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1. 

Research focused on the mechanical response, bending, vibration and buckling, of
symmetric composite angle-ply laminates is quite extensive [1]. Research into the response
of composite laminates resting on an elastic foundation include the work of Shen et al.
[2] who examined the thermomechanical buckling analysis of laminates. A two parameter
foundation model is used and the analysis is accomplished using a perturbation technique.
Xu and Chia [3] incorporated a non-linear shear deformable theory to study the vibration
of thick circular composite plates. Several foundation models are used including a
non-linear Winkler model. A hybrid Fourier–Bessel series was incorporated in the solution.
Chen and Gurdal [4] examined the three dimensional stress distribution, created by a
transverse load, of infinite orthotropic plates. The authors used Fourier transforms to
solve the problem. Tomar et al. [5] computed the natural frequencies of circular,
non-uniform isotropic plates using the method of Frobeius. Raju and Rao [6] investigated
the interaction between buckling and vibration of rectangular, orthotropic plates
resting on an elastic foundation using a Winkler model. The problem is formulated using
the principle of total potential energy and uses the Rayleigh–Ritz method to compute
the fundamental frequency. Fadhil and El-Zafrany [7] examined thick Reissner plates
using boundary element analysis. Both one and two parameter foundation models were
studied.

2.  

The equation governing the behavior of the symmetric angle-ply laminate resting on an
elastic foundation using a Winkler model is given by

D11
14w
1x4 +4D16

14w
1x3 1y

+2Dk
14w

1x2 1y2 +4D26
14w

1x 1y3 +D22
14w
1y4 + kfw= rv2w. (1)

In equation (1) w is the mode shape, r is the mass density, v is the frequency, and x and
y represent spatial co-ordinates. In addition, Dij are the usual flexural stiffness parameters,
with Dk =D12 +2D66, and kf represents the stiffness of the foundation. Simply supported
boundary conditions given by

on x=0, a, w=0, Mx =0; on y=0, b, w=0, My =0, (2)

are used for this problem.
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3.  

A discrete set of equations corresponding to equation (1) is obtained using the Ritz
method. To this end, the displacement w(x, y) is expanded in a complete, kinematically
admissible basis given by

w(x, y)= s
m

s
n

wmncmn (x, y), (3)

where wmn are constants and

cmn (x, y)= rXm (x/a)Yn (y/b). (4)

Here Xm and Yn are basis functions to be selected. Substituting equations (3) and (4) into
equation (1), and taking the L2 inner product with cqp , provides

[K]{amn}= lmn [M]{amn}. (5)

Here, {amn} is interpreted as the eigenvector with corresponding eigenvalue lmn , [K] is the
stiffness matrix and [M] is the mass matrix. The elements of these matrices are given by

(a4/ab)Kpqmn =D11Apmbqn +D12CpmcnqR2 +2D16HpmgnqR+D12CmpcqnR2

+D22BpmaqnR4 +2D26GmphqnR3 +2D16HmpgqnR+2D26GpmhnqR3

+4D66EpmeqnR2 + a4kfBpmbqn , (6)

where R is the aspect ratio given as a/b and

(1/ab)Mpqmn = rBpmbqn . (7)

In equations (6) and (7), the following definitions have been introduced

Apm =(X0p , X0m ), aqn =(Y0q , Y0n ), Bpm =(Xp , Xm ), bqn =(Yq , Yn ),

Cpm =(X0p , Xm ), cqn =(Y0q , Yn ),

Epm =(X'p , X'm ), eqn =(Y'q , Y'n ), Gpm =(X'p , Xm ), gqn =(Y'q , Yn ),

Hpm =(X0p , X'm ), hqn =(Y0q , X'n ). (8)

Symbolically, ()' represents the derivative with respect to the basis argument and (+, +)
represents the L2 inner product on [0, 1].

The above equations for Kpqmn and Mpqmn are quite general. They are independent of the
particular set of basis functions, although the matrices (8) depend upon the basis selected.
Therefore they can be used if Xp and Yq are kinematically admissible polynomials, beam
shape functions, or any other set of kinematically admissible functions. Here the basis
functions for the composite laminate will be the beam shape functions for a similarly
supported beam.

4.  

An approximate expression for the eigenvalue lmn can be determined by introducing
parameters S1 and S2 into equation (5) and considering

[K
 (S1)]{âmn (S1, S2)}= l
 mn (S1, S2)[M
 (S2)]{âmn (S1, S2)}, (9)

where

[K
 (S1)]= [KD ]+S1[DK], [M
 (S2)]= [MD ]+S2[DM]. (10)
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Here, [KD ] and [MD ] are diagonal matrices obtained from [K] and [M], respectively, by
deleting all off-diagonal elements; [DK] and [DM] are matrices which have zeros on the
diagonal and contain only the off-diagonal elements of [K] and [M]. The parameters S1

and S2 range from 0 to 1. If S1 =S2 =0, the solution to equation (9) becomes the ratio
of the diagonal elements of the stiffness matrix [KD ] and mass matrix [MD ]. If S1 =S2 =1,
the original eigenvalue problem, equation (5), is recovered. The desired eigenvalue lmn is
obtained by expanding l
 mn in a Maclaurin series about S1 =S2 =0 and evaluating at
S1 =S2 =1. Thus

lmn = l
 mn (1, 1)3 l
 mn (0, 0)+ dl
 mn (0, 0)+ 1
2d

2l
 mn (0, 0). (11)

The desired results appearing on the right side of equation (11) can be shown to be

l
 mn (0, 0)=Kmnmn /Mmnmn , dl
 mn (0, 0)=0 (12)

and

d2l
 mn =−
2

M2
mnmn

s
p$m

s
q$ n 6[KmnmnDMpqmn −MmnmnDKpqmn ]2

KmnmnMpqpq −KpqpqMmnmn 7. (13)

Indeed, Barton and Reiss [8] have provided a complete derivation for these terms by
considering the buckling of a symmetric angle-ply laminate. Substituting equations (12)
and (13) into equation (11) provides the required quadratic approximate closed form
expression of

lmn =
Kmnmn

Mmnmn
−

1
M2

mnmn
s

p$m

s
q$ n 6[KmnmnDMpqmn −MmnmnDKpqmn ]2

KpqpqMmnmn −KmnmnMpqpq 7. (14)

5.   

Equation (14) can be specialized for the problem at hand by selecting a set of basis
functions, evaluating the matrices appearing in equation (8), and then evaluating the
stiffness and mass matrices. A final substitution of the stiffness and mass matrices
into equation (14) provides the desired expression. A set of normalized beam shape
functions

Xm (x/a)=z2 sin (mpx/a), Yn (y/b)=z2 sin (npy/b), (15)

were selected as the set of basis functions. Utilizing this set of basis functions and
evaluating the matrices appearing in equation (8), provides

Apm = m4
p dpm , aqn = n4

n dqn , Bpm = dpm , bqn = dqn, Cpm =−p2p2dpm ,

cqn =−q2p2dqn , Epm =−Cpm , eqn =−cqn ,

Hpm =−p2mp3fpm , hqn =−q2np3fqn , Gpm = ppfpm , gqn = qpfqn , (16)

where

fab =62a/p(a2 − b2)
0

a+ b, odd
a+ b, even7. (17)
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Here, m2
m and n2

n are frequencies corresponding to the simply supported beam, and dij is the
Kronecker delta. The stiffness and mass matrices appearing in equations (6) and (7) can
be determined and become

(a4/ab)Kpqmn =D11m
4
Pdpmdqn +2Dkp2q2p4dmpdqnR2 +D22n

4
qR4dpmdqn

−2D16pmp4(pnfpmfqn +mqfmpfqn )R

−2D26qnp4(npfpmfnq + qmfmpfqn )R3 + a4kfdpmdqn , (18)

and

(1/ab)Mpqmn = rdpmdqn . (19)

An explicit result for the fundamental frequency is obtained by substituting equations
(18) and (19) into equation (14) with m= n=1. Doing so provides

a4rl11 = p4[D11 +2DkR2 +D22R4 + a4kf /p4]−128Rp4 s
N

p$ 1

s
N

q$ 1

p2q2

(p2 −1)2(q2 −1)2

×
[D16(p2 +1)+D26(q2 +1)R2]2

[D11(p4 −1)+2Dk (p2q2 −1)R2 +D22(q4 −1)R4]
. (20)

Equation (20) is the desired result representing the fundamental frequency of a
rectangular symmetric laminate resting on an elastic foundation. To aid in the computation
of the frequency, the following normalized fundamental frequency k11 is introduced:

k11 =zl11 = a2v11zr/(U1t3), (21)

where U1 is a material invariant property and t is the laminate’s thickness. Comparison
with the normalized fundamental frequency from the Rayleigh–Ritz method, identified as
k, provides the means of assessing the accuracy of the quadratic approximation.

The laminate studied is a four ply, symmetric laminate [u/−u]s with the following
material stiffness ratios corresponding to graphite–epoxy: E11/E22 =40·0, E11/G12 =80·0,
n12 =0·30. Finally, nine terms, N=0, were taken in the displacement expansion (3).

Tabulated numerical results are presented for results kf =0·0, corresponding to no
foundation support, for kf =1010 lb/in3 representing a moderate foundation stiffness, and
for kf =1012 lb/in3, representing a stiff foundation. For each foundation response, results
are presented for R=1, 2 and 5 and various ply orientation angles, in increments of 15°,
starting with u=0°. From these tables one is able to assess the accuracy of the quadratic
approximate formula, equation (20), as well as determine the effect of foundation stiffness
on the fundamental frequency.

Table 1 provides results for the laminate without any soil interaction, kf =0·0. For
the square laminate, R=1, the maximum percent difference is 1·58% at u=45°,
corresponding to the largest values of the coupling stiffness. Here, the Rayleigh–Ritz
predicts k1 =46·77 and the approximate expression predicts k11 =47·51. For R=2, the
largest discrepancy again occurs at u=45° with a value of 1·33%. A shift in the location
from u=45° to u=30° of largest error results if one sets R=5. Here, the error is 0.47%.

Table 2 provides information in which the effect of foundation response is noticed. A
small increase in the fundamental frequency results in an increase of the foundation
stiffness. For instance, the square orthotropic laminate, u=0°, experiences a 0·32%
increase in frequency to 38·10 and for the u=45°, an increase of 0·19% results. The
maximum percent difference occurs at u=45° for R=1 and 2 and u=30° for R=5. In
addition, there is a modest decrease in these values from the previous case.
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T 1

Variation of normalized fundamental frequency with ply orientation for rectangular laminate
and foundation stiffness kf =0·0.

u (°) R Rayleigh–Ritz (k) Approximate Formula (k11) % Difference

0 1 37·98 37·98 0·00
15 1 39·83 40·01 −0·45
30 1 44·33 44·95 −1·40
45 1 46·77 47·51 −1·58
60 1 44·33 44·95 −1·40
75 1 39·83 40·01 −0·45
90 1 37·98 37·98 0·00

0 2 11·72 11·72 0·00
15 2 14·96 15·04 −0·53
30 2 21·24 21·49 −1·18
45 2 27·02 27·38 −1·33
60 2 31·80 32·04 −0·75
75 2 35·34 35·38 −0·11
90 2 36·70 36·70 0·00

0 5 6·22 6·22 0·00
15 5 7·87 7·88 −0·13
30 5 12·74 12·80 −0·47
45 5 20·25 20·32 −0·35
60 5 28·24 28·27 −0·11
75 5 34·22 34·23 −0·03
90 5 36·43 36·43 0·00

T 2

Variation of normalized fundamental frequency with ply orientation for rectangular laminate
and foundation stiffness kf =1×1010

u (°) R Rayleigh–Ritz (k) Approximate Formula (k11) % Difference

0 1 38·1 38·1 0·00
15 1 39·94 40·12 −0·45
30 1 44·43 45·05 −1·40
45 1 46·86 47·6 −1·58
60 1 44·43 45·05 −1·40
75 1 39·94 40·12 −0·45
90 1 38·1 38·1 −0·00

0 2 12·08 12·08 −0·00
15 2 15·25 15·25 −0·00
30 2 21·44 21·7 −1·21
45 2 27·18 27·54 −1·32
60 2 31·94 32·18 −0·75
75 2 35·46 35·5 −0·11
90 2 36·82 36·82 0·00

0 5 6·88 6·88 0·00
15 5 8·41 8·41 0·00
30 5 13·07 13·13 −0·46
45 5 20·47 20·53 −0·29
60 5 28·4 28·43 −0·11
75 5 34·35 34·36 −0·03
90 5 36·55 36·55 0·00
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T 3

Variation of normalized fundamental frequency with ply orientation for rectangular laminate
and foundation stiffness kf =1×1012

u (°) R Rayleigh–Ritz (k) Approximate Formula (k11) % Difference

0 1 48·09 48·09 0·00
15 1 49·56 49·71 −0·30
30 1 53·25 53·76 −0·96
45 1 55·29 55·92 −1·14
60 1 53·25 53·76 −0·96
75 1 49·56 49·71 −0·30
90 1 48·09 48·09 0·00

0 2 31·74 31·74 0·00
15 2 33·07 33·11 −0·12
30 2 36·35 36·5 −0·41
45 2 40 40·25 −0·65
60 2 43·37 43·55 −0·42
75 2 46·03 46·06 −0·07
90 2 47·09 47·09 0·00

0 5 30·14 30·14 0·00
15 5 30·53 30·53 0·00
30 5 32·13 32·15 −0·06
45 5 35·78 35·82 −0·11
60 5 40·84 40·86 −0·05
75 5 45·18 45·18 0·00
90 5 46·87 46·87 0·00

Finally, Table 3 provides the data for the last foundation stiffness. Here, a more
dramatic increase in the fundamental frequency results. Again considering the square
orthotropic laminate, an increase of 26·22% to 48·09 is noticed and for u=45°, a 17·98%
increase to 55·29 results. Moreover, an improvement in accuracy of 0·44% is noticed. An
increase in accuracy is noticed for the other laminate configurations.

6. 

In this paper an approximate closed-form expression was developed and used to predict
the fundamental frequency of symmetric laminated composite plates resting on an elastic
foundation. Results were presented for various foundation stiffnesses, laminate aspect
ratios, and ply orientation. A very good, if not excellent, comparison exists when compared
with the Rayleigh–Ritz method.
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