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1. 

One-dimensional (1-D) periodic structures are ubiquitous in the area pertinent to the
modelling of engineering structures. A periodic structure contains a modular repeat unit
with a mass and a stiffness called grounding stiffness. In 1-D periodic structures, repeat
units are aligned along a line and connected with springs which may be linear or non-linear.
It was first shown in solid state physics by Anderson [1] that presence of disorder in
periodic lattices results in localized eigenstates. Later, Hodges [2] utilized this finding in
structural vibrations. He showed that distortion of the strict periodicity of a given
continuous structure with a small disorder results in normal mode localization. The reader
is referred to the review by Ibrahim [3] for developments within the last decade.

An important consequence of this phenomenon for practical applications would follow
if one were to determine under what circumstances disorder has a similar effect to damping
in that the propagation of vibrations from the external source is confined. In other words,
deliberate utilization of disorder may act as a passive control mechanism [4]. Along the
same line of thought, the similarities and differences between disorder and structural
damping were explored by Langley [5] by comparing the attenuation factors produced for
each case. Statistical investigations were presented by Pierre and his collaborators [6, 7]
and references cited therein. Effects of disorder in multispan beams were also undertaken
by Pierre [8] and Bendiksen and his collaborators [9] who had also initiated localization
applications in aerospace structures [10] and studied applications on large space structures
[11]. Recently, Pierre and his co-worker [12] have taken another path in that they have
calculated Lyapunov exponents of the wave transfer matrix of the disordered periodic
linear system.

Literature covering studies which are involved in studying effects of non-linear
interactions on the localization is relatively meager. Zaslavsky and his collaborators
established an analogy between the disorder in particle chains and dynamical problem of
transition to chaos [13]. Vakakis and his co-workers [14] used multiple-scales analysis to
show the existence of localized modes due to non-linearity in the grounding stiffness in
a periodic structure with cyclic boundary conditions. Contemporary developments on the
effects of irregularities in structures are gathered by Beneroya [15].

In this study, the authors’ aim is to understand the effect of non-linearity on the
localization behavior observed for a linear 1-D periodic structure. Non-linearity is
introduced in the nearest neighbor coupling with the aid of a fourth order interaction
potential. The similitude between the modal analysis of the linearized system and the
principal component analysis of the non-linear system [16] is employed. In order to set the
stage for the non-linear analysis, modal analysis for the linearized system is performed first.
A global localization measure is defined using the difference in the kurtosis of mode shape
distributions between the disordered and perfect configurations. For the non-linear case,

0022–460X/97/330372+08 $25.00/0/sv970984 7 1997 Academic Press Limited



m m m

k1 ki kN

kc1
kc2

kci
kci + 1

kcN + 1

    373

modes are obtained by the principal component analysis of the covariance matrix of
instantaneous position vectors which are obtained when the structure is in
thermodynamical equilibrium. In what follows, first, the model and the methodology
employed in this study are clarified. The results obtained from the calculations are then
discussed. The main finding is that non-linearity in the coupling stiffness delocalizes the
modes, which are localized due to disorder in the grounding stiffness, associated with the
lower frequencies.

2. 

In this study, linear and non-linear dynamics of 1-D periodic and nearly periodic
structures (see Figure 1) are investigated. Non-linear behavior of the system is achieved
by introducing a quartic nearest neighbor interaction potential between the substructures
[17]. In the linear coupling case, modal analysis is performed; whereas in the non-linear
coupling case, principal component analysis is utilized. First, the linear analysis technique
is outlined; after that the methodology followed for the non-linear analysis is explained.

2.1. Linear coupling of the substructures
In this case, the system consists of N substructures with equal masses m, and equal

grounding stiffnesses k. The interactions between the substructures are accomplished by
linear nearest neighbor interactions. Let the coupling stiffness of this interaction be kc .
Both ends of the chain are fixed. Connections of the substructures to the fixed ends are
also achieved by the coupling stiffness kc . In this case, the total energy of the system may
be written as

EL = s
N
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N+1

i=1

1
2

kci(qi − qi−1)2, (1)

where q0 = qN+1 =0 due to fixed ends. Here qi and pi are the displacement and the
momentum of the ith substructure, respectively. In the system, disorder is designed in
coupling and in grounding stiffnesses by redistributing these stiffnesses with a uniform
random distribution about their mean values which are equal to those of the perfect
system. The dynamic characteristics, natural frequencies and the mode shapes, of the
perfect and disordered linear system may then be obtained by solving the eigenvalue
problem

(−v2mdij +Kij)ej =0, (2)

where v2 is the natural frequency, e is the corresponding mode shape, dij is the Kronecker
symbol and Kij is the N×N stiffness matrix of the whole structure. The stiffness matrix
is tridiagonal whose (i−1, i), (i, i), and (i, i+1)th elements are (−kci), (kci + kci+1 + ki),
and (−kci+1), respectively. For the perfectly periodic system kci = kci+1 and ki = ki+1.

Figure 1. One-dimensional nearly periodic structure with N substructures. Each substructure has a mass m
and grounding stiffness ki . Substructures are connected with linear or non-linear coupling stiffness, kci .
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The complete dynamic behavior of the system is given by

qi(t)= s
N

j=1

Uijaj cos (vjt+ bj), (3)

where Uij is the modal matrix whose columns are ej ; aj is the amplitude and bj is the phase
of the jth normal mode of the motion.

2.2. Non-linear coupling of the substructures
In addition to the harmonic, i.e., second order, nearest neighbor interaction in the

potential, an anharmonic, fourth order nearest neighbor interaction between the
substructures is considered. The total energy of the system can then be written as

ENL =EL + s
N+1

i=1

1
4

ai(qi − qi−1)4, (4)

where q0 = qN+1 =0 and ai is the coefficient related to the non-linearity. The equations of
the motion may be obtained via Hamilton equations, viz.,

q̇i = 1ENL/1pi , ṗi =−1ENL/1qi , (5)

where the overdot denotes differentiation with respect to time.
Consider the state space description of the system response by constructing the state

vector in the form

xI =0qi

pi1, (6)

where the capitalized index I takes values from 1–2N; thus, xI is a 2N×1 column vector
characterizing the instantaneous position and the momentum of the ith substructure. The
covariance matrix of the state vector is constructed as

GIJ = �xI(t) o xJ(t)�=$�qi qj� �qi pj�
�pi qj� �pi pj�%, (7)

where GIJ is a 2N×2N matrix, and the angle bracket and o denote the time average and
the outer product, respectively.

To probe the non-linear response of the system when it is in thermodynamical
equilibrium, one can excite the system initially with an energy level which is above the
equipartition threshold [16]. Non-linearly coupled substructures drive the system to
equipartition much more easily than those having non-linearity in the grounding stiffness.
In the thermodynamic equilibrium, i.e. when the system satisfies equipartition, equation
(7) becomes

GIJ =$Cij

0
0

Tdij%, (8)
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where T denotes the absolute temperature. The intrinsic structure of Cij , which is the
covariance matrix of the instantaneous position vectors, is of interest. One can now apply
spectral decomposition [18] to the covariance matrix,

Cij = s
N

k=1

UikUjkL
2
k , (9)

where L2
k are the eigenvalues (principal components) of the covariance matrix C. The

analysis associated with the spectral decomposition of the covariance matrix is usually
called principal component analysis. In equation (9), U is the eigenvector matrix of the
covariance matrix C.

2.3. A measure for localization
Let ej(i) be the component of the eigenvector of the ith substructure for the jth mode.

For the non-linear case, ej(i) is the jth column of the matrix U of equation (9). For the
linear system, on the other hand, ej(i) is the jth eigenvector of the matrix (−v2mdij +Kij)
of equation (2). It can be shown that columns of U coincide the eigenvectors of the linear
system inasmuch as the trajectories of the linearized system are employed in equation (9).
Using equations (3) and (7), one can find the covariance matrix of the displacements,
Cij , as

�qi(t) o qj(t)�=
1
2

s
N

k=1

UikUjka2
k . (10)

The similarity between equations (9) and (10) is noteworthy. They are identical if one sets
L2

k = 1
2a

2
k . Thus, if one takes the displacements or momenta from the linear case and

constructs the covariance matrix, the principal component analysis of that matrix results
in the eigenvectors which can be calculated by equation (2). Since the decomposition is
unique, the eigenvalues (or principal components) turn out to be half of the amplitude
squares for each mode. Since the distribution of the initially excited modes is conserved
during the time evolution of the structure for the linear case, only excited modes can be
obtained by using the principal component analysis. For the non-linear system in
thermodynamical equilibrium, however, all of the modes can be probed uniquely by the
principal component analysis.

One can define the localization of the jth mode as the difference between the kurtosis
of the disordered and the perfect structure,

Lj = kj(disordered)− kj(perfect), (11)

where the kurtosis is defined as

kj = s
N

i=1 0i− mj

sj 1
4

=ej(i)=>s
N

i=1

=ej(i)=, (12)

wherein mj and sj are the mean and the standard deviation, respectively, and are given in
the following forms:
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N

i=1

i=ej(i)=>s
N

i=1

=ej(i)=, sj =0s
N

i=1

(i− mi)2=ej(i)=>s
N

i=1

=ej(i)=1
1/2

. (13)
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3.   

A 1-D chain consisting of 16 substructures is considered. Both ends of the chain
are fixed. Susceptibility of the structure to localization depends on the degree of
coupling between the substructures. Weak coupling (low kc) results in strong localization
manifested in the rearrangement of the displacements for each substructure as may be
observed from the eigenvectors of the system. In order to create strong localization, the
grounding stiffness, k, and the mass, m, are set to unity, while the coupling stiffness,
kc =0·01.

Two different disordered configurations are designed by uniform random distribution
of the grounding or coupling stiffnesses about their mean which are the same as the perfect
case. In the first configuration, the randomness is given to the coupling stiffness, kc . The
second configuration contains the random distribution for the grounding stiffness k. The
following ratio is defined so as to measure the degree of randomness: skc/m(kc). Here s is
the standard deviation with subscripts designating the variable to which randomness is
built in, and m(kc) denotes the mean of a variable that is between the parenthesis following
m. For the first configuration, this ratio is equal to 0·213. In the second case, the numerical
value of the ratio for the first case is preserved satisfying skc/m(kc)= sk/m(kc). The reason
for observing this equality is the following: the results indicated that the dynamic
characteristics found are insensitive to changes that may be made in the mean value of
the grounding stiffness or that of the mass of the substructure (excluding the differences
with three orders of magnitude).

The dynamic characteristics, natural frequencies and the associated mode shapes, both
of the perfect and of the disordered chains are obtained for the linear case. To create the
non-linear configuration, a small non-linearity with a fourth order potential between the
nearest neighbors is added to the energy, which is given by equation (4). The coefficient
pertinent to the non-linearity, a, is selected to be one order of magnitude less than the
coupling stiffness kc so that ai =0·1kci . The non-linear system with 16 substructures is
integrated numerically by the Bulirsch–Stoer method [19]. Initial energy is selected in such
a way that the thermodynamical equilibrium (equipartition) is accomplished. It is made
sure that covariance matrix for the momenta satisfies equation (8), resulting in the identity
matrix times the absolute temperature. With this integration scheme, the total energy of
the system is preserved up to eight digits during the simulation at each time step. The
system is integrated until the equipartition is reached. Thus, the non-linear analysis is
performed on the equilibrated structure.

In Figure 2, eigenvectors for the lowest and the highest modes are displayed. The
eigenvectors for the linearly and non-linearly coupled structures are obtained from
equations (2) and (9), respectively. It is seen that for the first case where the randomness
is in the coupling stiffness, the first mode of the disordered configuration is not altered from
that of the perfect configuration for the linear coupling. However, in the last mode the
eigenvector spans only the first half of the structure. And this picture is almost conserved
for the non-linear coupling; the only difference is that the eigenvector associated with the
last mode of the disordered configuration extends to the second half of the beam with very
small amplitude rather than zero. For the second case, where the randomness is in the
grounding stiffness, both the first and the last modes are distorted for the disordered
configuration in the linear coupling case. The non-linearity in the coupling removes the
distortion in the first mode totally; and extends the distribution to the whole structure
similar to the perfect configuration. Figure 2 summarizes the situation for the first and the
last modes. In order to understand the changes occurred in all of the modes, one can utilize
the measure defined by equation (12).
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Figure 2. Eigenvector distributions for the lowest and the highest modes of the structure are displayed. The
eigenvectors for the linearly and non-linearly coupled substructures are obtained from equations (2) and (9),
respectively.

In Figure 3, Li , the localization defined by equation (12) is shown for the linear and
non-linear cases. Dashed and solid lines denote the linear and the non-linear cases,
respectively. Here the disorder is in the coupling stiffness with skc/m(kc)=0·213. It may
be observed for the linear coupling (dashed line) that the lower modes are not changed
up to half of the modal spectrum. After that a pronounced increase with a linear trend
in the localization is detected. The additional small non-linearity does not change this

Figure 3. The localization (calculated by equation (12)) due to disorder in the coupling stiffnesses is shown
for the linear and non-linear cases. Dashed and solid lines denote the linear and the non-linear configurations,
respectively.
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Figure 4. The localization (calculated by equation (12)) due to disorder in the grounding stiffnesses is shown
for the linear and non-linear cases. Dashed and solid lines denote the linear and the non-linear configurations,
respectively.

observation qualitatively. In the non-linear coupling, the amount of localization is reduced.
Figure 4 illustrates the effect of coupling non-linearity on the localization obtained by
configuring disorder in the grounding stiffness. Dashed and solid lines denote the linear
and the non-linear cases, respectively. It is seen that an almost symmetric localization
distribution prevails for the linear configuration, collectively distorting the lower and
uppermost parts of the modal spectrum. The non-linearity introduced to the coupling
breaks this symmetry and leaves the localization only at the very end of the modal
spectrum.

The results displayed in Figures 3 and 4 are obtained by averaging over five different
configurations for each curve. Different configurations are created by taking five different
seed numbers while distributing uniform random variables for the stiffnesses in both cases.
Note that for each configuration the s/m ratio is still constant. It may be recognized that
perfect non-linear coupling between the substructures delocalizes the modes at the lower
end of the spectrum which are created by the random grounding stiffness configuration
with linear coupling of substructures. Not shown in this work, the same qualitative picture
as in Figure 3 is also obtained when random distribution is considered for the mass of
substructures. Also not displayed here, it is also found that longer chains with higher
number of substructures behave similarly.

4.  

In this study, a localization measure is introduced to quantify the differences in dynamic
behavior between perfectly periodic and nearly periodic structures in which a small
randomness is designed. For each mode, this measure evaluates the distortion of the mode
shape of the disordered structure from that of the perfect one by calculating the kurtosis
of the eigenvector distributions. In the linear case, the eigenvalue problem of the
characteristic matrix needs to be solved; for the non-linear case, the covariance matrix of
the instantaneous state vectors is required to be calculated. While the covariances of
instantaneous momenta probe the equipartition, those of the instantaneous position
vectors identify the modes associated with the thermodynamical equilibrium.

The results have indicated that non-linear nearest neighbor interactions delocalize the
modes corresponding to lower frequencies. The most pronounced delocalization due to
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non-linearity occurs if the localized modes for the linear structure are obtained by
designing for disorder in the grounding stiffness. Since displacements with larger
amplitudes are associated with lower modes, obstruction of the collective behavior of these
modes with the higher frequencies may be of interest.
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