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In this paper a solution is presented for the harmonically forced vibration of an arbitrary
thin plate floating on the surface of an infinite liquid. The full linear potential problem for
the liquid is solved by the use of the appropriate Green’s function. A variational equation
which the plate–liquid system must satisfy is derived and a solution by the Rayleigh–Ritz
method is presented. Examples of possible calculations are given for a square and a
rectangular plate.
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1. INTRODUCTION

The study of the vibration of thin plates floating on the surface of a liquid falls into two
broad categories. In the first, a recent example of which is the work of Robinson and
Palmer [1], the plate is assumed to float on a finite liquid, for example a tank, and the
modes of vibration for the entire system are determined. No approximations about the
liquid motion are made except that it is linear and incompressible. In the second approach
the liquid is modelled as infinite and the changes in the frequency of vibration due to the
presence of the liquid are investigated. Kwak and Kim [2] and Kwak [3] are recent work
using this approach, although this line of investigation has a long history beginning with
the work of Rayleigh and Lamb [2]. In such a model, strong approximations are made
about the liquid motion and there is no wave generation by the vibrating plate.

It is well known that even for a simple geometry, such as a square thin plate with free
edge conditions, analytic solutions for the thin plate modes of vibration are not possible.
Therefore, the modes must be solved for numerically, the standard methods being derived
from the variational equation for the thin plate (i.e., the Rayleigh–Ritz method or the finite
element method). For this reason it seems natural to solve for the vibration of an arbitrary
shaped plate floating on an infinite liquid by deriving a variational equation which the
plate–liquid system must satisfy and this is the approach taken in this paper. Since a
vibrating body on an infinite liquid will generate wave motion which will carry away energy
it is not realistic to consider modal motion. Instead, it is natural to consider the plate
motion as a function of a temporally harmonic forcing pressure. The forced vibration of
a floating thin plate may be considered as a model of a large floating structure, for example
a floating runway, subject to an external force, such as an aircraft landing.

The variational equation for an arbitrary thin plate subject to a harmonic forcing
pressure is well known [4]. Of course, when the plate floats on a liquid the pressure due
to the liquid motion is a complex function of the plate displacement. The solution
presented in this paper is as follows. The relationship between the liquid motion and plate
displacement is transformed into an integral equation by the use of the appropriate Green’s
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function for an infinite liquid. This method is analogous to the boundary element method
except that the Green’s function is also chosen to satisfy the infinite boundary conditions
so that the domain of integration is reduced to the plate. The integral equation relationship
is then substituted into the variational equation to derive a variational equation for the
plate–liquid system. This variational equation is then solved by the Rayleigh–Ritz method
and some example calculations are given.

2. THE PROBLEM

We consider an arbitrary thin plate floating on the surface of infinite three-dimensional
half-space of liquid as shown in Figure 1. This figure also shows the co-ordinate system
used to solve the problem and the time independent boundary value problem for the liquid
(equation (2)). The submergence of the plate is assumed to be negligible so that the
boundary condition under the plate may be applied at the surface of the liquid. We restrict
consideration to small amplitude response so that all the equations are linear. The spatial
form of the forcing pressure on the plate will be arbitrary but we will restrict consideration
to a harmonic time dependence. Since the problem is linear, this means that all the
dependent variables must also be harmonic and the time derivatives are thus eliminated.
Of course, solutions for complex time dependent pressures can be constructed using a
spectral expansion of the forcing pressure as will be done subsequently. The linear potential
theory for small amplitude wave motion [5] allows us to construct a linear operator relating
velocity potential and displacement. This relationship is included in the variation equation
for a thin plate [4] to give us a variation equation for the problem which we solve by the
Rayleigh–Ritz method.

3. EQUATIONS OF MOTION FOR THE LIQUID

The linearized boundary value problem for the velocity potential F for the liquid
assuming irrotational and inviscid flow is as follows:

92F=0, −aQ zQ 0,

1F

1z
=0, z:−a,

1F

1z
=

1W
1t

, z=0, P$D,

r0g 1F

1z
+

12F

1t2 1=−
1p
1t

, z=0. (1)

Figure 1. A schematic diagram of a thin plate floating on an incompressible infinite liquid.
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In equation (1), W is the displacement of the plate, P is a point on the liquid surface,
p is the pressure on the liquid surface, which is assumed to be constant except beneath
the plate, r is the density of the liquid, g is the acceleration due to gravity and D is the
region of the liquid surface occupied by the plate. We also require appropriate conditions
to be met as =P=:a and at t=0.

Equation (1) is now non-dimensionalized using

W� =
W
a

, P�=
P
a

, z̄=
z
a
, t̄= tXg

a
, F� =

F

azag
,

where a is some length parameter associated with the plate. We will consider only a
periodic forcing pressure with non-dimensional radian frequency za, so we may write
F�(x̄, z̄, t�)=f�(x̄, z̄) e−it�za, and likewise for W. The boundary value problem (1) becomes

92f� =0, −aQ z̄Q 0,

1f�
1z̄

=0, z̄:−a,

1f�
1z̄

=−izaW�, z̄=0, P�$D�,

1f�
1z̄

− af� =0, z̄=0, P�(D�. (2)

From now on, we shall omit the overbars for clarity. The boundary condition as =P=:a
is the Sommerfield radiation condition [5]

z=P=0 1

1 =P=−ia1f=0, as =P=:a. (3)

The standard solution method to the infinite linear wave problem is to transform the
boundary value problem into an integral equation by the use of the appropriate Green’s
function and then to seek a solution of the integral equation [6, 7]. Performing just such
a transformation, equations (2) and (3) become

f(P)=gg
D

Ga (P; Q)(af(Q)+ izaW(Q)) dSQ, (4)

where Ga is the Green function, given by [8]

Ga (P; Q)=
1

2p =P−Q=

+
1
4p

(i2paJ0(a =P−Q=)− pa{H0(a =P−Q=)+Y0(a =P−Q=)}), (5)

where J0 and Y0 are, respectively, Bessel functions of the first and second kind of order
zero, and H0 is the Struve function of order zero [9]. We write equation (4) in operator
notation as

f=Ga (af+izaW),

where Ga represents the linear integral operator defined in equation (4). This operator is
self-adjoint in the Hilbert Space defined by integration over the region D. This notation
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will also be used in the numerical solution, where f and W are now finite-dimensional
vectors and Ga is a matrix. We solve equation (4) by constructing the operator H−1

a ,
defined by

H−1
a =(1− aGa )−1. (6)

Solution of equation (4) depends on the construction of H−1
a , and this operator is

calculated numerically by the constant panel method [3, 5]. In this method, D is divided
into n subregions, over which the plate displacement and velocity potential may be
considered to be constant. Therefore, W and f may be represented by vectors in an
n-dimensional space. Likewise, the operator Ga becomes an n× n matrix, the elements of
which are determined by the integration of Ga over the appropriate subregion. Obviously,
once the matrix Ga has been calculated, the matrix H−1

a may be calculated trivially.

4. THE VARIATIONAL EQUATION FOR THE THIN PLATE

The principle of virtual work applied to the free plate gives us the following variational
equation [4],

d gg
D

1
2D(W2

xx +W2
yy +2nWxxWyy +2(1− n)W2

xy ) dS+gg
D

rrh
12W
1t2 dW dS

=gg
D

(pw + pf )dW dS, (7)

where W is the plate displacement as before, rr is the plate density, h is the plate thickness,
D is the modulus of rigidity, pw is the pressure due to the liquid and pf is the forcing
pressure. The pressure pw is given by the linearized Bernoulli’s equation at the liquid
surface,

pw =−pgW− r 1F/1t, (8)

and the harmonic forcing pressure is given by

pf = p0(P) e−itzga/a. (9)

Non-dimensionalizing and restricting consideration to a single frequency as before and,
substituting equations (8) and (9) into equation (7), we obtain

d gg
D

$1
2b(W2

xx +W2
yy +2nWxxWyy +2(1− n)W2

xy )+
1− ag

2
W2% dS− d gg

D

p0W dS

=gg
D

izafdW dS, (10)

where

b=D/gra4 and g= rrh/ra.
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Again, the overbars have been removed to avoid clutter. Using H−1
a we solve equation (4)

as

f=izaH−1
a GaW. (11)

Substituting equation (11) for f into the right side of equation (10), we obtain

gg
D

izafdW dS=−a gg
D

(H−1
a GaW)dW dS

=−
a

2
d gg

D

(H−1
a GaW)W dS. (12)

The last step in which the variation is taken outside the integral and the factor of a 1
2 is

included follows from the fact that the operators H−1
a and Ga are self-adjoint and

commuting. Substituting equation (12) into equation (10), we derive the following
variational equation for the problem:

d gg
D

61
2b(W2

xx +W2
yy +2nWxxWyy +2(1− n)W2

xy )+
1− ag

2
W27 dS

+
a

2
d gg

D

(H−1
a GaW)W dS= d gg

D

p0W dS. (13)

5. SOLUTION OF THE VARIATIONAL EQUATION BY THE
RAYLEIGH–RITZ METHOD

The advantage of having transformed the equations of motion to a variational equation
is that a numerical solution is straightforward. One of the simplest numerical techniques,
and one which is used extensively to analyse thin plate vibrations, is the Rayleigh–Ritz
method. In this method the displacement is expanded as

W= s
I

i=0

s
J

j=0

CijWij (14)

and substituted into the variational equation which is then solved by seeking a
minimum with respect to the Cij coefficients. Therefore substituting the expansion for W
(equation (14)) into equation (13), deriving with respect to the coefficient Cpq , and equating
to zero, we derive the following simultaneous equations for coefficients Cij :

s
I

i=0

s
J

j=0

Cij 6b2 f(i, j; p, q)+
1− ag

2
g(i, j; p, q)+

a

2
(h(i, j; p, q)+ h(p, q; i, j))7

=gg
D

p0Wpq dS, p=0, 1, . . . , I, q=0, 1, . . . , J, (15)
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where

f(i, j; p, q)=gg
D

62 12Wij

1x2

12Wpq

1x2 +2
12Wij

1y2

12Wpq

1y2

+2n012Wij

1x2

12Wpq

1y2 +
12Wij

1y2

12Wpq

1x2 1+4(1− n)
12Wij

1x1y
12Wpq

1x1y7 dSP ,

g(i, j; p, q)=gg
D

2WijWpq dS

and

h(i, j; p, q)=gg
D

Wij (H−1
a GaWpq ) dS.

The matrices in equation (15) are independent of the parameters b and g. This means that
once the matrices f, g and h have been calculated, it is trivial to solve the problem for any
value of the non-dimensional stiffness b or the non-dimensional mass g.

Figure 2. The real (a, i and b, i) and imaginary (a, ii and b, ii) parts of the displacement function (W) along
the x-axis for a 2×2 square thin plate subject to a pressure p0 = d(P−P0), where P0 = (0, 0) (a, i and a, ii)
and P0 = (0, 1) (b, i and b, ii). I= J=8 and n=100 (——), n=225 (- - - -), n=400 (– - – - –) and n=625
( . . . . . . ). a= p, b=0·005 and g=0·01.
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6. SOLUTION EXAMPLES

Given that, beyond the parameters a, b and g, we may vary the plate geometry and the
pressure p0, it is obviously not possible to present anything approaching a comprehensive
survey of results. Instead, we give a few examples of the sort of calculations which
are possible. The choice of the basis functions Wij (P) can have significant effects on the
solution accuracy but, as is standard in thin plate analysis, we choose here simple
polynomials; i.e.,

Wij (P)= xiyj.

The main reason for this choice is the simplicity of the resulting equations. Because
we are solving a variational equation subject to the so called natural boundary conditions
(i.e., the free plate boundary conditions), we do not need to impose any restrictions on
the basis functions except completeness [10]. There are two parameters which govern the
numerical solution, the number of basis functions used in the expansion of W (I and J)
and the number of panels used to discretize the plate (n). In Figures 2 and 3 are shown
plots of some simple convergence tests for a 2×2 square plate with a= p, b=0·005 and
g=0·01. In all cases, p0 is chosen to be a delta function at a point P0; i.e., p0 = d(P−P0)
with P0 = (0, 0) (a, i and a, ii) and P0 = (0, 1) (b, i and b, ii). We plot the real (a, i and
b, i) and imaginary (a, ii and b, ii) parts of the complex displacement (W) along the x-axis.
In Figure 2 we have set I= J=8 and are plotting the solution for various values of n,
n=100 (solid line), n=225 (dashed line), n=400 (chained line) and n=625 (dotted line).
It is clear that the chained and dotted lines overlie, and that the solution is converging
and we may conclude that 400 points is sufficient for this geometry. In Figure 3 we are
plotting the solution for fixed n (n=400) and are varying I and J, I= J=4 (solid line),

Figure 3. The real (a, i and b, i) and imaginary (a, ii and b, ii) parts of the displacement function (W) along
the x-axis for a 2×2 square thin plate subject to a pressure p0 = d(P−P0), where P0 = (0, 0) (a, i and a, ii)
and P0 = (0, 1) (b, i and b, ii). n=400 and I= J=4 (——), I=J=6 (- - - -), I= J=8 (– - – - –) and I= J=10
( . . . . . . ). a= p, b=0·005 and g=0·01.



0

10

–10

1

y

W 0

0
–1

1

(i)

(b)

x–1
0

10

–10

1

y
W 0

0
–1

1

(ii)

x–1

0

5

–5
1

y

W 0

0
–1

1

(i)

(a)

x–1
0

5

1

y

W 0

0
–1

1

(ii)

x–1

–5

. . 588

Figure 4. The real (a, i and b, i) and imaginary (a, ii and b, ii) parts of the displacement function (W) for
a 2×2 square thin plate subject to a pressure p0 = d(P−P0), where P0 = (0, 0) (a, i and a, ii) and P0 = (0, 1)
(b, i and b, ii). a= p, b=0·005 and g=0·01.

I= J=6 (dashed line), I= J=8 (chained line) and I= J=10 (dotted line). Again, the
solution shows convergence, and we can conclude that I= J=8 are sufficient basis
functions for this geometry.

Figure 5. The real (a, i and b, i) and imaginary (a, ii and b, ii) parts of the displacement function (W) for
a 2×4 rectangular thin plate subject to a pressure p0 = d(P−P0), where P0 = (0, 0) (a, i and a, ii) and P0 = (0, 2)
(b, i and b, ii). a= p, b=0·005 and g=0·01.
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In Figures 4–6 a= p, b=0·005 and g=0·01. For the 2×2 square plate I= J=8 and
the plate is divided into 400 panels. For the 2×4 rectangular plate I= J=10 and the
plate is divided into 900 panels. The displacement W is a complex function and it is the
real part of W e−itza, which represents the physical displacement as a function of time and
therefore we plot the real and imaginary parts of W. In Figures 4 and 5 p0 is chosen to
be a delta function pressure at a point P0; i.e., p0 = d(P−P0). Figure 4 is a plot of the
real (a, i and b, i) and imaginary (a, ii and b, ii) parts of W for 2×2 square thin plate
with P0 = (0, 0) (a, i and a, ii) and P0 = (0, 1) (b, i and b, ii). Figure 5 is the same as
Figure 4, except the plate is a 2×4 rectangular plate, and P0 = (0, 0) (a, i and a, ii) and
P0 = (0, 2) (b, i and b, ii). As would be expected, the induced motion is complicated,
especially for the larger plate, and the position of the forcing pressure has a significant
effect on the plate motion. Figure 6 is a plot of the real (a, i and b, i) and imaginary
(a, ii and b, ii) parts of W for a uniform pressure p0 =1. Again, a complicated motion
is induced in the plate.

Having solved for a harmonic forcing pressure it is straightforward to solve for a more
complicated pressure using a spectral method. If we denote the time dependent forcing
pressure by,

pf(P, t)= p0(P)f(t),

then the plate displacement in Fourier space is given by

W(P, za)=W0(P, za)F(za), (16)

where W0(P, za) is the plate displacement due to the forcing pressure p0(P) at radial
frequency za and F(za) is the Fourier transform of f(t). The time dependent motion is
then calculated by taking the inverse Fourier transform of equation (16). In Figure 7 is
shown the time dependent motion for a 2×4 plate due to an impulsive unit forcing

Figure 6. The real (a, i and b, i) and imaginary (a, ii and b, ii) parts of the displacement function (W) for
a 2×2 (a, i and a, ii) and a 2×4 (b, i and b, ii) thin plate subject to a pressure p0 =1. a= p, b=0·005 and
g=0·01.
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Figure 7. The time evolution of the displacement of 2×4 thin plate with b=0·005 and g=0·01 due to an
impulsive forcing pressure pf(P, t)= d(P−P0)d(t), P0 = (0, 0). (a) t=0; (b) t=0·44; (c) t=1·33; (d) t=3·10;
(e) t=4·87; (f) t=6·65; (g) t=8·42; (h) t=10·2; (i) t=12·0.

pressure at P0 = (0, 0); i.e., pf = d(P)d(t). The spectrum is windowed with a Blackman
window to reduce the effect of truncating the frequency at some finite maximum. The
displacement function W0 is calculated at 65 frequencies linearly space from za=0 to
z4p, I=6, J=10 and the plate is divided into 400 panels. The decay and consequent
oscillation of the plate displacement is clearly apparent.

7. CONCLUSIONS

We have presented a solution for the forced vibration of an arbitrary thin plate floating
on the surface of an infinite liquid without making any assumptions about the plate or
liquid motion beyond linearizing the equations. A variational equation which governs the
problem was derived for the case of spatially arbitrary but temporally harmonic forcing
pressure. A solution of this variational equation using the Rayleigh–Ritz method was then
derived. Solutions for a square and rectangular plate geometry have been presented as an
example of the calculations which are possible.
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