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1. 

The identification of cutting states, associated with the orthogonal cutting of stiff cylinders,
was realized in reference [1] through an analysis of the singular values of an unsymmetric
Toeplitz matrix, R, of third order cumulants, r(i, j), of acceleration measurements. The
ratio of the two dominant pairs of singular values of R, the R-ratio, was shown to
differentiate between light cutting, medium cutting, pre-chatter and chatter states. The R
matrix is the coefficient matrix in an autoregressive approximation of the bispectrum
references [6, 7].

On the basis of an analysis of five sequences of experiments with variable depth of
cut and two sequences with variable turning frequency, a total of 42 cutting experiments,
it was found that the R-ratio was approximately one for all cases of light cutting and
two or more for chatter. For intermediate states the ratio increased as the chatter
state was approached. The R-ratio was evaluated for q=100; see equation (6)
below.

Relationships between phase coupled trigonometric functions and the singular values of
the corresponding R matrix were established in reference [1] through a numerical study
of three specific phase coupled functions. However, no general assertions regarding
relationships between properties of the R-ratio and those of the associated time series were
made. Such a relationship is established in what follows for time sequences consisting of
sums of phase coupled cosine functions.

The third order cumulant, r(i, j), of a time series consisting of the sum of phase
coupled cosine functions may be expressed as a finite sum of cosine functions; see
reference [6]. If the sums of cosine functions are periodic for some integral value of
the argument of r(i, i), then the Toeplitz matrix R(r(i, j)), of dimension q+1, is
circulant for a sequence of values of q. In this case, a simple closed form
representation for singular values of R is known (see references [2, 4, 8]), which yields
an expression for the R-ratio in terms of the coefficient of the phase coupled cosine
functions.

2.   

Let r3(t1, t2) be the third order cumulant of the real third order stationary random
process X(k), k=0,2 1,2 2, . . . . If the mean of X(k) vanishes, then
r3(t1, t2)=m3(t1, t2), where m3(t1, t2)=E(X(k) X(k+ t1) X(k+ t2)). E is the expected
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value, which may be estimated as follows:

m3(t1, t2)= (1/2n) s
+n

k= n

X(k)X(k+ t1)X(k+ t2), (1)

n:+a. The bispectrum of X(k), R3(v1, v2), is defined by

R3(v1, v2)= s
+a

t1 =−a

s
+a

t2 =−a

r3(t1, t2) exp[−j(v1t1 +v2t2)]. (2)

Consider an autoregressive (AR) estimate of the bispectrum; see reference [6, 7]. A qth
order AR process is described by

X(k)+ s
q

i=1

a(i)X(k− i)=W(k), (3)

where W(k) is non-Gaussian, E(W(k))=0 and E(W3(k))= b. Multiplying through
equation (3), summing and noting equation (1) gives

rx
3 (−k,− l)+ s

q

i=1

a(i)rx
3 (i− k, i− l)= bd(k, l), (4)

where k, lq 0. Letting k= l in equation (4), with k=0, . . . , q, yields q+1 equations for
the q+1 unknowns a(i) and b. In matrix notation equation (4) may be expressed as

Ra=b, (5)

where

r(0) r(1) r(2) · · · r(q)

r(−1) r(0) r(1) · · · r(q−1)

R= r(−2) r(−1) r(0) , (6)
···

···
···

r(−q) r(−q+1) · · · r(0)

r(i)0 rx
3 (i, i), a0 [1, a(1), . . . , a(q)]T and b0 [b, 0, . . . , 0]T. R is in general a non-symmet-

ric Toeplitz matrix.

3.  

Circulant matrices are a subset of Toeplitz matrices, in which row i is formed by shifting
row i−1 to the right by one element. A circulant matrix C, has the form

c0 c1 c2 · · · cp−1

C=
cp−1 c0 c1 c2

.

.

. . (7).
.
.

cp−1 c0 c2

c1 · · · · · · cp−1 c0

It is shown in references [2, 4, 8] that the eigenvalues of C, equation (7), are given by

lm = s
p−1

k=0

ck exp(−2pmki/(p)), (8)
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where m=1, 2, . . . , p+1. Each eigenvalue is a discrete Fourier transform of the first row
of C.

The Toeplitz matrix, R, equation (6), is a circulant matrix, C, equation (7), if the
cumulant r(k) is periodic with integer period a. Then r(−k)= r(−k+ na), n=1, . . . . R
is circulant, as shown in equation (7), if r(q− k)= r(−k) with k=0, 1, . . . , q, which is
satisfied for q= na. The eigenvalues of R are then given by equation (8) with p= q+1.
If R is symmetric, r(i)= r(−i), then =li ==si, where si are the singular values of R; see
references [3, 5]. If R is circulant, then li occur in pairs. Simple expressions for lm (see
equation (8)), may be found for sums of commensurate trigonometric functions through
the application of the orthogonality conditions

s
(r−1)

k=0

sin (2pmk/r) cos (2pnk/r)=0, (9)

and

s
(r−1)

k=0

cos (2pmk/r) cos (2pnk/r)= (0, r/2), (10)

for integers m and n, with m$ n and m= n, respectively.

3.1. Phase coupling
Consider the function

X(t)= s
N

m=1

s
3

i=1

ami cos 2p(umit+fmi )+ s
M

m=1

a'm cos 2p(u'mt+f'm ), (11)

where um3 = um1 + um2, fm3 =fm1 +fm2 and fmi and f'm are independent and uniformly
distributed over (0, 1); see references [6, 7]. X(t) consists of the sum of N triplets of phase
coupled cosine functions and M non-coupled cosine functions. The cumulants, given in
equation (1), associated with equation (11) are [6, 7],

r(i, j)= 1
4 s

N

k=1

bk [cos 2p(uk3i− uklj)+ cos 2p(uk2i− uk3j)

+cos 2p(uk3i− uk2j)+ cos 2p(ukli− uk2j)

+cos 2p(ukli− uk3j)+ cos 2p(uk2i+ uklj)], (12)

where bk = ak1ak2ak3 with ak1 = ak2 = ak3.
Letting i= j in equation (12) gives

r(i)= 1
2 s

N

k=1

bk (cos 2pukli+cos 2puk2i+cos 2puk3i). (13)

If the frequencies uki are commensurate, then r(i) will be periodic with period a. Then
equations (8), (9), (10) and (13) imply that the eigenvalues of R with elements given by
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equation (13) are

lj=(na/4) s
Nj

i=1

bj (i), (14)

where Nj is the number of terms in equation (13) that have the same frequency, bj (i) is
the corresponding coefficient in equation (13), where n=1, 2, . . . and q= na. Since
r(i)= r(−i) in equation (13), then =l == s. Equation (14) implies that

lk /lj = sk /sj = s
Nk

i=1

bk (i)>s
Nj

i=1

bj (i).

4. 

Consider the following test functions that exhibit phase coupling closely approximating
that observed in orthogonal cutting data [1]. Let

r(i)=2 cos 2p(0·1i)+ cos 2p(0·2i)+5 cos 2p(0·3i). (15)

Expressing equation (15) as

r(i)= s
3

r=1

br cos (2pir/a) (16)

and noting equations (8), (9) and (10),

lr = nabr /2. (17)

Then l1 =10 n, l2 =5 n and l3 =25 n, since a=10 in equation (15). The six largest
singular values of equation (6) and equation (15) as functions of q are displayed in Figure 1.
For q= na, the values of lr are in agreement with equation (17). From equation (17) it
follows that li /lj = si /sj = bi /bj .

Figure 1. The six largest singular values of equation (6) for equation (15).
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Figure 2. The six largest singular values of the phase coupled function X(t).

The six largest singular values of the phase coupled function X(t), equation (11), with
N=1, M=0, a11 = a12 = a13 =1, u11 =90, u12 =100 and u13 =190, are shown in Figure 2.
Then, with a sampling rate of 1024 Hz. and a period of 0·1 s, a=102·4 lags. With a2 102
the repeated eigenvalues l2 25·5 n. For n=1, 2 and 3, l=25·5, 51·25 and 76·75. l found
from the numerical evaluation of R and its singular values gave 25·5, 48·5 and 69·9 for
the largest pair of eigenvalues. The errors may be due to a non-integer period and noise
associated with the uniformly distributed phases, f, in equation (11). The six largest
singular values as functions of q are also shown in Figure 2. For q= na, the values of l

are in approximate agreement with equation (14).

5. 

If the elements, r(i), of an unsymmetric Toeplitz matrix, R, are periodic, then for a
sufficiently large dimension R becomes circulant with eigenvalues given by the finite
Fourier transform of the first row. The eigenvalues are then expressible in a simple closed
form for sums of cosine functions. Then ratios of eigenvalues equal ratios of coefficients
of the cosine functions. Application to matrices of third order cumulants of phase coupled
cosine functions yields expressions for singular values which are useful in the identification
of orthogonal cutting states.
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