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This paper deals with lattices of plates connected at a non-zero angle. The purpose is
not only to identify the usual behaviour of lattices of plates (where pass-bands and
stop-bands appear) but also to explain the rise of the amber-band. The notion of
hypersensitivity existing for the case of two plates still exists for the case of a lattice of
plates. When dealing with a lattice of identical systems, it is usual to observe the behaviour
when some defects are included. This kind of study is proposed in this work, and some
rules describing the rise of effects due to angular defects at a connection angle are proposed.
A study focusing on a lattice of different coupled plates, is also proposed; a numerical
approach shows results which could be suitable for an experimental tool detecting
hypersensitive connections.
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1. INTRODUCTION

The study of complex structures constructed from an assemblage of plates is of interest
because such structures are often employed for mechanical, architectural or industrial
applications. Some of these structures are made of several coupled identical plates and
appear as a lattice. Even if the lattice is not infinite but constructed from a finite number
of plates, its behaviour is typical.

In a previous paper [1] an analytical formulation for coupled plates describing the
in-plate and flexural motions has been given. In this work this versatile tool is used to deal
with structures which are lattices of plates.

By way of references some main results of the state of the art of lattice structures are
cited and the contribution of this work to the subject is explained.

Periodic structures have largely been studied during the last forty years because of the
great theoretical interest and the numerous industrial applications. Brillouin and Parodi
[2] described in their study, from a comparison between lattices of different kinds
(crystallography, electricity, mechanic), the basic laws of behaviour. In the same period,
the first major study of the effects of imperfections (defects) had been carried out in solid
state physics by Anderson [3]. Furthermore most of these results have been observed in
mechanical structures of different basic systems: a one-degree-of-freedom system like a
pendulum [4, 5] or a spring–mass system [6], axially vibrating roads [7], clamped beams
used to represent the blades on a propeller [8], simply supported beams [9, 10] and plates
in the same plane coupled by longitudinal stiffeners [10, 11].
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One can mention some usual results. A pass-band is a frequency band where the energy
is spread all over the structure; on the other hand, a stop-band corresponds to an energy
confinement inside the excited system. In between, Maidanik and Dickey [10, 11] proposed
the term of amber-band which appears for finite structures.

As one can see, the papers dealing with lattices are considering more and more
complicated basic systems in order to become more representative of industrial structures.
This paper is following this track, plates with bending and in-plane motion, being taken
as the basic system. The first goal of this work is to present the behaviour of lattices of
plates, in order to verify if the vibration properties of periodic structures are still observed
for such complicated basic systems and particularly to explain the formation of the
amber-band. A second interest is to study the hypersensitivity phenomenon to clarify a
main point directly issuing from reference [1]: does the hypersensitivity phenomenon
observed when dealing with two coupled plates still exist with a lattice of plates? Lattices
of plates with defects of the angles of connection, are also under study; the lattice
considered is either constructed from identical plates or from different plates. For the latter
case, a numerical approach shows results which could arise in experimental detection of
hypersensitive connections.

2. MATHEMATICAL MODELLING OF A LATTICE OF PLATES

The mathematical modelling of a lattice of plates has been extensively described in
reference [1]. Therefore a detailed description is not presented here; however, in the
following, a basic description of the modelling is presented. The notation used is the same
as in reference [1].

The structure under study is constructed from several thin isotropic plates of the same
thickness and width but of different lengths, connected along the width at any angle. All
the plates are simply supported on the lateral sides. The structure is excited by a pure tone
force. A four-plates example is shown in Figure 1.

The Donnell operator for a shell of infinite radius, La, is used to obtain the equations
of motion for bending and in plane waves:

Eh
1− n2 La&unw'− rhv2&unw'= d(x− x0) d(y− y0)&Fx

Fy

Fz'. (1)

For the three displacements a semi-modal decomposition is used along the y direction and
a wave formulation is adopted in the x direction. The general formulation, for example
of the transverse displacement, is

w(x, y)= s
a

n=1

Wn (x) sin
npy
a

(2)

Figure 1. (a) Example of a four identical plates coupled structure; (b) a particular plate of the structure.
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and the modal amplitude is a wave function of x:

Wn (x)=An e−kn1x +Bn ekn2x +Cn e−kn1(l− x) +Dn e−kn2(l− x). (3)

For the coupled in-plane displacements along the x and y axes, the formulation is
similar:

u(x, y)= s
a

n=1

Un (x) sin
npy
a

and n(x, y)= s
a

n=0

Vn (x) cos
npy
a

. (4)

The modal amplitudes are also wave functions of x, coupled together:

Un (x)=Fn e−kn3x +Gn e−kn4x +Hn e−kn3(l− x) + In e−kn4(l− x) and

Vn (x)=−ln3Fn e−kn3x − ln4Gn e−kn4x + ln3Hn e−kn3(l− x) + ln4In e−kn4(l− x). (5)

For each fixed modal index n, there are eight unknowns per plate. Together with the
boundary conditions which correspond to the continuity of motions, rotations, forces and
moments between two perfectly coupled plates this gives rise to eight times the number
of plates coupled equations. Solving this matrix equation for each mode allows one to
calculate the total motion of the structure from a simple summation.

Two control parameters are used to qualify the vibrational behaviour of the structure:
a global one and a local one. The mean transverse quadratic velocity of the ith plate is
defined by

�V2
i �=

1
2Si gSi

v2=wi (M) =2 ds. (6)

where Si is the surface of the ith plate. The mean transverse quadratic velocity of the whole
structure is then:

�V2�= s
d

i=1

Si�V2
i �>s

d

i=1

Si . (7)

The transfer mobility between two points A and B is the ratio between the normal
velocity at B located on the ith plate, and the normal driving force located at A on the
jth plate:

Y(A, B)= jvwi (B)/Fzj (A). (8)

3. LATTICES OF IDENTICAL PLATES: VIBRATIONAL BEHAVIOUR

3.1.     ,  

This section is concerned with lattices of identical steel plates (density r=7·85
103 kgm−3, Young’s modulus E=2·1×1011 Nm−2, Poisson’s ratio n=0·28, damping
coefficient h=0·01, length l=0·5 m, width a=0·4 m and thickness h=2×10−3 m) all
the connection angles are equal u=4°, and the plates are simply supported except on the
connection edges.

The driving harmonic force is located on the first plate at x0 =0·3 and y0 =0·17. Two
different lattices are under study: the number of plates is successively six and eighteen (see
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Figure 2. Lattices under study with six or eighteen identical plates connected with an angle of 4°, the driving
force is located on the first plate at x=0·3, y=0·17. An example of one of the coupled plates with its size.

Figure 2). In Figures 3 and 4 are shown the quadratic velocities of each plate of the
structure.

In Figure 4, the values of the quadratic velocity are very different (over a scale from
−450 dB to −50 dB). Physically if the level of the quadratic velocity is −150 dB or
−450 dB, the plate is practically motionless.

Typical pass-band and stop-band behaviour can be observed. One can locate an obvious
pass-band for example at 142 Hz where the vibrational energy is equally spread all over
the structure; indeed all plates are vibrating with almost the same kinetic energy. One can
locate an obvious stop-band for example around 86 Hz where all the vibrational energy
is confined to the first plate. In reference [7] Keane and Price showed that for an infinite
lattice of one-degree-of-freedom systems, the amplitude of a wave traveling through the
lattice decays exponentially at each connection if its frequency lies in a stop-band. The
amplitude ratio of two adjacent systems is then a constant. The same behaviour occurs
at 86 Hz; the quadratic velocity level, from one plate to the next, always decreases by
13 dB.

When dealing with a finite lattice of n coupled identical structures each with m degrees
of freedom, the whole system presents m pass-bands, each pass-band having n peaks. The
basic rule of vibration is of course respected: a system of M degrees of freedom (in this
case M= nm) presents M eigenfrequencies. Here, one is considering plates with an infinite

Figure 3. Quadratic transverse velocity of the six plates of the lattice, with an angle of connection of 4°.
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Figure 4. Quadratic transverse velocity of the eighteen plates of the lattice, with an angle of connection of 4°.

number of degrees of freedom, and one can suppose that the number of pass-bands is then
infinite but in each pass-band the number of peaks is equal to the number of identical
structures. In Figure 5 the quadratic velocity of the lattice constructed from eighteen plates
is presented. One observes it around the first pass-band and decreases the damping
(h=10−5) to avoid any modal overlap. One knows that there is no physical reality with
such a small damping; it is just to be able to differentiate the peaks inside the pass-band.
One can observe 18 peaks in the pass-band, as expected because of the 18 plates of the
lattice. This behaviour was also observed for coupled beams in reference [9]. The lower
frequency peak is equal to the first resonance frequency of a simply supported plate, the
higher frequency peak tends to the resonance frequency of a plate clamped at junctions.

These two examples describe the overall behaviour of lattices of plates. The pass-bands
and stop-bands are observed as in classical periodic structures but when the frequency

Figure 5. Total quadratic transverse velocity of the eighteen plates lattice, around the first pass-band, h=10−5.
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increases there is also a third kind of frequency band—the amber-band—as will be
discussed in the next section.

3.2.    -

Maidanik and Dickey, to qualify their word ‘‘amber-band’’ said [11] that the behaviour
of the structure in this frequency range lies between the one of a pass-band and the one
of a stop-band, but did not explain its cause.

In Figure 4, above 600 Hz, one can then define this zone as an amber-band. The
vibrational energy is neither equally distributed over the structure nor all confined to the
first plate.

It is interesting to note that in the case of a lattice of beams vibrating in flexural motion,
no amber-band is observed, but only stop-bands and pass-bands (see reference [9]). Thus
the question is why the amber-band arises in the case of coupled plates and not in the case
of coupled beams?

Through the semi-modal approach used in the analytical formulation, one can explain
the rise of the amber-band. One notes that the motion of each plate is a superposition of
modal motions in the y direction, each being associated to a wave in the x direction. Let
the index of the modal expansion be fixed to a single value; the motion is then controlled
by the wave in the x direction, and thus can be seen as that of a beam problem (or a one
dimensional problem).

Figures 6(a)–(d) present the results for indexes fixed from 1–4, respectively; the classical
lattice of beam behaviour, with only stop-bands and pass-bands, is observed. The lattice
of plate behaviour, obtained by summation of the contributions of all the indexes is

Figure 6. Quadratic modal transverse velocity of the eighteen plates of the lattice with an angle of connection
of 90°. The modal index is respectively fixed at 1, (a); 2, (b); 3, (c); 4, (d).
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Figure 7. Quadratic transverse velocity of the eighteen plates of the lattice, with an angle of connection of 90°.

presented in Figure 7; the amber-band clearly appears above 1000 Hz as an overlap of the
pass-bands associated to different indexes.

At low frequencies the pass-band overlap is impossible and the classical pass- and
stop-bands are observed for plate lattices. When the frequency increases, the pass-band
overlap becomes inevitable because of the increasing number of plate modes, and the
lattice behaviour is of the amber-band type.

The previous results are obtained for plates coupled with an angle of 90°, allowing the
decoupling of flexural and in plane motions. Because of transverse excitation one can say
that only bending motion is present in the previous results.

For an angle of connection equal to 4°, flexural and in-plane motions are strongly
coupled. The amber-band appears even when the index of the modal decomposition is fixed
at a single value. This is of course due to the increase of the modal density resulting from
the increasing number of flexural modes and in-plane modes. The behaviour of the lattice
of plates coupled with an angle of connection equal to 4° has been already presented in
Figure 4 and one can verify that the amber-band appears at a lower frequency than in
the previous case of 90° connection angle (600 Hz instead of 1000 Hz).

To summarize, one can take the simple case of multi-supported coupled beams in
flexural motion. The pth pass-band is located between the pth simply supported beam
resonance frequency (the sketch of the motion is presented in Figure 8(b)) and the pth
clamped resonance frequency (the sketch of the motion is presented in Figure 8(c)). Thus
the pth pass-band Dp is located in the frequency band defined by

Dp =[vss
p , vc

p ]. (9)

Figure 8. First pass-band of a multi-supported beam. (a) Sketch of the multi-supported beam; (b) sketch of
the lower frequency motion in the first pass-band (simply supported resonance frequency); (c) sketch of the higher
frequency motion in the first pass-band (clamped resonance frequency).
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The well known result concerning the resonance frequencies of beams shows that
vc

p Qvss
p+1, and in consequence pass-band overlap is impossible as numerically evidenced

in reference [9] and in the previous Figures 6(a)–(d).
For beam-like structures the amber-band will arise only when coupling between different

types of vibration is present; typically of flexural and longitudinal motions.
As a general simple rule one can say that the amber-band will appear when the

width D of individual pass-bands becomes greater than the modal separation d of the
structure: Dq d. By introducing the modal density n as the inverse of the modal
separation, the condition of appearance of the amber-band can be expressed as Dnq 1.
Even if it has been observed for a finite lattice, as here, this rule is also true for an infinite
lattice.

3.3.     

This section is concerned with four lattices of eighteen plates. The plates are the same
as previously. For the first structure, all connection angles are 4°, for the second 6°, for
the third 25° and for the last one 90°. Two similar lattices will be compared, the first with
the second, and two distinctly different lattices, the third with the fourth.

Figures 9(a) and 9(b) present the quadratic velocity spectra of each plate when the
connection angle is 4° and 6°, respectively. For both it is easy to identify pass-bands and

Figure 9. Quadratic transverse velocity of the eighteen plates of the lattice, with an angle of connection of
(a) 4° and (b) 6°.
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stop-bands; it is important to note the differences in the locations. For example, 400 Hz
for the first structure is not a particular frequency and for the second it corresponds
to a stop-band. This sensitivity to the modification of the connection angle between
plates is explained by the strong variation of the coupling between bending and in-plane
motion effects. This notion of hypersensitivity has been expressed and discussed in
reference [1].

On the other hand, when the angle is large, the coupling between the two kinds of motion
is no longer sensitive, even to a large variation of the angle. For example when the angle
of connection is 25° or 90°, the two lattices which are physically very different have close
vibrational behaviour (see Figures 10(a) and 10(b)). Physically, at these large angles, the
effects of in-plane motion are negligible.

Through these four examples, one notes that the first pass-band is approximately in the
same place. A deeper study of this frequency area is proposed. A very low damping
coefficient is used again (h=10−5) to allow each peak to be perceptible.

For the first couple of structures where the angles are 4° and 6° respectively (see
Figure 11), the pass-band is wider for the larger angle. The coupling with in-plane motion
is stronger with the connection angle of 6° and increases the stiffness of the structure.

For the next two structures where the angles are 25° and 90° respectively (see Figure 12)
the widths and the positions of the eigenfrequencies are the same; the stiffness of the
structure does not vary significantly as a result of the decoupling of bending and in-plane
motions.

Figure 10. Quadratic transverse velocity of the eighteen plates of the lattice, with an angle of connection of
(a) 25° and (b) 90°.
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Figure 11. Quadratic transverse velocity of the whole structure, on the first pass-band. Damping coefficient
is h=10−5. Solid line, angle of connection of 4°, dashed line, angle of connection of 6°.

The aim of this section was to answer the question if the properties of hypersensitivity
to the connection angle as described in reference [1] when dealing with two plates still exist
when dealing with a lattice of plates. Obviously hypersensitivity still exists. The coupling
between in-plane motion and bending is strongly variable when the angle of connection
is small; a weak modification of it can bring strong variations in the vibrational behaviour:
this property is not dependent on the number of plates. In addition, the lattice has no real
effect of amplifying or reducing the phenomenon.

3.3.   

According to reference [4], to exhibit the ‘‘Anderson localization’’, which is a result of
a defect on a perfect lattice, the ratio (disorder/coupling) between systems has to be
important. In the present lattices, the coupling between plates is very strong and it is
impossible to exhibit Anderson localization. Nevertheless the effects of defects can be
observed in a different way as will be described in this section.

Figure 12. Quadratic transverse velocity of the whole structure, on the first pass-band. Damping coefficient
is h=10−5. Solid line, angle of connection of 25°, dashed line, angle of connection of 90°.
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The control parameter is no longer the quadratic velocity, which is too global, but the
transfer mobility between the driving force and the middle of each plate; however, to make
trends appear this quantity will be averaged over frequency.

Consider two structures. The first one is a lattice without defect and the second one has
a defect. For each plate of the altered structure the relative error of the transfer mobility
magnitude at a fixed frequency is defined by

Eri (v)=z([=Y�ij (v) =− =Yij (v) =]/=Y�ij (v) =)2, (9)

where i is the receiving plate index and j the excited plate index, Y�ij (v) is the
transfer mobility modulus for the reference structure without defect and Yij (v) the transfer
mobility modulus for the altered one. To make trends appear, observation at a particular
frequency is not convenient, and hence an average over frequency to smooth the
phenomenon can be used. The mean value over the angular frequency band D is defined
by

�Eri�D =
1
D g

vc +D/2

vc −D/2

Eri (v) dv, (10)

where vc is the centre of the frequency band.
Only the effects of a defect in the angle of connection will be observed in this section.

The location, the amplitude and the number of defects can change. The structures under
study are constructed from eighteen plates, whose characteristics are the same as previously
and the driving force is on the first plate.

3.4.1. The effect of one defect on the connection angle
Consider the structure constructed from eighteen coupled plates with an angle of 4°, in

which one angular defect is imposed on the junction between plate 1 and plate 2. This
connection angle is successively 4·1°, 4·5° and 5° and all other angles remain fixed at 4°.
The relative error in the transfer mobility magnitude versus the plate index is plotted in
Figure 13. The bigger the amplitude of the defect, the greater are the effects. Through this
figure it is very easy to find the location of the defect; it corresponds to the peak on the

Figure 13. Effects of an angular defect set on the first connection of the lattice of plates coupled with an angle
of 4°. The angular defect is respectively 0·1°, solid line; 0·5°, dashed line; and 1°, dotted line.
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Figure 14. Effects of an angular defect of 1° applied to a lattice of eighteen plates coupled with an angle of
4°. The angular defect is respectively set on the third connection (solid line) and on the seventh connection (dashed
line).

value of �Eri�D after this peak the value remains constant. These particularities are also
illustrated in Figure 14: two lattices of eighteen plates connected at 4° are considered where
an angle of 5° is put firstly on the third connection (between plates 3 and 4) and secondly
on the seventh connection (between plates 7 and 8).

For the previous examples, the defect was always set on a connection where the angle
is hypersensitive as defined in reference [1]. It is then interesting to study a structure which
is a quasi-lattice: namely, there are eighteen identical plates, all connected with an angle
of 4° except the junction between the plates 5 and 6 where the angle is 40°.

When the defect of 1° is applied on the fifth junction, the effects are negligible because
at this junction the angle of connection is not hypersensitive. The contrary result occurs
when the same defect is applied on a hypersensitive connection angle. Results for �Eri�D ,
for these two examples, are plotted in Figure 15.

Figure 15. Effects of an angular defect of 1° applied to a quasi-lattice of eighteen plates coupled with an angle
of 4°, but 40° between plates 5 and 6. The defect is respectively located on the first connection (solid line) and
on the fifth connection (dashed line).
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Figure 16. Effects of an angular defect of 1° set on the first connection of the lattice of eighteen plates coupled
with an angle of 4°. The damping coefficients is respectively h=10−1 (dotted line), h=10−2 (solid line) and
h=10−3 (dashed line).

As a matter of conclusion, one can say that, even if several connection angles are
hypersensitive, the hypersensitivity of behaviour is observed only if defects are directly
applied to hypersensitive angles of connection.

The damping of the structure is simulated as structural damping through a complex
Young modulus, E*=E(1+ jh). One illustrates the effects of the same defect on a lattice
of eighteen plates connected at 4° with an h that is successively 10−1, 10−2 and 10−3 (keep
in mind that 10−2 is the ‘‘usual’’ value of damping). The defect corresponds to an angle
of 5° between plates 1 and 2. Results are presented in Figure 16. When the damping
increases, the values of �Eri�D are lower; this can be easily explained as follows. A defect
on a connection angle leads to a frequential shift of the peaks, and �Eri�D is the average
of the differences at each frequency. Then if the levels of the peaks of the transfer mobility
magnitude are lower because the damping increases, the coefficient �Eri�D decreases.
Figure 17 is a sketch to illustrate this.

From these few examples, one can identify some properties: the defect gives rise to effects
only when it is located on a hypersensitive angle; the coefficient �Eri�D allows one to detect
a defect on an hypersensitive angle; the effects are proportional to the value of the defect;
the effects propagate all over the structure after the location of the defect.

Figure 17. Principle of the decreasing of effects of one defect as damping increases; effects are more important
as damping decreases (H1qH2).
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Figure 18. Effects of some angular defects of 1° applied to a lattice of eighteen plates coupled with an angle
of 4°. One angular defect, on the first connection (solid line); two, on the first and on the sixth connections (dashed
line); three, on the first, on the sixth and on the twelfth connection (dotted line).

3.4.2. The effect of several defects
The basic lattice used previously (eighteen plates connected with an angle of 4°) is used

once again. Three different cases of defects are compared. The first structure presents one
defect (angle of 5° between plates 1 and 2), the second two (angle of 5° between plates
1 and 2, and 6 and 7) and the third three (angle of 5° between plates 1 and 2, 6 and
7 and 12 and 13). Values of the coefficient �Eri�D for these examples are plotted in
Figure 18.

The properties previously observed with one single defect remain. In addition, one can
observe a kind of additivity of the influence of defects. The effects of each defect—constant
and propagated all over the structure after the defective connection—are added to the
effects of the previous defects; that is why one can observe steps on the curves. With curves
like the one in Figure 18, one can easily find the location of the defects.

4. NON-PERIODIC LATTICE OF PLATES

Up to now the lattices of the plates considered were constructed from identical plates.
Consider now a non-periodic lattice of plates. The main reason for such a study is that
several industrial structures can be modelled as a non-periodic lattice, or in other words
as coupled plates. So hypersensitivity basic rules for industrial structures must be
preferably studied on non-periodic lattice to avoid special behaviour due to periodicity.

Hence, in this section, a lattice of nine different plates connected at different angles is
considered. The plates have the same width (0·4 m) and the same thickness (2 mm), the
structure presented in Figure 19 could be, for example, the hood of a machine. From what
has been learnt from the previous results one can guess that there are three connections
which are hypersensitive; they are marked in Figure 19.

4.1.    

The goal of this part is to verify if one’s hypothesis about the hypersensitivity is right.
Hence, one imposes successively on each connection angle an angular defect of 1°. The
comparison with the perfect structure through the indicator �Eri�D , as defined previously,
is presented in Figure 20. It is obvious that the effects of an angular defect of 1° are
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Figure 19. Lattice of nine non-identical plates, as an industrial structure such as the hood of a machine. The
three connections marked are presumed to be hypersensitive.

perceptible when located on a hypersensitive connection and not when located on another
connection. It is possible to see the difference between the two kinds of connection angles.

In this way one can conclude that the hypersensitivity phenomenon still exists when
dealing with a non-periodic lattice of plates.

The phenomenon of hypersensitivity exists whenever plates are coupled, whatever the
number and the configuration of the coupled plates.

4.2.     

A weak angular variation on a hypersensitive connection can lead to an important
variation of the behaviour. As has been said, this is due to a modification of the coupling
between in-plane and normal displacements. Can this modification be also produced by
any kind of structural modification? And particularly, when considering a mass defect
added to a connection, does it produce the same effect as an angular defect? To get an
answer to this question is relatively important because it will be possible to show that the
hypersensitivity phenomenon is really due to the structure and not to the kind of defect.

Figure 20. Effects of an angular defect successively put on each connection between plates; identification of
the hypersensitive connections.
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Figure 21. Effects of a mass defect successively put on each connection between plates; identification of the
hypersensitive connections.

Another point has to be considered. When dealing with a real structure it is difficult to
add an angular defect on one of the connections of the structure without damage to the
structure. On the contrary one can manage to add a temporary mass defect on one of the
connections which will not affect the long term integrity of the structure.

Consider the structure previously presented and add successively a light mass defect on
each connection angle. The added mass is really light (0·0628 kg) in comparison to the mass
of the whole structure (16·68 kg) and also in comparison to the mass of each plate (varying
from 0·628 kg to 3·14 kg). In the mathematical modelling, the added mass is simulated by
a narrow plate with increased density along the connection. One can also use the same
way of thinking as was done for the angular defect: the modification applied to the
structure is still weak. Comparisons between the different slightly damaged structures and
the perfect one is observed through the parameter �Eri�D already defined and used
previously.

The results are presented in Figure 21. They are comparable to the previous results.
When a mass defect is added on a hypersensitive connection the levels of the effects are
really higher than when it is added on another connection.

This proves that the hypersensitivity phenomenon is intrinsic to the structure, because
two different kinds of defects (angular defect or added mass defect) give the same
conclusions.

One also, in this way, simulates results which could be obtained from an
experimental approach, and the main interest in this is that, by the use of a mass defect
as a non-destructive approach, one can identify hypersensitive connections of a lattice of
plates.

5. CONCLUSION

The analytical formulation previously developed in reference [1] for the vibrational
behaviour of coupled plates has been applied to cases of lattices of plates.
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The usual behaviour of lattices has now been observed for the case of coupled plates.
It has been verified that a pass-band corresponds to a frequency range where vibrational
energy is equally spread over the structure, and a stop-band corresponds to a spatial
confinement of the energy into the excited plate. In addition to these two typical bands
there is a third one, called the amber-band, where the energy is neither located inside the
excited plate nor spread over the structure. It is shown that the rise of an amber-band
corresponds to a pass-band overlap, which appears when the size of the pass-band is
greater than the modal separation (inverse of the modal density).

The notion of hypersensitivity observed in the case of two coupled plates is also observed
to be applicable when dealing with lattices of plates. Two close lattices can present strong
differences, of the vibrational behaviour (when the angle is small); otherwise two quite
different lattices can present practically no differences in vibrational behaviour (when the
angle of connection is large).

The Anderson localization phenomenon appears when a defect is included in a perfect
lattice and when the ratio (defect/coupling) is high [4]. As a strong coupling between plates
has been modelled here, it is not possible to exhibit it. But the effects of angular defects
on the connection have been checked. It appears that a defect gives rise to effects only if
located on a hypersensitive angle, and that the effects of one defect are proportional to
its amount, which spreads to the rest of the structure located after it, and is cumulative
with other defect effects.

Finally, considering non-periodic lattices has allowed a study of structures close to
industrial reality. The simulations of angular and mass defects show two main results. The
hypersensitivity phenomenon exists whenever plates are coupled (identical or different) and
is basically linked to the structure and not to the kind of defect.

Some numerical simulation results have been presented, which indicate the possibility
of an experimental non-destructive approach to identification of the hypersensitive
connections of a lattice of plates.
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