit period, as can be seen from the inset phase portraits of
the various solutions given in Figure 4. Each tracking process starts from the state where
the orbit to be tracked is stable. Even before the system decays onto the stable orbit, the
use of the self-locating control can accelerate the convergence and reduce the transient time
to reach the steady state. In a tracking process, the parameter v varies once the difference
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Figure 4. The tracked lower periodic impacting motions (P1, P2 and P3) extended towards the grazing point
G as the parameter v decreases. The orbital pattern of the impacting motions is indicated in the phase space
(x, ẋ).

of amplitudes of the stabilized orbit, during an orbital period, is within a required precision
of Dv=0·0001. This parameter varying step should be very small particularly when the
stabilized orbit approaches the grazing point where the eigenvalue of the orbit becomes
infinitely large. As can be seen, the P1 and P2 impact orbits can be stabilized and extended
through the regime (v1 0·897–0·91) in which chaotic impacting motions originally
dominate the system performance (see Figure 2). The P3 orbit can be stabilized even up
to a very close distance from the grazing point and certainly extended through the regime
of the higher periodic and chaotic impacting motions which initially govern the system.
However, there is a limit for stabilisation of each orbit close to the grazing point. The P1
impact orbit can be extended close to the grazing point (vc 1 0·86885) up to vq 0·8762
and for the P2 orbit up to vq 0·872 while the P3 orbit can be stabilized to vq 0·8695
by using the self-locating method; see Figure 4.

The variations of the eigenvalues of the stabilized P1, P2 and P3 orbits during the
tracking process are shown in Figure 5. As the parameter v decreases, the absolute value
of the eigenvalue increases. Close to the grazing point, the values of the eigenvalue of these
three orbits increase dramatically. Theoretical studies [16, 22, 34] verified that the
eigenvalue of the unstable impact orbits become infinitely large at the grazing point
because of the singularity of the Jacobian of the map. An orbit with large eigenvalues is
very sensitive to any error which makes control difficult [39]. Figure 5 indicates that the
P3 orbit can be stabilized closer to the grazing point than can the P1 and P2 orbits. The
three cases exhibit a common feature that, just before the failure in the tracking of each
orbit, the eigenvalue of the orbit increases rapidly. Any tiny change of the parameter v

gives rise to a large change of the eigenvalue such that control cannot extend the stabilized
orbit further. The value of the parameter v corresponding to a rapid increase of
eigenvalues can be seen as a threshold at which control fails.
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Figure 5. The largest (absolute value) eigenvalue of the impacting motions (P1, P2 and P3).

Figure 6 shows the velocity of impact for each stabilized orbit in the domain of the
tracked orbits. It is apparent that the impact velocity decreases as the stabilized orbit
approaches the grazing point at vc 1 0·86885. In this figure, the P1 impact orbit is
naturally stable at v=0·95 where the impact velocity of the orbit is approximately 0·4.
This orbit becomes unstable as vQ 0·94 and can be stabilized towards the grazing point

Figure 6. The impact velocity of the stabilized impacting motions. The solid lines above and below the zero
broken line (horizontal) respectively indicate the velocity just before and after impact occurs. The vertical broken
line indicates the value of v corresponding to the grazing point.
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at v=0·8762 where the impact velocity of the P1 orbit is about 0·05. Reductions in
velocity of impact occur for the P2 and P3 orbits though a rigorous scaling has not been
established (see reference [34]). In particular, the impact velocity for the stabilized P3 orbit
almost reaches zero. It is known that impact velocity governs impact force which is of
much concern in engineering, and it has been shown that applying control can significantly
decrease the impact velocity in a systematic way.

4. CONCLUSIONS

The behaviour of a simple impacting beam with periodic excitation can be very
complicated, particularly in the regime where grazing bifurcations occur. Grazing
bifurcations can produce high periodic and chaotic impacting motions with relatively large
impact velocity and various numbers of impacts per orbital period of the solution. Such
motions can cause higher impact forces leading to excessive loads, wear, or
unacceptable noise.

The aim of this research was to use techniques developed for the control of chaos to
eliminate any high periodic and chaotic impacting motions. Numerical evidence has been
shown that the self-locating method of control can achieve this goal. This method has been
applied to track lower periodic impacting motions towards the regime where the high
periodic and chaotic impacting motions naturally exist (i.e., are stable solutions) and
dominate the performance of the system. The lower periodic impacting motions stabilized
near the grazing incidence have much lower impact velocities resulting in a reduction of
the impact force. These advantages may be of wider interest in engineering.
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