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Axisymmetric free vibrations of moderately thick circular plates described by the linear
shear-deformation Mindlin theory are analyzed by the differential quadrature (DQ)
method. The first fifteen natural frequencies of vibration are calculated for uniform circular
plates with free, simply-supported and clamped edges. Through these computations, the
capability and simplicity of the differential quadrature method for moderately thick plate
eigenvalue analysis is demonstrated, and convergence and accuracy are thoughtfully
examined. The case of a rigid point support at the plate centre is also considered in the
present paper, for which special attention is paid to the capability and convergence of the
current method.
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1. INTRODUCTION

As kinds of basic structural components, thin and moderately thick circular plates are
extensively used in mechanical, civil, nuclear and aerospace structures. Considerable
studies have been reported in the open literature on the axisymmetric vibration analysis
of circular plates, e.g., [1–7]. Excellent reviews have been made by Leissa [8–14]. Recently,
the differential quadrature (DQ) method [15–19] has been applied to free vibration analysis
of circular and annular thin plates with uniform or non-uniform thickness [20–24]; these
applications concentrate mainly on the fundamental frequency.

The differential quadrature method is a rather efficient numerical method for the rapid
solution of linear and non-linear partial differential equations. It was originated by
Bellman and Casti [15] and Bellman et al. [16], and generalized and simplified further by
Quan and Chang [17, 18] and Shu and Richards [19] through introducing simple algebraic
expressions to calculate directly the weighting coefficients associated with derivatives.
Thanks to the efforts of Bert et al. [25, 26], Striz et al. [27], Sherbourne and Pandey [28],
and Kukreti et al. [29], the method is becoming increasingly popular in the solution of
bending, buckling and free vibration problems of structures. In all the aforementioned
studies [15–29], the DQ method appears to be a potential alternative to the conventional
numerical approaches, and has been claimed to have the capability of yielding highly
accurate solutions to initial and boundary value problems with minimal computational
effort.

In view of the fact that no publications are concerned with the free vibration analysis
of moderately thick plates using the DQ method, in this paper, the method is employed
to analyze the axisymmetric free vibration of moderately thick circular Mindlin plates with
free, simply-supported and clamped edges. The first fifteen natural frequencies of the plates
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are calculated. The capability and simplicity of the DQ method in moderately thick plate
eigenvalue analysis are demonstrated through these studies. The accuracy and convergence
of the method for the vibration analysis of moderately thick plates are investigated through
directly comparing DQ results with corresponding exact solutions in the open literature.
A particular advantage involved in the present solution procedures, i.e., using the
simplified version of the DQ method along with the Mindlin plate theory, is noted. The
case of a rigid point support at the plate centre is also included in the present investigation.
The capability and convergence characteristics of the method for this particular problem
are explored.

2. MATHEMATICAL FORMULATIONS

2.1.  

Consider a circular plate of radius a and thickness h (Figure 1). The equations governing
the axisymmetric free vibration of a uniform circular plate of isotopic material can be
derived using Mindlin’s theory [30] as [31, 32]:
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where w is the transverse deflection; c is the rotation of the normal about the r-axis;
D=Eh3/[12(1− n2)], E, G and n are the plate flexural rigidity, Young’s modulus, shear
modulus and Poisson’s ratio, respectively; r and k are the density of the plate material
and the shear correction factor respectively.

According to the relationship between force resultants and deformation variables, the
following formulae are obtained:
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in which Mr , Mu and Qr are the moment resultants and the shear resultant.
Using the following non-dimensional parameters and relation:

R= r/a; d= h/a; W=w/a; c=c; T= tzE/ra2(1− n2); (3)

Figure 1. Configuration of a circular thick plate.
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the governing equations given by equation (1) can be normalized as:
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and the stress–displacement relationships are given by:
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For free vibration, the solution can be assumed as:

W(R, T)=Wj (R)eiVjT and C(R, T)=Cj (R)eiVjT. (6)

Substitution of these solutions into the homogeneous differential equations leads to
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W, C and V, should have been taken as Wj (R), Cj (R) and Vj of equation (6), respectively
for the jth mode of vibration. Here and in the following, the suffix j is dropped for the
sake of convenience.

According to the DQ procedure (refer to the Appendix for details) and by setting R1 =0
and RN =1, equations (7) take the following discrete forms:
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where i=1, 2, . . . , N. C(n)
rs , determined by equations (A2)–(A5), are the weighting

coefficients for the nth order derivatives of W and C with respect to R.

2.2.  

For the edge of the circular plate, the boundary conditions can be divided into the
following three kinds:

(1) Clamped edge (C): w=0; c=0, (9)

(2) Simply–supported edge (S): w=0; Mr =0, (10)

(3) Free edge (F): Qr =0; Mr =0. (11)
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These conditions can be further expressed as:

(C) W=0; C=0, (12)

(S) W=0; 1C/1R+(n/R)C=0, (13)

(F) C+ 1W/1R=0; 1C/1R+(n/R)C=0, (14)

Thus, the discretized forms on the edge of the plate are:

(C) WN =0; CN =0, (15)

(S) WN =0; s
N
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NkCk + nCN =0, (16)

(F) CN + s
N
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N

k=1

C(1)
NkCk + nCN =0. (17)

For the central point (r=0), the restraint conditions and their discretized forms are:

(4) Regularity conditions (R) Qr =0; c=0. (18)

(5) Rigid centre support (C) w=0; c=0. (19)

and

(R) C1 + s
N

k=1

C(1)
1k Wk =0; C1 =0, (20)

(C) W1 =0; C1 =0. (21)

2.3.  

Since both the discretized governing equations and the discretized constraint conditions
are written out on a point-wise basis, for the boundary and centre points, the discretized
governing equations and the discretized constraint conditions should be satisfied
simultaneously. In order to get solutions of the problem, however, one has to use the
discretized constraint conditions instead of the discretized governing equations on both the
boundary and the centre points. Thus, the solutions of the problems are acquired by
solving the set of secular equations which consists of 2× (N−2) governing equations at
all the non-boundary/centre points and 2×2 constraint conditions at both the edge and
centre points.

When using the differential quadrature method together with thin plate theory, a
difficulty in dealing with boundary constraints arises. The reason is that there is only one
governing equation but two boundary conditions which should be satisfied at each
boundary point. To overcome this difficulty, the d-method has been introduced [33] in
which the two respective boundary conditions are applied both at the boundary and at
a very small distance d from the boundary. However, due to the DQM being a polynomial
approach [15–17], applying boundary conditions on non-boundary points will cause the
polynomial to oscillate, and these oscillations will be strengthened with the increasing order
of the approximating polynomial (i.e., by increasing the number of grid points employed).
This problem is naturally evaded by using the Mindlin plate theory, in which there are
two governing equations and two constraint conditions at both central and edge points
for axisymmetric problems.
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3. RESULTS AND DISCUSSION

Based on the formulations presented in the previous section, a program has been
developed. For simplicity, only uniform thickness plates are considered in the present
study; the Poisson’s ratio is taken as n=0·3, and the shear correction factor k is taken
as p2/12 [30]. The grid points employed in the computations are designated by:

Ri =
1
2 $1−cos 0(i−1)p

N−1 1%, i=1, 2, . . . , N. (22)

A non-dimensional frequency parameter l2 is adopted for the results presentation, and is
defined as:

l2 =va2zrh/D and v=VzE/ra2(1− n2). (23)

3.1.     

In this sub-section, the free vibration analyses of circular Mindlin plates subject to
completely free, simply-supported and clamped boundary conditions without a rigid point
support at the plate centre (Figure 2a, 2b and 2c) are carried out.

In accordance with previous experience [34], convergence and accuracy studies must be
carried out to reveal the convergence characteristics of the differential quadrature method
for a particular problem as well as to ensure accuracy of the results. Thus, in Figure 3,
the normalized frequency parameters l2/l2

ext of the first four mode sequences are presented
with an increasing number of grid points for the completely free circular plates of
h/a=0·001 (Figure 3a) and h/a=0·250 (Figure 3b). Here, the values l2

ext are the exact
solutions taken from [3]. For the simply-supported and clampled circular plates, similar
convergence and accuracy studies are conducted, which are described in Figures 4 and 5.
In Tables 1–3, the first fifteen non-dimensional frequency parameters l2, are tabulated for
the various relative thickness plates subject to the free, simply-supported and clamped
boundary conditions, respectively. There, the minimum numbers of grid points required
for achieving convergent results with five significant digits are also exhibited for the first
fifteen non-dimensional frequency parameters of various relative thickness plates with
different boundary conditions. From these figures and tables, the following remarks on the
convergence characteristics and the accuracy of the method for the present problem can

Figure 2. Various circular plates analysed: (a) completely free plate; (b) simply-supported plate; (c) clamped
plate; (d) simply-supported plate with a rigid centre support; (e) clamped plate with a rigid centre support; and
(f) free plate with a rigid centre support.
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Figure 3. Convergence and accuracy of the normalized frequency parameter, l2/l2
ext , for the first four mode

sequences with grid refinement for the free circular plates: (a) h/a=0·001 and (b) h/a=0·250. l2
ext—the exact

solution [3].

be made: (1) When increasing the number of grid points, the DQ results converge to the
corresponding exact solutions, which is true for all three kinds of boundary conditions
considered and for various natural frequencies (at least for the first fifteen natural
frequencies). (2) Whatever the relative thickness of a plate, the convergence of the DQ
results with grid refinement demonstrates a fluctuation characteristic for the free and
simply-supported plates, while for the clamped plate, the frequency parameters obtained

T 1

Convergent results† of frequency parameters, l2 =va2(rh/D)1/2, for free circular plates‡

h/a
Mode ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

sequences 0·001 0·050 0·100 0·150 0·200 0·250

1 9·0031 (10) 8·9686 (11) 8·8679 (10) 8·7095 (10) 8·5051 (10) 8·2674 (10)
2 38·443 (13) 37·787 (13) 36·401 (12) 33·674 (13) 31·111 (13) 28·605 (13)
3 87·749 (16) 84·443 (14) 76·676 (16) 67·827 (14) 59·645 (14) 52·584 (14)
4 156·81 (16) 146·76 (15) 126·27 (15) 106·40 (15) 90·645 (15) 76·936 (17)
5 245·62 (18) 222·38 (18) 181·46 (16) 146·83 (16) 120·57 (16) 99·545 (17)
6 354·17 (21) 308·98 (19) 239·98 (21) 187·79 (18) 149·63 (18) 114·53 (16)
7 482·45 (22) 404·44 (22) 300·38 (22) 228·39 (20) 171·18 (20) 126·34 (17)
8 630·46 (25) 506·96 (23) 361·73 (23) 267·32 (22) 183·36 (22) 138·59 (19)
9 798·19 (28) 615·01 (26) 423·41 (24) 297·08 (22) 199·04 (22) 154·77 (20)

10 985·65 (29) 727·37 (27) 484·93 (27) 310·03 (24) 217·13 (24) 166·06 (20)
11 1192·8 (30) 843·04 (30) 545·74 (28) 330·92 (24) 231·82 (25) 182·35 (23)
12 1419·7 (31) 961·25 (31) 604·75 (29) 351·70 (25) 251·78 (26) 197·61 (23)
13 1666·3 (32) 1081·4 (31) 653·91 (32) 372·16 (25) 268·68 (25) 208·73 (24)
14 1932·6 (33) 1202·9 (33) 667·41 (30) 397·54 (30) 285·12 (26) 228·95 (25)
15 2218·6 (36) 1325·5 (34) 695·93 (30) 416·62 (30) 308·16 (28) 238·48 (26)

† Convergent results with five significant digits.
‡ A number in parentheses refers to the minimum number of grid points needed to obtain the convergent result
with five significant digits.



N
or

m
al

iz
ed

 f
re

qu
en

cy
 p

ar
am

et
er

, λ
2 /λ

ex
t

15
Number of grid points, N

5

1.0

97

Mode 1

Mode 3

Mode 4

11

(a)
1.4

1.2
2

Mode 2

0.9

1.1

1.3

135

1.0

97

Mode 1

Mode 3

Mode 4

11

(b)
1.5

1.2
Mode 2

0.9

1.1

1.3

13

1.4

     623

Figure 4. Convergence and accuracy of the normalized frequency parameter, l2/l2
ext , for the first four mode

sequences with grid refinement for the simply-supported circular plates: (a) h/a=0·001 and (b) h/a=0·250.
l2

ext—the exact solution [3].

using the DQ method show essentially monotonic convergence. (3) For various boundary
conditions and relative thicknesses, more grid points are required to acquire a convergent
result for a higher frequency than for a lower one. (4) Using the same number of grid
points, the thicker a plate (h/a=0·001–0·250), the more accurate the results by the DQ
method will be. When a higher frequency is required, this thickness effect becomes more

T 2

Convergent results† of frequency parameters, l2 =va2(rh/D)1/2, for simply-supported
circular plates‡

h/a
Mode ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

sequences 0·001 0·050 0·100 0·150 0·200 0·250

1 4·9351 (9) 4·9247 (8) 4·8938 (8) 4·8440 (8) 4·7773 (8) 4·6963 (8)
2 29·720 (11) 29·323 (11) 28·240 (11) 26·715 (11) 24·994 (9) 23·254 (9)
3 74·155 (14) 71·756 (14) 65·942 (14) 59·062 (12) 52·514 (12) 46·775 (12)
4 138·31 (16) 130·35 (14) 113·57 (15) 96·775 (15) 82·766 (16) 71·603 (15)
5 222·21 (18) 202·81 (18) 167·53 (16) 136·98 (15) 113·87 (16) 96·609 (16)
6 325·83 (19) 286·79 (19) 225·34 (17) 178·23 (17) 145·13 (16) 108·27 (14)
7 499·18 (22) 380·13 (20) 285·44 (20) 219·86 (20) 166·29 (18) 121·50 (16)
8 592·27 (23) 480·94 (23) 346·83 (21) 261·51 (20) 176·28 (18) 131·65 (14)
9 755·08 (26) 587·65 (24) 408·91 (23) 291·55 (20) 191·38 (18) 146·17 (18)

10 937·61 (27) 698·97 (27) 471·31 (25) 303·05 (22) 207·23 (19) 163·30 (15)
11 1139·9 (28) 813·85 (30) 533·80 (28) 318·34 (21) 227·28 (20) 170·65 (18)
12 1361·8 (29) 931·50 (29) 596·23 (27) 344·39 (24) 237·98 (22) 194·94 (21)
13 1603·5 (30) 1051·2 (31) 649·29 (30) 359·27 (22) 268·49 (24) 198·98 (21)
14 1864·9 (32) 1172·6 (31) 658·55 (30) 385·53 (25) 269·03 (24) 219·11 (23)
15 2145·9 (35) 1295·1 (32) 677·58 (27) 408·98 (23) 298·91 (26) 236·92 (20)

† Convergent results with five significant digits.
‡ A number in parentheses refers to the minimum number of grid points needed to obtain the convergent result
with five significant digits.
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Figure 5. Convergence and accuracy of the normalized frequency parameter, l2/l2
ext , for the first four mode

sequences with grid refinement for the clamped circular plates (a) h/a=0·001 and (b) h/a=0·250. l2
ext—the exact

solution [3].

dominant. (5) For all three kinds of boundary conditions considered herein, the DQ
solutions of the first fifteen natural frequencies by 36 grid points are convergent with at
least five significant digits; and the DQ solutions of the first four natural frequencies by
11 grid points can be regarded as ones with enough accuracy (3–4 significant digits). In
order to further demonstrate the accuracy of the DQ method, Table 4 introduces a
comparison between the DQM results and the exact solutions obtained by Irie et al. [3]

T 3

Convergent results† of frequency parameters, l2 =va2(rh/D)1/2, for clamped circular plates‡

h/a
Mode ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

sequences 0·001 0·050 0·100 0·150 0·200 0·250

1 10·216 (8) 10·145 (8) 9·9408 (8) 9·6286 (8) 9·2400 (8) 8·8068 (8)
2 39·771 (11) 38·855 (11) 36·479 (9) 33·393 (9) 30·211 (9) 27·253 (9)
3 89·102 (12) 84·995 (12) 75·664 (12) 65·551 (11) 56·682 (10) 49·420 (11)
4 158·18 (13) 146·40 (13) 123·32 (13) 102·09 (12) 85·571 (13) 73·054 (13)
5 246·99 (15) 220·73 (15) 176·41 (15) 140·93 (13) 115·55 (16) 97·198 (14)
6 355·54 (19) 305·71 (16) 232·97 (16) 180·99 (15) 145·94 (16) 117·90 (14)
7 483·82 (20) 399·32 (19) 291·71 (17) 221·62 (19) 174·97 (17) 122·43 (15)
8 631·83 (22) 499·82 (20) 351·82 (20) 262·45 (21) 178·76 (17) 144·42 (17)
9 799·57 (23) 605·78 (23) 412·77 (22) 301·11 (21) 205·32 (18) 148·75 (17)

10 987·03 (25) 716·07 (24) 474·18 (23) 305·15 (21) 210·53 (18) 170·37 (20)
11 1194·2 (25) 829·74 (25) 535·81 (25) 336·52 (22) 237·46 (22) 181·05 (18)
12 1421·1 (27) 946·07 (28) 597·43 (26) 345·58 (24) 248·18 (21) 195·12 (21)
13 1667·7 (29) 1064·5 (27) 657·60 (27) 380·88 (25) 268·60 (23) 216·40 (23)
14 1934·0 (31) 1184·5 (29) 662·37 (27) 388·16 (25) 290·67 (24) 220·58 (22)
15 2220·0 (32) 1305·7 (31) 698·63 (28) 425·43 (26) 299·71 (24) 243·02 (24)

† Convergent result with five significant digits.
‡ A number in parentheses refers to the minimum number of grid points needed to obtain the convergent result
with five significant digits.
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T 4

Comparison study of frequency parameters, l2 =va2(rh/D)1/2, for circular plates with
different boundary conditions

h/a=0·001 h/a=0·250
Boundary Mode ZXXXXXCXXXXXV ZXXXXXCXXXXXV
conditions sequences DQM Exact [3] DQM Exact [3]

S 1 4·935 4·935 4·696 4·696
2 29·720 29·720 23·254 23·254
3 74·155 74·156 46·775 46·775
4 138·314 138·318 71·603 71·603

C 1 10·216 10·216 8·807 8·807
2 39·771 39·771 27·253 27·253
3 89·102 89·104 49·420 49·420
4 158·180 158·184 73·054 73·054

F 1 9·003 9·003 8·267 8·267
2 38·443 38·443 28·605 28·605
3 87·749 87·750 52·584 52·584
4 156·808 156·818 76·936 76·936

for the first four natural frequencies. It is found that, except for some rounding errors,
the DQ results are identical to the corresponding exact solutions.

3.2.      

To further explore the capability, convergence and accuracy of the differential
quadrature method for plate vibration problems, free vibrations of circular Mindlin plates
with a rigid point support at the plate centre (Figure 2d, 2e and 2f) are investigated. It
is noted that there is a stress singularity at the centre of such plates due to the rigid centre
support.

In Figures 6 and 7, the variations of the first five frequency parameters for
simply-supported and clamped plates with a rigid centre support via the number of grid

Figure 6. Convergence of the first five frequency parameters with grid refinement for simply-supported plates
with a rigid centre support: (a) h/a=0·001 and (b) h/a=0·250.
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Figure 7. Convergence of the first five frequency parameters with grid refinement for clamped plates with a
rigid centre support: (a) h/a=0·001 and (b) h/a=0·250.

points are demonstrated respectively. These figures expose the following convergence
characteristics of the differential quadrature method for such special problems: (1) For
a simply-supported or clamped plate with a rigid centre support, the DQ results
converge to a steady value when increasing the number of grid points. (2) For all the
frequencies considered in the figures, the DQ results for a clamped plate with grid
refinement converge much faster than those for a simply-supported plate with the same
relative thickness. (3) The thicker a plate, the faster the DQ results advance to
corresponding convergent values.

Table 5 presents some results of the first and fifth frequency parameters obtained using
different numbers of grid points for simply-supported and clamped plates of h/a=0·001
and h/a=0·250. It is found from the table that, for clamped plates, the results by 50
grid points can be regarded as ones with enough accuracy (3–4 significant digits),
whereas, for simply-supported plates, a grid with 200 points is required to obtain
about the same accuracy. In order to obtain results with acceptable accuracy (about 2
significant digits), 14 and 24 grid points are needed for the clampled plates and
simply-supported plates respectively. It is noticed that, for the simply-supported
plates, even using as many as 200 grid points, one still cannot obtain fully convergent
results.

In Table 5, the thin plate exact solutions for the fundamental frequency [8] are also
presented for comparison. This comparison shows that the DQ results converge to the
corresponding exact solutions when the number of grid points is increased.

For a free plate with a grid centre support, convergence is completely different from
those for simply-supported or clamped plates. The variations of the first five frequency
parameters via the grid number are illustrated in Figure 8. It is found from the figure, that,
even using as many as 200 grid points, the DQ solutions for the first two mode sequences
do not display any sign of convergence. In fact, after carefully examining the results, one
finds, that for the first frequency, the DQ results obtained using even numbers of grid
points converge, with grid refinement, to a given value. When odd numbers of grid points
are used, the results converge to another value. The authors have also tried to solve for
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T 5

Frequency parameters, l2 =va2(rh/D)1/2, of simply-supported and clamped circular plates
with a rigid centre support calculated by different numbers of grid points†

h/a=0·001 h/a=0·250
Boundary ZXXXXXXCXXXXXXV ZXXXXXXXCXXXXXXXV
conditions Mode 1 Mode 5 Mode 1 Mode 5

S 13·709 (15) 264·95 (15) 8·4773 (15) 99·104 (15)
15·904 (16) 280·49 (16) 7·8702 (16) 98·739 (16)
14·133 (23) 266·30 (23) 8·0972 (23) 98·698 (23)
15·487 (24) 276·73 (24) 7·7267 (24) 98·500 (24)
14·514 (49) 269·22 (49) 7·6207 (49) 98·248 (49)
14·113 (50) 273·82 (50) 7·4679 (50) 98·117 (50)
14·672 (99) 270·44 (99) 7·3093 (99) 97·982 (99)
14·953 (100) 272·60 (100) 7·2416 (100) 97·954 (100)
14·740 (199) 271·04 (199) 7·0718 (199) 97·796 (199)
14·872 (200) 271·96 (200) 7·0411 (200) 97·784 (200)

Ref. [8] 14·8 — — —
C 22·809 (13) 288·56 (13) 12·248 (13) 99·560 (13)

22·714 (14) 291·26 (14) 12·193 (14) 99·538 (14)
22·754 (19) 299·31 (19) 11·968 (19) 99·303 (19)
22·730 (20) 298·63 (20) 11·934 (20) 99·250 (20)
22·740 (29) 298·89 (29) 11·710 (29) 99·027 (29)
22·734 (30) 298·74 (30) 11·691 (30) 99·003 (30)
22·737 (49) 298·79 (49) 11·446 (49) 98·776 (49)
22·736 (50) 298·77 (50) 11·437 (50) 98·766 (50)

Ref. [8] 22·7 — — —

† A number in parentheses refers to the number of grid points with which the DQM result is obtained.

the natural frequencies of a free plate with relative thickness of 0·100 or less using the
present method. It is found that there are some negative values among the eigenvalues
obtained by solving the corresponding determinant equations. Therefore, it may be

Figure 8. Variation of the first five frequency parameters via the number of grid points for a free plate of
h/a=0·250 with a rigid centre support.
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concluded that, for a free plate with a rigid centre support, the differential quadrature
method fails to produce convergent and correct solutions.

4. CONCLUSIONS

In this paper, the differential quadrature method has been applied successfully to solve
the axisymmetric free vibration problem of moderately thick circular Mindlin plates. Free,
simply-supported and clamped plates without or with a rigid centre support have been
considered in the present study. The applicability, convergence properties and accuracy of
the present method for moderately thick plate eigenvalue problems have been carefully
examined.

For plates without a rigid centre support, the first fifteen frequency parameters have
been calculated for various relative thicknesses and for different boundary conditions. For
such plates, the DQ method yields convergent and accurate solutions even for a small
number of grid points. The results show that different boundary conditions, relative plate
thicknesses and mode sequences have significant influences on the convergence properties
of the method.

For simply-supported and clamped plates with a rigid centre support, the DQ results
approach the corresponding correct solutions slowly with increasing grid refinement. Using
a grid of about 25 points, the method can provide solutions with acceptable accuracy
(about 2 significant digits). However, for free plates with a rigid centre support, the method
seems to fail to produce convergent and correct solutions.

The two advantages involved in the present solution procedure are: (1) By using the
Mindlin plate theory, the problem that two grid points are required at each boundary point
is naturally avoided. (2) By using algebraic expressions to calculate the weighting
coefficients, the number of grid points can be greatly increased when necessary.
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APPENDIX: THE DIFFERENTIAL QUADRATURE METHOD

Supposing that there are N grid points along the r-axis with r1, r2, . . . , rN as the
co-ordinates, the nth order derivative of f(r) can be expressed discretely at the point ri as:
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f (n)
r (ri )= s

N

k=1

C(n)
ik f(rk ); n=1, 2, . . . , N−1, (A1)

where C(n)
ij are the weighting coefficients associated with the nth order derivative of f(r) at

the discrete point ri .
According to references [17, 19], the weighting coefficients in equation (A1) can be

determined as follows:

C(1)
ij =M(1)(ri )/[(ri − rj )M(1)(rj )]; i, j=1, 2, . . . , N, but j$ i, (A2)

where

M(1)(ri )= t
N

j=1, j$ i

(ri − rj ), i=1, 2, . . . , N (A3)

and

C(n)
ij = n0C(n−1)

ii C(1)
ij −

C(n−1)
ij

ri − rj1; i, j=1, 2, . . . , N, but j$ i; and n=2, 3, . . . , N−1

(A4)

C(n)
ii =− s

N

j=1, j$ i

C(n)
ij ; i=1, 2, . . . , N, and n=1, 2, . . . , N−1. (A5)


