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1. 

Switches, connectors and electrical contacts are ubiquitous elements in today’s ‘‘more
electric society’’. Despite various design directions which might be thought to reduce the
number of make-break electromechanical contacts, contacts still provide the largest single
source of failure in automotives, aircraft, machine tools, computers, and consumer
electronics. While great advances in quality, performance, packaging and system
integration have been made, the concomitant increase in sensors, actuators, and systems
associated with diagnostics, controls, or safety, has resulted in an increase in the number
of troublesome electrical contacts. Because current and voltage specifications alone do not
provide sufficient information to fully describe the system, switches are generally selected
on a trial-and-error basis amongst traditional and unoptimized structures which have
changed little over the past 25 years.

Impact is a prominent phenomenon in many electro-mechanical systems. Thus in order
to correctly simulate and design these systems, impact must be modelled correctly. The
solution depends significantly on the hypothesis that is adopted regarding the nature of
the collision.

Through a simple example problem that considers a two-link pendulum striking a flat
surface, Kane and Levinson [1] pointed out that the classical solution of rigid body impact
problems using Newtonian mechanics produces energetically inconsistent results. As
evidenced by the recent publications, Kane and Levinson’s remarks sparked a remarkable
interest in a problem that was thought to have been solved a long time ago. Keller [2]
attributed this paradoxical behavior to slip reversals during collision subject to frictional
effects. The Newtonian approach ignores the changes in the direction of slip, leading to
the overestimation of the rebound velocity as a result of impact [2, 3]. Keller introduced
a revised formulation of rigid body collision equations based on Poisson’s hypothesis that
impact never increases energy. Yet, Stronge [4] has exposed energy inconsistencies in
solutions using Poisson’s hypothesis when the coefficient of restitution, e, is assumed not
to depend on the coefficient of friction. He divided the energy that is dissipated during
collision into two portions: dissipation due to frictional impulse and dissipation due to
normal impulse. Then, he demonstrated that Poisson’s hypothesis does not lead to
vanishing dissipation due to normal impulse when the coefficient of restitution is unity
(perfectly elastic impact). Stronge proposed an ‘‘energetic’’ definition for e. This definition
equates the square of the coefficient of restitution to the ratio of elastic strain energy
released at the contact point during restitution to the energy absorbed by deformation
during compression.

Shabana and Gau [5, 6] examined the effect of the topological change in the propagation
of longitudinal elastic waves in mechanical systems. The application of the analysis
presented is demonstrated using a rotating rod that is subject to an axial impact by a rigid
mass moving with a constant velocity. On the experimental front, Yigit et al. [7] verified
the validity of using the algebraic generalized impulse momentum equations of a radially
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rotating beam, transversally impacting an external surface. Their conclusion was that
the momentum balance method and an empirical coefficient of restitution can be used
with confidence in the impact of a radially rotating beam. A spring–dashpot model
for the dynamics of a radially rotating beam with impact is studied by the same authors
[8].

The impact that appeared to be single to the naked eye consists in reality of several
collisions in rapid sequence. Existence of multiple collisions was recognized by Mason [9],
Goldsmith [10], and Yigit et al. [7, 8].

Stoianovici and Hurmuzula [11] used a discrete model for the dynamics of a flexible bar
during the collision process. They sectioned the bar in equal rigid segments, connected to
one another by linear springs of uniform stiffness, and placed symmetrically at a specific
transverse distance from the neutral axis. The stiffness constant was evaluated by using
the axial displacement at the center of a vertically hanged bar caused by its weight.
The transverse distance was determined by an equivalence with the rotation of a
transversal section, at the center, of a horizontal cantilever bar acted upon by its weight.
They consider Lagrange equations for the holonomic case with uniform slip during
collision.

In this article the collision, with solid lubrification and in the presence of an electric
current, of unconstrained slender bars with a massive external surface has been studied.
The friction force was computed using a generalized law. An analytical continuous model
has been developed and validated by comparing theoretical outcomes with experimental
results.

2.  

The system to be analyzed, shown in Figure 1, consists of a slender unconstrained
flexible beam B. Consider the collision between B of mass m and a fixed body B' that is
bounded by a horizontal plane. When B is undeformed, its co-ordinate system is denoted
as A[b1, O, b2, b3]. The motion of A in a Newtonian reference frame N[n1, O1, n2, n3] is
prescribed as a function of time. The reference system A rotates and translates with the
beam as if the beam were rigid. The problem is to calculate the general motion of the beam
(rigid body motion and flexible deformations). Let x be the distance from O (the origin
of A) to a generic cross-section of B, when B is underformed.

Figure 1. Impact of flexible link with massive surface (n3 = n1 × n2, b3 = b1 × b2).
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Inspection of Figure 1 shows that the position vector of an arbitrary point on the
deformable beam can be written in N as

R= rO + r+ d, (1)

where rO = q1(t)n1 = q2(t)n2 + q3(t)n3 is the global position vector of the origin O, and
r= xb1.

The incident angle vector of the bar at the impact moment is {q4, q5, q6}T, where
q4 = b1n1�, q5 = b1n2� and q6 = b1n3�.

The total elastic motion of a generic point P $B can be expressed as

d(x , t)= d1b1 + d2b2 + d3b3. (2)

Let s(x, t) denote the stretch in the beam along the elastic axis

s(x, t)= s
n

i=1

f1i (x)q6+ i (t), (3)

where q6+ i (t) are the generalized elastic co-ordinates, and n $N is the total number of
vibrational modes (N is the set of natural numbers). The transverse elastic displacements
are

dj (x, t)= s
n

i=1

fji (x)q3+ i (t), j=2, 3. (4)

Here, the unrestricted spatial functions fji (x), j=1, 2, 3 are chosen as the mode shapes
of a free beam.

The motion of A in N is characterized by the generalized reference speeds

u1 = q̇i = vO ·bi , ui+3 =v · bi , i=1, 2, 3, (5)

where vO is the inertial velocity of the point O and v is the angular velocity of A in N.
The generalized elastic speeds are defined as

u6+ i = q̇6+ i , i=1, 2, . . . , n. (6)

Now, the generalized co-ordinate and speed (reference and elastic) vectors is introduced
as

q= {q1, q2, . . . , qn+6}T, u= {u1, u2, . . . , un+6}T.

The impact event is initiated when the body B contacts B' at the contact point T. The
generalized speeds ui , i=1, 2, . . . , n+6, at the instant t0 at which B comes into contact
with B' are presumed to be known. One seeks to determine the values ui at the time tf ,
the instant at which B completely looses contact with B' (end of collision).

The velocity of an arbitrary point on the deformable beam becomes:

v=vO +v(r+ d)+ d� . (7)

The velocity of the contact point T is

vT = vnn1 + vtn2 + vt'n3, (8)

where vn is the normal speed, and vt = vtn2 + vt'n3 is the tangential velocity.



    715

The kinetic energy of the beam B is given by

K=
r

2 g
L

0

v · v dx, (9)

where r=m/L is the constant mass per unit of length.
The internal forces contribute to the generalized active force, and they can be derived

from the strain function of the beam B,

U=
1
2 g

L

0 6EB 01s
1x1

2

+
GB

nB $01d2

1x1
2

+01d3

1x1
2

%7 AB dx, (10)

where AB is the area of the cross-section, GB is the shear modulus and nB is Poisson’s ratio
(shear area ratio).

The weight mg, where g is the gravity constant, is an external force acting on the flexible
link at the center of mass RC defined as

RC = ro =L/2 b1 + d(L/2, t). (11)

In addition the collision between the two bodies leads to contact forces F at point T,
which are written as,

F=Fnn1 +Ftn2 +Ft'n3, (12)

where Fn is the normal force, and Ft =Ftn2 +Ft'n3 is the tangential force vector.
The normal force exerted by the surface at the contact point can be modelled as a

non-linear function of displacement,

Fn = kya + cyaẏb, (13)

where y is the normal deflection caused by the impact of the body. Using Hertz theory
one has a=3/2. From the literature [8], b=1, and this value was assumed to be
appropriate for the present study. The stiffness coefficient k at the contact point was
estimated from the material properties and the geometry. For the contact between two
surfaces, one of them locally plane and the other spherical of radius R, the parameter k
is given by

k=0·424zR/(hB + hB'), (14)

where hB and hB' are parameters which are calculated as

hB =(1− n 2
B)/pEB, hB' = (1− n 2

B')/pEB'. (15)

The damping coefficient, c, of the impact force Fn at the contact point was estimated from
an energy balance equation.

The contact force was analytically calculated and examined. The instant when the
contact force becomes negative represents the separation of the body and at that moment
Fn =0 was set. In this way one can capture the multiple impacts.

When the bar has a non-zero tangential velocity at the onset of the collision vt $ 0, there
will be a phase of slip. During this phase, the sliding direction can be defined by an angle
j=arctan (vt'/vt ).

The tangential components of the contract force are

Ft =−m cos (j)(Fn )1− g, Ft' =−m sin (j)(Fn )1− g. (16)
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where g=0 for dry friction (Coulomb–Morin law of friction). Note that isotropic contact
surfaces are assumed which therefore have the same coefficient of friction m for the two
tangential directions.

In this article Lagrange’s formalism is used to derive the equations of motion, because
it can be easily implemented by using symbolic manipulation programs. For collision,
however, an integrated form of equations can be written in matrix form:

M(q)u̇=C(q, u)+D(q, Fn , m) (17)

where M(q) is the (n+6)× (n+6) mass matrix, C(q, u) is a (1)× (n+6) vector which
is a complex function of q, u caused by centrifugal force, Coriolos force, and gravity. The
vector D depends on the pre-impact position and inclination angle and on the normal
contact force.

During collision, the relative motion of the contracting end that interacts with the
respective surface may change from one case to another (e.g., originally the end may slip
in a particular direction, it may then stop and/or slip in another direction). Additional
equations can be obtained by considering the relative motions of the contacting end with
respect to the surface. Accordingly, the equations that correspond to the possible cases of
the motion of the contact point are given as follows.

(1) Since contact is maintained and slip occurs, the normal and tangential components
of the contact forces can be represented as

=Ft == m(Fn )1− g. (18)

(2) Conversely, when the end does not slip one has

vt =O, subject to =Ft =/(Fn )1− g E m (19)

(3) On the other hand, when there is no interaction at T, the contact force becomes

F= 0. (20)

The procedure is centered around the solution of the set of non-linear differential equations
given in equation (17). The structure of these equations depends on the conditions at the
contacting end. A change in the relative motion of the contacting end requires the
modification of the differential equations. Here a procedure has been developed that
automatically detects such changes and implements the necessary modifications to the
differential equations to produce consistent results. Starting from a set of pre-impact
conditions, the problem is solved in incremental stages. A unique set of equations that
reflects the conditions which have to be satisfied at the contacting ends is used at each
stage.

The impact equations were solved numerically using a Gears BDF method using IMSL
Math/Library [12], and three-mode approximation. Simulations with five and seven modes
were also performed, but no detectable differences were observed; thus, a three-mode
model was assumed to be appropriate for the current study.

In order to determine the beginning of impact, a numerical algorithm was used [7, 8].
Whenever there is a non-zero contact force, the integration step is backed off and the
maximum time step is lowered. This procedure is repeated until a sufficiently small
contact force is obtained. The original time step is recovered if there is no sudden
change in any of the system variables. This algorithm is essential in order to capture the
multiple impacts. For the details about the algorithm the reader is referred to Yigit et al.
[7, 8].
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3.  

The kinetic energy of the system at the instant t0 at which B comes into contact with
B' is the kinetic energy of the rigid-bar, Kr . The kinetic energy, K+(tf )=K(q(tf ), u(tf )), at
the instant tf at which B completely loses contact with B' (end of collision) is computed
using equation (9). The work of the normal contact force is computed with the relation

Ln =gy

Fn dy=g
tf

t0

Fnẏ dt, (21)

and the energy dissipated by the surface friction is

Lt =gz

Ft dz+gw

Ft' dw=g
tf

t0

Ftż dt+g
tf

t0

Ft'ẇ dt, (22)

where z and w are the tangential deflections caused by the impact of the body.
Using the conservation of energy one can write

K−(t0)=K+(tf )+Ln +Lt +Up , (23)

where Up is the change in potential energy [13].
The damping coefficient, c, of the impact force Fn at the contact point was estimated

from equation (23).

4. 

4.1. Friction and contact resistance measurements
A pin-on-disk electro-tribometer was employed for the evaluation of the electrical/tribo-

logical properties of the NbSe2 (solid lubricant) film. The electro-tribometer consists of a
pin-on-disk assembly, a stepping motor drive system and a constant current/voltage power
supply. A personal computer was used to control the experiment and to collect the data.
The specimens were moved at a speed of 0·5 mm/s against the tribo pin by
computer-controlled stepping motors. Loads from 3–8 N were applied to the tribo arm
during the experiments. The friction force and the normal load were recorded continuously
by the computer. Constant currents from 0–5 A were provided by a DC power supply.
The power supply was also controlled by computer and could by programmed to provide
constant current, constant voltage, or current–voltage pulses.

Figure 2 shows the friction force and sliding contact resistance at various loads and
currents for burnished NbSe2 film. Tests were performed on virgin films for one pass only
to exclude the effects of stick–slip. Each data point represents the average of data measured
during sliding.

The friction force increased with increases in load and/or current, as also shown in
Figure 2(a). The contact resistance decreased with increases in load and/or current
(Figure 2(b)).

For solid interfaces, the generalized law of friction is =Ft == m(Fn )1− g. For the NbSe2 film
tested in this study, the exponent g was 0·7. The coefficient of friction was found to be
a function of electrical current (Figure 3), and m increased with increases in current.

4.2. Rebound velocity
The impact was created by dropping the steel link with the length L=0·3 m from a

variable vertical distance, on a massive block. The end surfaces of the flexible link were
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Figure 2. Friction force and contact resistance of burnished NbSe2 films, sliding speed=0·5 mm/s; (a) friction
force, (b) contact resistance. Current levels (A): w, 0; R, 1; P, 2; R, 5.

mechanically polished and subsequently cleaned using both trichloroethane and acetone.
NbSe2 films deposited onto the substrate using burnishing. The NbSe2 powders used in the
preparation of burnished films were 99·9% pure. NbSe2 was chosen because it has the
lowest bulk resistivity among the dichalcogenides. Burnishing was accomplished by
manually rubbing the substrate surface against NbSe2 powders for 130 m.

The pre-collision velocities and orientations of the bar were adjustable. These
experimentally measured pre-collision data, were considered as initial conditions for the
computer simulated model. A high speed video system was used to acquire the kinematic
data. During the collision the elastic deformations of the bar could not be detected on the
video images. Therefore, the experimentally obtained kinematic data only reflects the
general rigid body motion of the bar. The contact between the bar and the surface was
used as a switch in an electrical circuit. Electrical constant currents were provided by a
DC power supply controlled by computer.

Figure 3. Coefficient of friction.
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Figure 4. Simulated and experimental kinematic data: (a) tip speed at contact in end n3 direction; (b) tip speed
at contact in end n2 direction; (c) tip speed at contact in end n1 direction; W, experimental and simulated data
before impact; r, experimental data after impact; P, simulated data after impact.

Figure 4 depicts experimental and computer simulated data for the flexible bar using
an electrical current of 1A. The simulated results are in good agreement with experimental
data. Using the same initial conditions from the free fall of the bar, there is a good fit
between simulated and experimental data for the tip velocity of the link.

The experimental and numerical results demonstrated that the kinematic coefficient of
restitution (computed as the ratio between post and pre-impact normal velocities at the
contact point) varied as a result of changing the incidence angle of the bar (Figure 4(c)).
The primary reason in the variation of the normal rebound velocity was the vibrations of
the bar. These vibrations are tied to the motion of the tip of the bar with respect to the
impact surface during collision. For a wide variety of circumstances, the rigid body
assumption does not coincide with the experimental data [11]. The results obtained by
rigid body dynamics are dissimilar to experimental data. In reality, the disturbance
generated at the impact point propagates into the interior of the bodies with a finite
velocity, and its reflection at bounding surfaces produces oscillations or vibrations in the
solid.

5. 

The analysis method developed in this paper provides a more realistic dynamic model
for electrical contacts and switches. The model is complex and provides and effective way
of predicting the system response taking into consideration contact lubricants, electric
current, and impact dynamics.
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