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Jet engines may experience severe vibration due to the sudden imbalance caused by blade
failure. The current research investigates employment of piezoelectric actuators to suppress
this using active vibration control. This requires identification of the source of the
vibrations via an expert system, determination of the required phase angles and amplitudes
for the correction forces, and application of the desired control signals to the piezoelectric
actuators. Correction forces may exceed the physical limitations of the actuators; hence
results of ‘‘constrained force’’ quadratic programming, least squares and multi-point
correction algorithms will be compared. It is demonstrated that simply scaling down the
least squares predicted correction forces to satisfy the actuator saturation constraints does
not necessarily yield optimal reductions in vibration. In this paper test results are shown
for sudden imbalance, and the computational time requirements and balancing effectiveness
for the various approaches are compared.
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1. INTRODUCTION

Vibration due to gradual or sudden (blade loss) imbalance may be detrimental to jet engine
health due to internal rubs and/or fatigue failure. Balance correction by mass removal
(grinding) or addition may be very time consuming or impossible in the case of blade loss.
Hence, research is being performed to develop active control systems to correct imbalance
related vibration while in operation. The high frequency actuator types typically employed
are magnetic (see Tang and Palazzolo [1]), and piezoelectric and hydraulic (see Tang and
Palazzolo [2]).

The influence coefficient method of balancing as applied to two-plane rotor balancing
was first described by Thearle [3] in 1934. The fundamental procedure that Thearle used
was to determine the rotor response at two locations by applying arbitrary trial weights
at each of the two planes and then measuring the rotor response. By this procedure a set
of four influence coefficients was determined in which the balance weights could be
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calculated in order that the amplitude be reduced to zero at the two measurement
locations, at the given speed. The basic procedure of Thearle may be expanded into a three-
or multi-plane balancing procedure in which the number of balancing planes is equal to
the number of probe or vibration pick-up stations. This method is known as the exact point
speed influence coefficient method and has been elaborated on by Tessarzik and Badgley
[4].

The increasingly easy accessibility of large digital computers that perform complex
arithmetic has made sophisticated balancing techniques more and more practical. The least
squares method is one of these, which was proposed by Goodman [5] in 1964 and extended
to include complex arithmetic by Lund [6] in 1971. It has been demonstrated that the
application of the exact point influence coefficient method will satisfactorily balance the
same number of measurement points (locations and speeds) as there are balance planes.
However, the method will not necessarily ensure that the rotor will be adequately balanced
at other locations and speeds. The procedure using a least squared error approach, as
developed by Goodman and Lund, allows reduction of the residual (after balance)
vibration at an arbitrary number of speeds and locations. Passive balancing of rotating
shafts using non-linear techniques was performed by Woomer [7]. His research provided
a means of limiting the size of the correction weights. This is especially important for active
balancing in which the actuator and amplifier outputs are restricted by their thermal and
electrical limitations. It is to be noted that simply scaling down the least squares predicted
correction forces to satisfy the actuator saturation constraints does not necessarily yield
optimal reductions in vibration. The mathematical theory on quadratic programming with
bounded constraints is described by Gill [8, 9].

Higuchi [10] investigated an observer based active balancing sytem on a magnetic
bearing supported rotor. Although this study considers both zero displacement and
zero synchronous force approaches, the rotor speed is limited to 3600 rpm, and only steady
state vibrations are corrected. Kanemitsu et al. [11] use a least squares balancing algorithm
to obtain appropriate feedforward correction signals to suppress unbalance vibrations
on a magnetic bearing supported rotor. Transient vibration suppression is not
considered. Knopse [12] and Beale [13] also consider steady state, feedforward control for
magnetic bearings utilizing an adaptive algorithm. Ku et al. [14] employ both zero
displacement and zero synchronous force active balancing for steady state control using
a rotordynamic model simulation. Higuchi [15] minimizes steady state housing vibration
on a magnetic bearing test rig using synchronous current reduction based feedforward
control. The current work extends these studies to include vibration due to sudden
mass imbalance plus the application of a constrained quadratic approach to active
balancing.

The influence coefficient balancing theory for uncoupled, coupled, least squares and
constrained quadratic problems is described in section 3. The experimental set-up used for
the blade loss detection and correction is described in section 4. Software issues, such as
a layered architectural specification, the control flow diagram, etc., are described in section
5, the test results are described in section 6, and future work and conclusions are discussed
in section 7.

2. INFLUENCE COEFFICIENT BALANCING

The method of balancing a flexible rotor may be roughly divided into two classifications:
the modal method and the influence coefficient method [16]. The active balancing method
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employed here uses the influence coefficient method of balancing the rotor. For a discrete
multi-mass rotor system, the total rotor response may be expressed as [17]

{Z}=[au ]{eu}+[ar ]{dr}+[am ]{dm}+ {do}. (1)

The total rotor response assumes that a linear system is composed of the responses due
to mass unbalance eccentricity eu at the various stations, shaft bow {dr} unbalance couples
such as caused by skewed discs, {dm} and electrical or mechanical runout vectors {do}
which are constant and do not dynamically excite the system.

When a trial force {eT} in the form of a sinusoidal signal is applied to the rotor through
piezoelectric actuators, the new rotor response is given by

{ZT}= {Z}+[au ]{eT}. (2)

Neglecting the effects of dr , dm and do , subtract the original vector Z and divide by the
trial force to obtain the influence coefficients

[au ]=
{ZT}− {Z}

{eT} (3)

at any speed and between any response point and actuator location. Knowledge of the
influence coefficients [au ] allows determination of the correction forces which minimize the
final response vector {Z}.

The four balancing approaches used here are the uncoupled, coupled, least squares and
constrained quadratic forms of balancing. For the uncoupled and the coupled cases, two
sensors and two actuators were used for the current tests. Let xc , and yc be the two
correction forces for the x and y actuators, respectively, and let ax1 and ax2 be the influence
coefficients for sensor 1 due to the application of force on actuator x only, and for sensor
2 due to the application of force on actuator x only, with no force being applied to the
y actuators. Similarly, ay1 and ay2 are the influence coefficients for sensors 1 and 2 due the
application of forces on the y actuator only, with no force applied to the x actuator. By
requiring that the vibration is zeroed at the two sensors and at the single speed, the
uncoupled correction forces become

xc =
−1·0
ax1

( s1, yc =
−1·0
ay2

( s2, (4, 5)

where s1 and s2 are the vibration signals from sensors 1 and 2, respectively.
The correction forces for the coupled case are calculated from

xc =
−1·0

A
( (ay2 ( s1− ay1 ( s2), yc =

−1·0
A

( (ax1 ( s2− ax2 ( s1), (6, 7)

where

A= ax1 ( ay2 − ax2 ( ay1, (8)

For the constrained quadratic programming approach, define

R=O+ a ( X, (9)

which is the residual vibration that occurs after applying the correction forces; O is the
unbalanced system vibration vector, a is the influence coefficient matrix and X is the
correction force vector. The quadratic function

f(X)=RTR=W0 + cTX+XTDX (10)
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is minimized, subject to the constraints

{lR}E {XR}E {uR}, {lI}E {XI}E {uI}, (11, 12)

where l and u are the lower and upper bounds, and the correction forces

{X}= {XR}+i{XI} (13)

contain both amplitude and phase information.
Comparison of equations (9) and (10) yields

W0 =OTO, cT =2 ( (OT
R =OT

I )0aR

aI

−aI

aR1, (14, 15)

D=0 aT
R

−aT
I

aT
I

aT
R10aR

aI

−aI

aR1, X=0XT
R

XT
I 1. (16, 17)

Derivation of the above set of equations is given in Appendix A. These equations are
solved using an iterative quadratic programming code with bounded constraints. Input to
the code consists of the constraints lR , uR , lI and uI and the quantities Wo , c and D. Other
techniques such as the gradient technique could also be used to solve the equations. The
constrained quadratic programming program subsumes all other approaches. For instance,
when the bounds are removed, i.e. by setting very high bounds, the constrained quadratic
method is equivalent to least squares balancing. In addition, when the number of
measurement points (number of speeds×number of sensors) are equal to the number of
actuators, this is equivalent to the coupled approach. Finally, if each actuator is assumed
to have influence only on a single, unique measurement point, constrained quadratic
becomes the uncoupled approach. Validation of the quadratic programming code was
performed using the E04N AF NAG Fortran library routine [18]. This routine is essentially
identical to the subroutine SOL/QPSOL described by Gill et al. [19]. For using this
subroutine, the problem is stated to be in the form

Minimize cTx+ 1
2x

TDx,

subject to the constraints

lE0 x
Ax1E u,

where c is a constant n-vector and D is a constant n× n Hessian (second partial derivative)
symmetric matrix of the quadratic objective function, and A is an m× n dense matrix.
Note that when the matrix D is a zero matrix, the resulting problem reduces to a linear
programming problem.

A solution to the above quadratic programming problem proceeds in the form of trying
to find a set of feasible solutions iteratively that minimizes the quadratic objective function.
A subset of constraints defines the search direction at each iteration, moving a scalar step
length in the defined direction. Typically, the next iteration is given by

xk+1 = xk + bkpk ,
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where pk is the n-dimensional search direction, and bk is the scalar step length. Lagrange
multipliers lk define the solution of the compatible overdetermined system,

CT
k lk = c+Hxk ,

when the projected gradient is zero at xk . The vector ZT
k (c+Hxk ) is called the projected

gradient at xk , where Ck denotes the matrix of coefficients of the bounds and general
constraints in the subset of constraints, and CkZk =0. If the projected gradient is non-zero,
the search direction pk is defined as

pk =Zkpz ,

where pz is obtained by solving the equations

ZT
k HZkpz =−ZT

k (c+Hxk ).

Other details of the algorithm are described in Gill et al. [20].
The following example uses the above quadratic programming algorithm, and

demonstrates that simply scaling down the least squares solution to satisfy the actuator
constraints will not yield the optimal reduction in vibrations. Consider the experimentally
measured influence coefficient matrix for a two-plane balance the two vibration sensors
at two speeds, as shown below

8·13, 341·6° 7·66, 342·4°

1·43, 265·0° 1·04, 265·5°
a=G

G

G

F

f
9·06, 162·0° 8·55, 224·1°

G
G

G

J

j

,

3·51, 255·9° 2·62, 257·0°

in amplitude-angle format. The same written in real imaginary format is

7·710− i2·566 7·301− i2·316

−0·125− i1·424 −0·081− i1·036
a=G

G

G

F

f
−8·616− i2·799 −6·139− i5·950

G
G

G

J

j

.

−0·855− i3·404 −0·589− i2·552

The original readings for two speeds and two probes were

3·07, 102·4°

0·42, 25·88°
O=G

G

G

F

f
1·51, 102·4°

G
G

G

J

j1·05, 16·94°

in amplitude-angle format. The same written in real-imaginary format is

−0·659+ i2·998

0·377+ i0·183
O=G

G

G

F

f
−0·324+ i1·474

G
G

G

J

j1·004+ i0·305

and the constraints on the correction forces were

lR = lI =0−0·25
−0·251, uR = uI =00·25

0·251.
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The above quantities are considered as input to the quadratic programming code and
the least squares code (the same quadratic programming code could be used for least
squares by setting the lower and upper bounds to the minimum and maximum values
allowed on the computing machine, or by setting a provided variable in the E04N AF
code). Upon running the code the least squares solution is

X=0−0·321815− i0·324842
0·557246+ i0·0068321.

Note that the magnitude of three components exceeds the magnitude of the constraints;
i.e. 0·25. Consider the least squares (LSQ) solution for the correction forces with each force
component that exceeds its constraint value set equal to the constaint value given as

X=0−0·250000− i0·250000
0·250000+ i0·0068321.

Designate the vibrations which result from applying the least squares solution above by
set A. These vibrations are determined from equation (9). Calculation of the data set A
applying equation (9) is shown in Appendix B.

The constraint quadratic programming (CQP) solution for the correction forces is

X=0−0·115406− i0·193423
0·250000+ i0·0068311.

Designate the vibrations which result from applying these correction forces as set B.
Calculations for determining the data set B applying equation (9) is shown in Appendix
B. Comparing A and B yields the results shown in Table 1, where Ri is the amplitude of
the residual vibration for reading i.

Obviously, the cost function of residual vibrations (a R2
i ) is smaller with the CQP

method and the correction forces are smaller than the imposed limits. It is thus
demonstrated that simply scaling down the least squares predicted correction forces to
satisfy the actuator saturation constraints does not necessarily yield optimal reductions in
vibration.

3. THE EXPERIMENTAL SET-UP

The experimental set-up for blade loss detection and control at the NASA Lewis
Research Center is shown in Figures 1–3. The hardware set-up for blade loss detection
and control is shown in Figure 1. Vibration data was acquired by an A/D card. A Fast
Fourier Transform (FFT) of the first harmonic was performed on the acquired data to
obtain the magnitude and the phase of the vibration signals in the X and Y directions for
two planes. The two planes at which data was collected were the OD (outboard disk) and

T 1

Comparison of CQP and LSQ results

Set R1 R2 R3 R4 a R2
i

A (LSQ) 1·82 0·31 1·74 0·765 7·021
B (CQP) 1·28 0·152 1·318 0·384 3·546
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Figure 1. Experimental set-up for blade loss. PA-X, power amplifier for X-direction; PA-Y, in y-direction.

OB (outboard bearing) planes. Whenever a blade loss occurred, the high vibrations were
detected by observing the sampled data, and the correction forces were calculated. These
forces were downloaded using a digital signal processor (DSP). The DSP used to provide
the feedforward control sine waves was an AT&T DSP-32C. The sampling rate of the
DSP is 25 kHz/channel, and the processor itself runs at 25 MHz. The sinusoidal signals

Figure 2. Sudden mass imbalance device at outboard disk location.
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Figure 3. Horizontal view of the rotor showing outboard disk.

downloaded from the DSP were amplified using power amplifiers PA-X (for the
X-direction) and PA-Y (for the Y-direction). The X-Actuator (for the X-direction) and
the Y-Actuator (for the Y-direction) were used to provide the necessary forces.

In Figure 2 is shown the blade loss simulation performed by activating solenoid driven
plungers that knock off rotating bolts at the outboard disk location. Piezoelectric actuators
forces were transmitted to the rotating shaft via a flexibly mounted bearing housing which
contains a ball bearing. The sensors (OBX, OBY) shown in Figure 3 were collocated with
the actuators and were employed for the uncoupled, coupled and constrained quadratic
balancing method, in addition to indicating the occurrence of sudden imbalance. Two
additional sensors (ODX, ODY) were located on the outboard disk and were employed
to obtain vibration data for the unconstrained quadratic balancing. The shaft was spun
by an air turbine, connected to it by a flexible rubber coupling. The length of the shaft
was 0·62 m and the diameter was 0·254 m. The outer bearing span was 0·48 m and the
outboard disks were 0·152 m in diameter and 0·010 m thick. The weight of the outboard
disk was 16 N. The bearing stiffnesses, including the piezoelectric actuator stiffness, were
both 12·0×106 N/m. The critical speeds occurred at 7200 rpm, and 13 600 rpm.

4. SOFTWARE ISSUES IN THE DEVELOPMENT OF THE REAL TIME SYSTEM

4.1.  

Software architecture reflects the organizational structure of a system or component [21].
Background information on software architectures can be found in references [22], [23].
We present a layered hierarchy of object architecture for the real time system used in the
testing for blade loss detection and correction.

The software system is organized into five layers, as shown in Figure 4. Layer 1 consists
of the physical layer and corresponds to the actual physical devices used in the system.
The sensors, actuators, keyboard, mouse, screen, file, etc. constitute the physical layer. The
second layer is the system software layer and consists of vendor dependent device drivers
for the hardware. These device drivers differ from one operating system to another. The
remaining three layers are built on the existing two layers. Layer 3 is the severe software
layer which provides services to the hardware devices. The data acquisition module
acquires data from the sensors using the data-acquisition board. The routines for
programming the board are located here. Feedback and feedforward modules send control
signals to the actuators by using the routines provided by the lower level device driver
routines. Feedforward signals are generated by the digital signal processor.
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The fourth layer is the soft device layer that is the software counterpart to the hardware
units in the physical layer. The sensor module contains various sensor class-objects. The
Process Server contains the quadratic programming and other balance codes programmed
in C++ language [24] using the object oriented paradigm; see Wegner [25] and Kreamer
[26]. User interface and the knowledge base module form the fifth layer.

4.2.     

A flowchart of the system is shown in Figure 5. There are two stages involved in testing
the software. In the first stage, the dynamics of the rotating machinery are identified at
a particular speed by injecting sinusoidal waveforms to the actuator. The second stage
involves the actual monitoring of the rotating machinery. Before the dynamics of rotating
machinery is identified, the rotor is balanced passively by adding correction weights using
the techniques mentioned in references [4–6]. Two masses are cemented to the outboard
disk, such that they lie in a straight line and on opposite sides of the axis of the rotor.
Moreover, the weights of the masses are selected such that the overall rotor is still balanced
in the plane of measurement. In other words, they are cemented in such a way that the
product of one mass and its distance of attachment from the axis is equal to that of the
product of the other mass and its distance of attachment from the axis of rotation. They
are also cemented in such a way that when the solenoid driven plunger is activated the
plunger gets in the way of the cemented bolt, and knocks it off. This mechanism is shown
in Figure 2. The entire rotating system is housed in a strong case, so that no injury or
damage results due to a flying bolt when it is knocked off. The step involved in the system
identification of the rotor are given below.

(1) Slow roll is initially captured when the rotor is rotating at low speeds, say at speeds
less than 1200 rpm. Fast Fourier Transformation (FFT) is performed on the samples, and
the resulting amplitude and phase of the signal is stored as slow roll. Slow roll represents
the false vibration sensed by the shaft displacement probes, due to surface scratches, out
of roundness, etc.

(2) Vibration samples are collected when the rig is at a desired speed. The amplitude
and phase of the signals from the different sensors are calculated by performing an FFT,
and slow roll is subtracted to obtain the true vibration at the speed.

(3) An X-direction trial force is injected to the X actuator via a sine wave generated
by the DSP. An FFT is performed on the captured vibration, slow roll is subtracted, and
influence coefficients are calculated.

(4) Similar to the above, influence coefficients are then calculated for the Y trial
force.

Figure 4. Architecture layers of the system: FF, feedforward; FB, feed back; PIID, hybrid PID controller;
A/D, analog to digital converter; DSP, digital signal procession; KB/UI, knowledge base/user interface.
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Figure 5. A flowchart for the sudden imbalance correction system: (a) system identification of the rotor; (b)
rotor monitoring for sudden imbalance.

Once the dynamics of the system are identified at various speeds, a vibration limit for
detecting a blade loss event is set. This limit is usually higher than the vibration occurring
at critical speeds. This limit is set through the user interface when this quantity is entered
in mm (micro meters) or mils of vibration amplitude displacement. The software system
is then set into a monitoring mode. In the monitoring mode, the software system
continually gathers vibration data samples, performs and FFT, and computes the
amplitude and phase of the vibration signal from the various sensors, thereby continuously
checking for sudden imbalance, which is detected by comparing current vibrations to the
previously set limit value. Simulation of a blade loss is obtained by knocking off one of
the bolts cemented to the outboard disk (OD) by manually triggering off the solenoid
driven plungers while the rotor is rotating at a constant speed. After a blade is knocked
off, vibration data for a preset number of cycles is captured, an FFT is performed on the
captured data, and CQP is used to calculate correction forces. These forces are downloaded
immediately. The software system has the provision to download a second set of forces
after a specified delay.
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Figure 6. A generic blade loss event.

5. TEST RESULTS

A diagram to explain the generic blade loss event is shown in Figure 6. The diagram
explains the exact moment in time when a sudden imbalance occurs, when it is detected
by the computer, when the correction forces calculation are performed and when these
forces are downloaded by the DSP.

Some test results for the sudden imbalance test are shown in Figures 7–12. Each of the
figures show the feedforward control signals (FFX, FFY), and the vibration signals at the
outboard bearing (OBX, OBY). The test results when no second balance is applied (i.e.,
there is no calculation of correction forces after the first download of correction forces)
are shown in Figure 7. In this figure, the FFT is performed for 32 samples per cycle in
determining the synchronous vibration. A sudden increase in vibrations is observed when
a sudden imbalance occurs at the outboard disk, which results from the plunger impact.

Figure 7. Blade loss event with 32 samples per cycle FFT, four cycles for first balance and no second balance.
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Figure 8. Blade loss event with 32 samples per cycle FFT, four cycles for first and second balance and a 20
cycle delay between first and second balance.

Feedforward correction signals are applied after the sudden imbalance is detected and the
correct amount of amplitude and phase of the sinusoidal signals have been determined.
The same experiment is performed in the second case (Figure 8), except that correction
forces are calculated a second time, after a 20 cycle delay following the download of the
first correction forces. A significant reduction is observed in OBX.

In Figure 9 are shown results when a lesser number of samples are taken per cycle (12 per
cycle) to reduce the amount of computation time in calculating the correction forces. It can
be seen that the correction forces are downloaded much earlier than before. Also shown in
Figure 10 is a much quicker response when the number of cycles for which the data is taken
is reduced from four to two and the number of samples per cycle is reduced to eight per

Figure 9. Blade loss event with 12 samples per cycle FFT, four cycles for first and second balance and a 20
cycle delay between first and second balance.
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Figure 10. Blade loss event with eight samples per cycle FFT, two cycles for first and four cycles for second
balance and a 20 cycle delay between first and second balance.

cycle. The response when the largest imbalance employed in the tests was suddenly applied
are shown in Figure 12. Excellent control is maintained even though the imbalance force
(21 lb) almost equals the total weight of the rotor.

Table 2 provides a summary of the test results performed with least squares balancing,
varying the number of samples per cycle, the delay between the first and second balance
and the number of cycles for data acquisition. The column defined as ‘‘cycles for first
balance’’ indicates that the acquisition of data for sampling has been performed for the
number of cycles shown. The next column, defined as ‘‘cycles between balance 1 and 2’’
indicates the number of cycles between the first download of correction forces and the
second download of correction forces. A zero in this column indicates that balancing has

Figure 11. Blade loss event with 12 samples per cycle FFT, two cycles for first and four cycles for second
balance and a 20 cycle delay between first and second balance.
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Figure 12. Vibration and control signals for high imbalance test: FDYN =21·0 lbs, speed=8000 rpm.

not been performed for the second time. The column ‘‘cycles for second balance’’ indicates
the number of cycles of data acquisition for the second balance. The column ‘‘cycles for
first download’’ indicates the number of cycles taken by the system to download the
correction signals and make the change. The column ‘‘% change after first balance’’
indicates the amount of change observed in vibrations after the first set of correction forces
were downloaded. The column ‘‘% change after second balance’’ indicates the amount of
change observed in vibrations after the correction forces were downloaded for the second
time. If a second download of correction forces was not done, that row entry shows a zero.

The constrained quadratic programming method was employed using four sensors and
two actuators. In Figures 13 and 14 are shown the time histories of the vibrations at all
four sensors for the constrained quadratic programming runs. The results of using the
constrained quadratic programming techniques are summarized in Tables 3–5. In Table 3
a significant reduction in vibration is shown at all four sensors when applying the method
with no constraints on force magnitudes. It can be seen from the last column of Table 3
that there is a 60% improvement in the sum of squares of vibration on all the four probes
after application of the correction forces, compared to what was before the application
of correction forces. Constraints somewhat smaller than some of the correction forces as
shown in Table 4 were applied to obtain the data for Table 5. Although the vibration
reduction was smaller than the previous one, it still yielded significant improvement. The

T 2

Results of uncoupled balancing

Cycles Cycles Cycles % change % change
Figure Samples for first Cycles between for second for first after first after second
number per cycle balance balance 1 and 2 balance download balance balance

7 32 4 0 0 22 66 —
8 32 4 20 4 24 50 75
9 12 4 20 4 14 66 83

10 12 2 20 4 13 56 78
11 8 2 20 4 12 50 78
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Figure 13. Balancing with constrained quadratic programming: eight samples per cycle, four cycles for first
balance, no second balance, constrained case 1.

Figure 14. Balancing with constrained quadratic programming: eight samples per cycle, four cycles for first
balance, no second balance, constrained case 2.

improvement here is about 47%. The constraints shown in Table 4 were halved to obtain
the data shown in Table 5. The improvement observed is about 19%. Reducing the
maximum permissible actuator forces is seen to lessen the effectiveness of the balance,
although still yielding vibrations smaller than the unbalanced condition.

Figures 13 and 14 and Tables 3–5 confirm the ability of the system to correct the
vibration within 15 cycles at 7000 rpm, even when employing the iterative constrained
quadratic balancing method. The imbalance correction system employed a 50 MHz, Intel
80486 processor for the results in Figures 13 and 14, whereas a 33 MHz processor was used
in the tests of Figures 7–11. Although for this reason a direct comparison of correction
times between the methods could not be made, the results did confirm the ability quickly
to employ quadratic programming.

T 3

Test 1, unconstrained case: correction force signal (volts); FFX=−2·88+ i0·78=2·99,
164·66°, FFY=−0·51− i2·62=2·67, 259·0°; no constraints; samples per cycle=8; cycles

for data acquisition=4

OBX OBY ODX ODY a A2
i

Status (mm) (mm) (mm) (mm) (mm2)

With 8·66, 263·85° 26·75, 237·06° 111·0, 265·87° 121·72, 7·34° 27 909·1
control
Without 9·88, 270·08° 45·0, 22·72° 185·67, 285·6° 183·08, 19·02° 70 021·2
control

Percentage decrease=60%.
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T 4

Test 2, constrained case 1: correction force signals (volts); FFX=−1·50+ i0·47=1·57,
162·5°, FFY=0·55− i1·5=1·57, 287·48°; force signal constraints; (volts); Max
Re(FFX)=Max Re(FFY)=Max Im(FFX)=Max Im(FFY)=1·5; Min
Re(FFX)=Min Re(FFY)=Min Im(FFX)=Min Im(FFY)=−1·5; samples per

cycle=8; cycles for data acquisition=4

OBX OBY ODX ODY a A2
i

Status (mm) (mm) (mm) (mm) (mm2)

With 9·93, 263·85° 16·256, 237·06° 155·73, 265·87° 153·92, 7·34° 48 284·7
control
Without 10·92, 270·08° 53·09, 22·72° 208·33, 285·64° 209·86, 19·02° 90 312·9
control

Percentage decrease=46·5%.

T 5

Test 3, constrained case 2: correction force signals (volts); FFX=−0·75− i0·75=1·06,
225·0°, FFY=0·0− i0·75=0·75, 270·0°; force signal constraints; (volts); Max
Re(FFX)=Max Re(FFY)=Max Im(FFX)=Max Im(FFY)=0·75; Min
Re(FFX)=Min Re(FFY)=Min Im(FFX)=Min Im(FFY)=−0·75; samples per

cycle=8; cycles for data acquisition=4

OBX OBY ODX ODY a A2
i

Status (mm) (mm) (mm) (mm) (mm2)

With 10·16, 263·85° 34·04, 237·06° 186·94, 265·87° 191·01, 7·34° 72 678·6
control
Without 10·67, 270·08° 52·07, 22·72° 209·30, 285·64° 208·56, 19·02° 90 093·6
control

Percentage decrease=19·4%.

6. SUMMARY AND CONCLUSIONS

The results shown in this paper confirm the ability of the digitally based feedforward
control expert system quickly to detect and correct vibration due to a sudden imbalance
on rotating shafts. A quadratic programming balancing approach was selected in order
to address the real limitations of actuators and power amplifiers for supplying desired
correction forces to suppress sudden imbalance vibration. This balancing approach was
able to produce significant reductions in vibrations within approximately ten shaft
revolutions at 7000 rpm using a 50 MHz 486 processor.

Future work in this area includes further reduction in correction time and expansion
of the expert system’s knowledge base.
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APPENDIX A: DERIVATION OF THE COEFFICIENTS FOR THE QUADRATIC
FUNCTION

Consider equation (9), which can be represented in real–imaginary form as the following:

R=O+ a ( X

R=RR +iRI =OR +iOI +(aR +iaI )(XR +iXI ), (A1)

which implies

RR =OR + aRXR − aIXI , RI =OI + aRXI + aIXR

and

R=0RR

RI1=0OR

OI1+0aR

aI

−aI

aR10XR

XI1,

Let

E=RTR=(OT
R =OT

I )0OR

OI1+(OT
R =OT

I )0aR

aI

−aI

aR10XR

XI1,

+ (XT
R =XT

I )0 aT
R

−aT
I

aT
I

aT
R10OR

OI1
+(XT

R =XT
I )0 aT

R

−aT
I

aT
I

aT
R10aR

aI

−aI

aR10XR

XI1. (A2)

But

E= f(X)=RTR=W0 + cTX+XTDX. (A3)

Comparing equation (10) with equation (A2) yields

W0 = (OT
R =OT

I )0OR

OI1, cT =2 ( (OT
R =OT

I )0aR

aI

−aI

aR1,

using the matrix multiplication property that

(AB)T = (BTAT)
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and recognizing that the second and third terms of equation (18) are symmetric matrices:

D=0 aT
R

−aT
I

aT
I

aT
R10aR

aI

−aI

aR1, X=0XT
R

XT
I 1.

APPENDIX B: CALCULATION OF THE RESIDUAL DATA SETS A AND B

Residual data set A is obtained by applying the LSQ data to equation (A1). These data
are reproduced here for convenience:

R=O+ a ( X,

where

F J F J−0·659+ i2·998 7·710− i2·566 7·301− i2·316
G G G G0·377+ i0·183 −0·125− i1·424 −0·081− i1·036
G G G GO=

−0·324+ i1·474
, a=

−8·616+ i2·799 −6·139+ i5·950
,

G G G G
1·004+ i0·305 −0·855− i3·404 −0·589− i2·552f j f j

X=0−0·250000− i0·250000
0·250000+ i0·0068321.

Applying the above values, we obtain the residual vector R for LSQ:

1·82

0·31
R=G

G

G

F

f
1·74

G
G

G

J

j

,

0·765

Residual data set B is obtained by applying the CQP data to equation (A1). The values
of O and a are the same as given above for calculating the residuals for the LSQ solution.
The value of the correction forces X, given below for convenience, and the value of the
calculated residual vector R for CPQ are

X=0−0·115406− i0·193423
0·250000+ i0·0068311.

1·28

0·152
R=G

G

G

F

f
1·318

G
G

G

J

j

,

0·384

The cost function is the sum of the squares of the residuals (a R2
i ). A summary of the

residual sets A and B is shown in Table 1.

APPENDIX C: NOMENCLATURE

Z total response of a rotor system
eu unbalance eccentricity
dr shaft bow

dm unbalance couples due to skewed discs
do mechanical runout vectors
eT runout
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au influence coefficients
xc X correction force
yc Y correction force
R residual
O current vibration

lR real part of the lower bounds
uR real part of the upper bounds
lI Imaginary part of the lower bound
uI Imaginary part of the upper bound


