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1. 

Thick and moderately thick annular plates composed of laminated composite materials are
among the most important structural elements used in modern engineering. Such
lightweight and highly reinforced components are also being increasingly used in civil,
mechanical and transport engineering applications. Although a considerable amount of
work has been reported in the area of axisymmetric vibration of annular plates, it has
mainly been based on classic theories or two-dimensional shear deformable theories [1–4].
To the best of the author’s knowledge, comparatively much less work, concerning
three-dimensional analysis, is available in the literature.

Using three-dimensional elasticity theory, in this note an axisymmetric vibration analysis
is presented of laminated annular plates composed of transversely isotropic layers. The
analysis is based on a recursive method that has been successfully applied in connection
with vibrations of laminated circular plates [5]. The three-dimensional governing equations
for axisymmetric vibration of a transversely isotropic annular plate is first converted into
a set of first order linear differential equation system for which analytical solutions can
be obtained. This is achieved by introducing Bessel functions to decompose the governing
equations. On the basis of the solutions obtained for each material layer, the solutions of
the laminated plate are then obtained by imposing continuity conditions at all the
interfaces and boundary conditions at the two lateral surfaces. Moreover, due to the use
of the recursive formulation, regardless of the number of the material layers considered,
the natural frequencies of a laminated annular plate are always obtained as the roots of
a 2×2 eigen-determinant.

2.    - 

Consider an annular plate with an arbitrary constant thickness h and denote by a and
b its outer and inner radii, respectively. The radial, circumferential and transverse
co-ordinates are denoted by r, u and z, respectively, while the corresponding displacements
in the r- and z-directions are represented by U and W. It is assumed that the plate is
constructed of homogeneous transversely isotropic material. Accordingly, its axisymmetric
dynamic equilibrium and elastic behaviour are described by the following equations under
three-dimensional consideration:
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trz 0 0 0 Grz 1W/1r+ 1U/1z

where Cij are the elastic constants of the material which has a density of r. Eliminating
membrane stresses sr and su from equations (1) and (2) yields
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W −C1(a+1/r) C4 0 0 W

where

a= 1/1r, j2 = r12/1t2, R= trz , Z= sz , C1 =−Crz /Czz ,

C2 =Crr −Crz /Czz , C3 =Cru −Crz /Czz , C4 =1/Czz , C5 =1/Grz .

For axisymmetric vibrations of an annular plate, the displacements and stresses are
defined as follows:

U=[df(r)/dr]U�(z) eivt, W= f(r)W�(z) eivt,

Z= f(r)Z�(z) eivt, R=[df(r)/dr]R�(z) eivt. (4)

where f(r) in equation (4) is a function which satisfies the Bessel equation

(a2 + a/r+ k2)(a2 + a/r− k2)f(r)=0, (5)

where k2 is a constant that can be determined solely by considering boundary conditions
imposed at the two edges of an annular plate.

Suppose that the value of k2 for given boundary conditions has been determined. Using
equation (5), the following matrix differential equation can be obtained by inserting
equations (4) into (3):

d{F}/dz=[G]{F}, {F}T = [U�(z), Z�(z), R�(z), W�(z)]. (6)

The non-zero elements of [G] are given as follows:

G13 =C5, G14 =−1, G23 = k2, G24 =−rv2,

G31 =C2k2 − rv2, G32 =C1, G41 =−C1k2, G42 =C4. (7)

The general solution of equation (6) can be explicitly expressed as

{F(z)}=[D(z)]{F(−h/2)}, −h/2E zE h/2, (8)

where {F(−h/2)} denotes the value of the vector {F} at the bottom surface of the plate.
For a given value of z (representing a z-surface that is parallel to the middle surface), the
elements of the 4×4 matrix [D(z)]= exp([G]z) can be evaluated analytically in various
ways. For a free vibration problem, imposing sz (2h/2)= trz (2h/2)=0 to equation (8)



   252

yields the following equation system,
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0 D41 D42 D43 D44 0

and the bottom half of equation (9) gives

$D31

D41

D32

D42%6U�(−h/2)
W�(−h/2)7=6007, (10)

where the Dij are the corresponding elements of [D(h/2)]. The exact natural frequencies of
the homogeneous annular plate considered are obtained as the roots of the following
eigenequation:

detbD31

D41

D32

D42b=0. (11)

3.      

For free vibration of a laminated annular plate, the solution of the problem is based
on the division of the plate into N material layers, each of which may be made of different
transversely isotropic materials and may have different thicknesses. For each sub-layer, a
solution can be obtained in the form of equation (8). The solutions obtained for each of
the sub-layers are then connected by imposing continuity conditions at the material
interfaces and boundary conditions at the two lateral surfaces. Dealing in particular with
the interface of the ( j−1)th and jth of the aforementioned layers, having thicknesses hj−1

and hj , respectively, the continuity conditions of displacements and transverse stresses lead
to the following relation ( j=2, 3, . . . , N),

{F( j)(−hj /2)}= {F( j−1)(−hj−1/2)}. (12)

Hence, upon recursively using equations (8) and (12), the solution of the problem
considered in such a N-layered composite plate can be obtained in the following form:

{F(N)(hN /2)}=[D(N)(hN /2)]{F(N)(−hN /2)}=[D(N)(hN /2)]{F(N−1)(hN−1/2)}

=[D(N)(hN /2)][D(N−1)(hN−1/2)]{F(N−1)(−hN−1/2)}

=[D(N)(hN /2)][D(N−1)(hN−1/2)]{F(N−2)(hN−2/2)}

=· · ·

=$ t
1

k=N

D(k)(hk /2)%{F(1)(−h1/2)}. (13)

This yields a linear algebraic eigenvalue problem of second order after applying stress free
boundary conditions to the two lateral surfaces in the same manner as described below
equation (9). It is obvious that, independently of the number of layers involved, the present
formulation yields the solution of the problem always as the roots of a 2×2
eigen-determinant.
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4.     k2

A solution of equation (5) is in the form

f(r)=A1J0(kr)+A2N0(kr)+A3I0(kr)+A4K0(kr), (14)

where J0 and N0 are Bessel functions of the first and second kind of zero order, and I0 and
K0 are the respective modified Bessel function of first and second kind of order zero.
Introducing boundary conditions into equation (14) and seeking non-trivial solutions of
the Ak (k=1, 2, 3, 4), the values of k2 can be obtained for various boundary conditions
from the following equations [6].

(a) Clamped edge (W=0, U=0):

f(r)=0, df(r)/dr=0. (15)

(b) Hinged edge (W=0, sr =0):

f(r)=0, $ d2

dr2 +
m

r
d
dr% f(r)=0. (16)

(c) Free edge

sr =0, g
h/2

−h/2

trz dz=0,

which gives

d
dr

92f(r)=0, $ d2

dr2 +
m

r
d
dr% f(r)=0. (17)

The k2 obtained from the above equations [7] are then substituted into equations (6) and
(7) to find the corresponding natural frequencies.

5.  

For the purpose of comparison with the results obtained from alternative studies, the
non-dimensional natural frequency parameter,

V=va(r/G)1/2, (18)

of a clamped isotropic annular plate (n=0·3) are first calculated. The comparisons are
given in Table 1 for plates having differing thickness-to-radius ratios. All the results
obtained by the present analysis are smaller than the corresponding ones by using the
Method of Initial Function [6] and using Mindlin theory. Detailed study of these results
shows that the discrepancies increase as the thickness-to-radius ratio increases. The natural
frequencies for a thick plate (h/a=0·2), for which no comparisons can be made, are also
given in Table 1.

The first three natural frequency parameters, V, for an isotropic annular plate against
either the thickness-to-radius ratio, h/a, or the ratio between the inner and outer radii are
presented in Table 2. The plate is clamped at the outer and free at the inner edges. As
expected, the natural frequencies increase as h/a and b/a increases. Moreover, it is observed
that the effect of the ratio b/a upon the fundamental frequencies is less significant than
upon the higher mode ones.
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T 1

The first three frequency parameters V, for axisymmetric
vibration of a clamped isotropic annular plate

h/a Mode Present MIF Mindlin

0·05 1 0·8303 0·8306 0·8367
2 2·2440 2·2511 2·2624
3 4·2578 4·2610 4·2971

0·10 1 1·5955 1·6153 1·6293
2 4·0611 4·0977 4·1341
3 7·2223 7·2519 7·3031

0·20 1 2·7951 — —
2 6·2967 — —
3 9·8250 — —

Dealing with free vibration of laminated annular plates, in Table 3 are given the first
three natural frequency parameters

V*=va(r/G1)1/2 (19)

of sandwich annular plates made of three isotropic layers, where G1 is the shear modulus
of first layer; i.e., the bottom layer. The plates consist of two identical skin layers and the
material properties of the skins and core layer are distinguished by the parameter

b=Ec /Es =0·1, (20)

which is the ratio between the elastic modulus of the core and skin layers. The thickness
ratio of the plate is hc /hs =2. For antisymmetric laminated annular plates, in Table 4 are
presented results for annular plates having two, four and eight layers. All the layers have
the same thicknesses and are also made of isotropic materials. The plates are constructed
in such a way that

E1 =E3 = · · ·=E2k−1 and E2k /E2k−1 =10, k=1, 2, 3, . . . . (21)

T 2

The first three frequency parameters V, for axisymmetric
vibration of an isotropic annular plate with clamped outer

and free inner edges

b/a
ZXXXXXXCXXXXXXV

h/a Mode 0·1 0·2 0·3

0·05 1 0·2384 0·2537 0·3290
2 0·9477 1·0305 1·5921
3 2·0138 2·4520 4·0217

0·10 1 0·4871 0·4988 0·6483
2 1·8087 1·9585 2·9552
3 3·6764 4·4047 6·8686

0·20 1 0·9285 0·9496 1·2183
2 3·1262 3·3550 4·8035
3 5·7884 6·7422 9·7544
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T 3

The first three frequency parameters V*, for axisymmetric
vibration of symmetrically laminated annular plates with

clamped edges

b/a
ZXXXXXXCXXXXXV

h/a Mode 0·1 0·2 0·4

0·05 1 0·5894 0·7376 1·2524
2 1·4897 1·8308 2·9424
3 2·6381 3·1727 4·8858

0·10 1 1·0219 1·2434 1·9556
2 2·2615 2·6845 3·9848
3 3·6239 4·2458 6·1737

It is apparent from Table 4 that the natural frequencies increase with increasing the number
of layers. This observation, which is well-known from corresponding dynamic analyses
based on two-dimensional plate theories, indicates that bending–extensional coupling
due to lamination dies out with an increasing number of layers of an antisymmetric
laminate.

6. 

A method suitable for three-dimensional axisymmetric vibration of homogeneous and
laminated thick annular plates has been presented. On the basis of a recursive formulation,
this method always makes use of a 2×2 frequency determinant, independently of the layer
number of the laminates.

Numerical results have been given and discussed for plates having different lay-ups,
thickness-to-radius ratios and ratios between the inner and outer radii. It is believed
that the results presented here may be used as a benchmark for evaluating and
assessing the accuracy of the predictions based on two-dimensional plate theories in use
at present.

T 4

The fundamental frequency parameters V*, for axisym-
metric vibration of antisymmetrically laminated annular

plates with clamped edges

Lay-ups
ZXXXXXXXXXCXXXXXXXXV

h/a b/a Two-layered Four-layered Eight-layered

0·05 0·1 1·0510 1·3916 1·4743
0·2 1·3742 1·7749 1·8990
0·4 2·4521 3·0874 3·2010

0·10 0·1 2·1198 2·5956 2·7377
0·2 2·6617 3·2073 3·3877
0·4 4·6083 5·2601 5·5571



   256



1. S. M. V and D. S 1965 Journal of Applied Mechanics 32, 926–931. Natural
frequencies of transversely vibrating uniform annular plates.

2. K. V and G. K. R 1972 Journal of Sound and Vibration 24, 165–175. On the
use of a co-ordinate transformation for analysis of axisymmetric vibration of polar orthotropic
annular plates.

3. S. S. R and A. S. P 1975 Journal of Sound and Vibration 42, 305–324. Vibration of
annular plates including the effects of rotatory inertia and shear deformation.

4. R. S. S, D. R and T 1984 Journal of Sound and Vibration
95, 143–150. Vibration analysis of composite annular plates by an integral-equation technique.

5. J. F and J. Q. Y 1989 Journal of Engineering Mechanics 116, 920–927. Exact solutions for
axisymmetric vibration of laminated circular plates.

6. K. T. S. R. I and P. V. R 1980 Journal of the Acoustical Society of America 68,
1748–1749. Axisymmetric free vibration of thick annular plates.

7. J. Q. Y 1995 International Journal of Pressure Vessels and Piping 62, 153–159. Axisymmetric
buckling analysis of homogeneous and laminated annular plates.


