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The plate hierarchical finite element in this paper utilizes trigonometric hierarchical shape
functions rather than the more usual forms of orthogonal Legendre polynomials. The new
hierarchical finite element is formulated in terms of a fixed number of quintic polynomial
shape functions plus a variable number of trigonometric hierarchical shape functions. The
polynomial shape functions are used to describe the element’s nodal degrees of freedom
and the trigonometric hierarchical shape functions are used to give additional freedom to
the edges and the interior of the element. The numbers of trigonometric hierarchical terms
are allowed to vary in both directions of the element’s co-ordinate axes. Results are
obtained for a number of plates. The results confirm that the solutions always converge
from above as the numbers of hierarchical terms are increased and highly accurate values
are obtained with the use of a very few hierarchical terms. In comparison with the
36-degree-of-freedom rectangular finite element, the trigonometric hierarchical finite
element is found to produce a better accuracy with fewer system degrees of freedom. In
comparison with the polynomial hierarchical finite element, the trigonometric hierarchical
finite element is found to produce an equivalent accuracy with the same number of system
degrees of freedom and fewer numbers of hierarchical terms for a free and a clamped square
plate. Furthermore, the trigonometric hierarchical finite element is found to produce a
better accuracy with fewer system degrees of freedom and fewer numbers of hierarchical
terms for a simply supported square plate and a square plate simply supported on two
opposite edges and free on the other two edges.
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1. INTRODUCTION

A hierarchical finite element is formulated for plate vibrations in which trigonometric
hierarchical shape functions are used rather than polynomial shape functions which are
forms of Legendre orthogonal polynomials. The aim of this paper is to introduce the new
plate hierarchical finite element and to investigate its efficiency for a number of plate
problems.

The hierarchical finite element method has been applied by Bardell [1, 2] to plate
vibrations. This method is formulated in terms of a fixed number of cubic polynomial
shape functions plus a variable number of hierarchical shape functions which are forms
of Legendre orthogonal polynomials. The cubic polynomial shape functions, if used by
themselves, lead to the conforming 16-degree-of-freedom plate rectangular finite element
of Bogner et al. [3]. This method will be referred to as the polynomial hierarchical finite
element method throughout this paper. The hierarchical finite element method has a few
major features that make its use desirable for simple uniform structures. The most
important feature is that a simple uniform structure is modelled as just one finite element
and the number of hierarchical terms is varied. The results can then be obtained to any
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desired degree of accuracy by simply increasing the number of hierarchical terms. The
other important feature is that the satisfaction of internal C0 and/or C1 continuity along
element interfaces is avoided and the problems of stress singularities are overcome.
Meirovitch and Baruh [4] and Zhu [5] have shown that the hierarchical finite element
method yields a better accuracy than the finite element method for eigenvalue problems
of the same order.

The trigonometric hierarchical finite element is formulated in terms of a fixed number
of quintic polynomial shape functions plus a variable number of trigonometric hierarchical
shape functions. The polynomial shape functions are used to describe the element’s nodal
degrees of freedom and the trigonometric hierarchical shape functions are used to give
additional freedom to the edges and the interior of the element. The polynomial shape
functions, if used by themselves, lead to the conforming 36-degree-of-freedom plate
rectangular finite element of Bogner et al. [3]. The numbers of trigonometric hierarchical
terms are allowed to vary in both directions of the element’s co-ordinate axes.

Results of frequency calculations by use of the trigonometric hierarchical finite element
have been obtained for a number of plates and comparisons have been made with the
polynomial hierarchical finite element and the 36-degree-of-freedom rectangular finite
element of Bogner et al. [3].

2. FORMULATION

2.1.   

The co-ordinate system used to define the geometry of a two-node beam element is
shown in Figure 1. The x co-ordinate and the non-dimensional z co-ordinate are related
by (a list of notation is given in the Appendix)

z= x/L. (1)

The transverse displacement w of the beam element is expressed as

w(z)= c1 + c2z+ c3z
2 + c4z

3 + c5z
4 + c6z

5 + cr+6 sin drz, (2)

where summation is implied on the index r and

dr = rp, r=1, 2, 3, . . . . (3)

The element’s nodal degrees of freedom are the transverse displacement w, the slope w,x

and the curvature w,xx at each node. The polynomial terms in the assumed displacement
field are used to define the element’s nodal degrees of freedom and the trigonometric terms
are used to give additional freedom to the interior of the element. Equation (2) can be
written in matrix form as

w(z)= gc, (4)

where

g=[1, z, z2, z3, z4, z5, sin drz] (5)

Figure 1. Beam element co-ordinates and dimensions.
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and

c= {c1, c2, c3, c4, c5, c6, cr+6}T. (6)

The operators g, Lg,x and L2g,xx can be evaluated at each node to obtain

p= hc, (7)

where

p= {w1, Lw1,x , L2w1,xx , w2, Lw2,x , L2w2,xx , wr+6}T (8)

and

1 0 0 0 0 0 0

0 1 0 0 0 0 dr

0 0 2 0 0 0 0

h=G
G

G

G

G

G

G

K

k

1 1 1 1 1 1 0 G
G

G

G

G

G

G

L

l

. (9)

0 1 2 3 4 5 (−1)rdr

0 0 2 6 12 20 0

0 0 0 0 0 0 1

The vector c is obtained from equation (7) as

c= h−1p, (10)

where

1 0 0 0 0 0 0

0 1 0 0 0 0 −dr

0 0 1/2 0 0 0 0

h−1 =G
G

G

G

G

G

G

K

k

−10 −6 −3/2 10 −4 1/2 dr(6+4(−1)r) G
G

G

G

G

G

G

L

l

. (11)

15 8 3/2 −15 7 −1 −dr(8+7(−1)r)

−6 −3 −1/2 6 −3 1/2 3dr(1+ (−1)r)

0 0 0 0 0 0 1

Substituting equation (10) into equation (4) gives the relation

w(z)= gh−1p. (12)

The desired shape functions are therefore given by

f= gh−1, (13)

where

f=[ f1, f2, f3, f4, f5, f6, fr+6] (14)

and

f1 =1−10z3 +15z4 −6z5, f2 = z−6z3 +8z4 −3z5, (15, 16)

f3 = (1/2)z2 − (3/2)z3 + (3/2)z4 − (1/2)z5, f4 =10z3 −15z4 +6z5, (17, 18)

f5 =−4z3 +7z4 −3z5, f6 = (1/2)z3 − z4 + (1/2)z5, (19, 20)

fr+6 = dr [−z+(6+4(−1)r)z3 − (8+7(−1)r)z4 +3(1+ (−1)r)z5]+ sin drz. (21)
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T 1

The first six shape functions and their first and second derivatives

i fi f 'i f 0i
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The first six shape functions are used in the finite element method. These functions and
their first and second derivatives are shown in Table 1. The first six trigonometric
hierarchical shape functions fr+6 (r=1, 2, . . . , 6) and their first and second derivatives are
shown in Table 2. These functions possess zero displacement, zero slope, and zero
curvature at each node. This feature is highly significant, since these functions only provide

T 2

The first six trigonometric hierarchical shape functions and their first and second derivatives
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Figure 2. Plate element co-ordinates and dimensions.

additional freedom to the edges and the interior of a rectangular plate element and do not
affect the element’s nodal degrees of freedom.

2.2.     

The plate is discretized into one hierarchical finite element. The co-ordinate system used
to define the geometry of the element is shown in Figure 2. The x and y co-ordinates and
the non-dimensional j and h co-ordinates are related by

j= x/a, h= y/b. (22, 23)

The transverse displacement w of the plate element is expressed as

w(j, h, t)= s
M+6

m=1

s
N+6

n=1

qmn(t)fm(j)fn(h). (24)

The expressions for the strain energy V and the kinetic energy T of the plate element are

V=
D

2ab g
1

0 g
1

0 $0b
2

a21012w
1j21

2

+0a2

b21012w
1h21

2

+2n012w
1j21012w

1h21+2(1−n)0 12w
1j 1h1

2

% dj dh,

(25)

T=
rab
2 g

1

0 g
1

0 01w
1t1

2

dj dh. (26)

Assuming that the transverse motion is harmonic and inserting the expression for the
displacement w (equation (24)) into the expressions for the kinetic and potential energy
(equations (25) and (26)), and into the known Lagrange equations yields the following
equations of motion for undamped free vibration:

s
R

j=1

(Kij −v2Mij)qj =0, i=1, 2, . . . , R. (27)
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The element stiffness and mass matrices are expressed as

Kij =
D
ab $0b2

a21I2,2
m,kJ0,0

n,l +0a2

b21I0,0
m,kJ2,2

n,l + n(I2,0
m,kJ0,2

n,l + I0,2
m,kJ2,0

n,l )+2(1− n)I1,1
m,kJ1,1

n,l %, (28)

Mij = rabI0,0
m,kJ0,0

n,l , (29)

where the indices m, k, n, and l which represent the numbers of functions used in the
assumed displacement field take on the following values

m, k=1, 2, 3, . . . , M+6, n, l=1, 2, 3, . . . , N+6, (30, 31)

and the indices i and j are expressed in terms of the indices m, k, n, and l as

i= n+(m−1)(N+6), j= l+(k−1)(N+6). (32, 33)

The order R of the element stiffness and mass matrices is

R=(M+6)(N+6). (34)

The integrals are defined as

Ia,b
m,k =g

1

0

f a
m(j)f b

k (j) dj, Ja,b
n,l =g

1

0

f a
n (h)f b

l (h) dh, (35, 36)

where the indices a and b (a, b=0, 1, 2) denote the order of the derivatives.
The values of the integrals in equations (35) and (36) can be easily obtained by using

symbolic computing. They can also be obtained to any desired degree of accuracy by using
Gaussian quadrature with an appropriate number of integration points for the function
in the integrand of each integral. The resulting values of the integrals can then be stocked
into a file which is later used by the program that implements the trigonometric
hierarchical finite element. This process greatly speeds up the generation of the element
stiffness and mass matrices.

Particular boundary conditions can be specified for w, w,x , w,y , w,xx , w,yy, w,xy , w,xxy , w,xyy

and w,xxyy on the element’s four corners, for w, w,y , and w,yy on the element’s two edges
along the x axis, and for w, w,x , and w,xx on the element’s two edges along the y axis. Tables
3 and 4 give the most common boundary conditions which can be specified respectively
on a corner and on an edge along the x axis (1 and 0 denote respectively a co-ordinate
that is restrained and free and S, C, and F denote respectively an edge that is simply
supported, clamped, and free). Similar boundary conditions can be specified on an edge
along the y axis by interchanging the subscripts for x and y. Assigning the boundary
conditions in this way makes it possible to accommodate any combination of corner and
edge conditions in the analysis. For each specified boundary condition, the corresponding
row and column must be deleted from the element’s stiffness and mass matrices. For plates
other than completely free ones, this deletion process reduces the order of the element’s
stiffness and mass matrices. The resulting generalized eigenvalue problem can then be
solved using any known technique.

3. NUMERICAL RESULTS

Results of the application of the trigonometric hierarchical finite element to the
calculation of the frequency parameter V were first obtained for an S–S–S–S square with
n=0·3 and for an S–F–S–F square plate with n=0·16. Each plate is identified by Leissa’s
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T 3

Boundary conditions for most common corner conditions

Corner w w,x w,y w,xx w,yy w,xy w,xxy w,xyy w,xxyy

1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 1 0

1 1 0 1 1 0 0 0 0

1 1 1 0 1 1 0 1 0

T 4

Boundary conditions for most common conditions on an
edge along x axis

Edge w w,y w,yy

—S— 1 0 1
—C— 1 1 0
—F— 0 0 0

convention [6]. Thus, the symbolism S–S–S–S indicates that the four edges are simply
supported and the symbolism S–F–S–F indicates that two opposite edges are simply
supported and the other two edges are free.

In order to see the manner of convergence of the trigonometric hierarchical finite
element solutions, each plate is discretized into one element and the number of hierarchical
terms M(=N) is varied. An equal number of hierarchical terms is used in both directions
because the plate elements are squares. Results for the ten lowest modes of the S–S–S–S
plate and the eleven lowest modes of the S–F–S–F plate are shown respectively in Table 5
and Table 6 along with exact solutions. The case M=N=0 corresponds to using one
36-degree-of-freedom rectangular finite element.

Tables 5 and 6 clearly show that rapid convergence from above to the exact values occurs
as the number of hierarchical terms is increased from 1 to 4 and highly accurate solutions
are obtained despite the use of a very few hierarchical terms. In fact, the trigonometric
hierarchical finite element solutions for M=N=4 are in excellent agreement with the
exact solutions.

The performance of the trigonometric hierarchical finite element with that of the
polynomial hierarchical finite element and that of the 36-degree-of-freedom rectangular
finite element of Bogner et al. [3] on a total degree-of-freedom basis is also investigated.
Results for the ten lowest modes of the S–S–S–S square plate and for the eleven lowest
modes of the S–F–S–F square plate are shown respectively in Tables 7 and 8 along with
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exact solutions and solutions from the polynomial hierarchical finite element and the
36-degree-of-freedom rectangular finite element. It should be noted that the number of
hierarchical terms used in the polynomial hierarchical finite element in this paper refers
only to the number of shape functions which are formed from orthogonal Legendre
polynomials. The number of hierarchical terms M(=N) used in the trigonometric
hierarchical finite element for the S–S–S–S plate is four and the corresponding number of
system degrees of freedom is 48. The number of hierarchical terms used in the polynomial
hierarchical finite element for the S–S–S–S plate is six and the corresponding number of
system degrees of freedom is 64. The number of hierarchical terms M(=N) used in the
trigonometric hierarchical finite element for the S–F–S–F plate is four and the
corresponding number of system degrees of freedom is 72. The number of hierarchical
terms used in the polynomial hierarchical finite element for the S–F–S–F plate is six and
the corresponding number of system degrees of freedom is 80. The number of
36-degree-of-freedom rectangular finite elements used in both square plates is nine.

Tables 7 and 8 clearly show that the trigonometric hierarchical finite element solutions
are more accurate than the polynomial hierarchical element solutions and the solutions
from the 36-degree-of-freedom finite element with fewer system degrees of freedom and
fewer hierarchical terms. This is particularly true for the higher modes. For the S–S–S–S
plate, Table 7 shows that the trigonometric hierarchical finite element solutions are in
excellent agreement with the exact solutions despite the use of about 25% fewer system
degrees of freedom than the polynomial hierarchical finite element solutions and about
48% fewer system degrees of freedom than the 36-degree-of-freedom finite element
solutions. For the S–F–S–F plate, Table 8 shows that the trigonometric hierarchical finite
element solutions are in excellent agreement with the exact solutions despite the use of
about 10% fewer system degrees of freedom than the polynomial hierarchical finite element
solutions and about 36% fewer system degrees of freedom than the 36-degree-of-freedom
finite element solutions.

Additional applications are to F–F–F–F and C–C–C–C square plates with n=0·3. The
symbolism F–F–F–F indicates that the four edges are free and the symbolism C–C–C–C
indicates that the four edges are clamped. It appears that there exist no analytical solutions
for these two examples and only the frequencies of the lowest four modes are available
in the literature [2]. Nevertheless, it is of interest to obtain solutions for a few higher modes,
both to examine the performance of the trigonometric hierarchical finite element for rather
more complex modes and to provide new frequency values which may be of interest to
other investigators. Results for the twelve lowest modes of the F–F–F–F square plate and
the C–C–C–C square plate are shown respectively in Tables 9 and 10. Convergence can
only be based on the values converged upon by the trigonometric hierarchical finite
element method by using eight or more hierarchical terms in the F–F–F–F plate and ten
or more hierarchical terms in the C–C–C–C plate. Blanks in Table 10 are in places where
there were too few system degrees of freedom to be able to produce these modes. In the
case of the F–F–F–F square plate, the generalized eigenvalue problem yields three zero
frequency parameters (as expected) which correspond to linear combinations of rigid-body
translation in the transverse direction and rigid-body rotations about the symmetry axes.
Tables 9 and 10 clearly show that fast convergence from above to the converged values
occurs as the number of trigonometric hierarchical terms in the F–F–F–F square plate is
increased from 1 to 4 and the number of trigonometric hierarchical terms in the C–C–C–C
square plate is increased from 1 to 8.

The performance of the trigonometric hierarchical finite element with that of the
polynomial hierarchical finite element and that of the 36-degree-of-freedom finite element
on a total degree-of-freedom basis has been also investigated for the F–F–F–F and
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C–C–C–C square plates. Results for the twelve lowest modes of the F–F–F–F square plate
and the C–C–C–C square plate are shown respectively in Table 11 and Table 12 along with
the converged trigonometric hierarchical finite element solutions and solutions from the
polynomial hierarchical finite element and the 36-degree-of-freedom finite element. The
number of hierarchical terms M(=N) used in the trigonometric hierarchical finite element
for the F–F–F–F plate is four and the corresponding number of system degrees of freedom
is 100. The number of hierarchical terms used in the polynomial hierarchical finite element
for the F–F–F–F plate is six and the corresponding number of system degrees of freedom
is 100. The number of hierarchical terms M(=N) used in the trigonometric hierarchical
finite element for the C–C–C–C plate is eight and the corresponding number of system
degrees of freedom is 100. The number of hierarchical terms used in the polynomial
hierarchical finite element for the C–C–C–C plate is 10 and the corresponding number of
system degrees of freedom is 100. The number of 36-degree-of-freedom rectangular finite
elements used in both square plates is nine.

Tables 11 and 12 clearly show that the trigonometric and the polynomial hierarchical
finite elements lead to an equivalent accuracy with the same number of system degrees of
freedom but the trigonometric hierarchical finite element requires fewer hierarchical terms.
Tables 11 and 12 also show that the trigonometric hierarchical finite element solutions are
more accurate than the solutions from the 36-degree-of-freedom finite element with fewer
system degrees of freedom. All the results confirm that the rate of convergence of the
trigonometric hierarchical finite element method in a particular mode is not influenced
directly by the number of system degrees of freedom used but is rather influenced by the
numbers of hierarchical terms used, the complexity of the mode, and the plate boundary
conditions.

The final application is to a rectangular C–C–C–C plate of aspect ratio b/a=4 and
n=0·3. This example is intended to illustrate the feature of being able to use different
numbers of hierarchical terms in different directions. Results for the six lowest frequency
parameters V as a function of the numbers of hierarchical terms M and N in the x and
y directions are shown in Table 13. It can be seen that the rate of convergence is greatly
improved as more hierarchical terms are taken in the longer direction (y direction) rather
than in the shorter direction (x direction).

4. CONCLUSIONS

A trigonometric hierarchical finite element for plate vibrations has been presented. The
element is formulated in terms of a fixed number of quintic polynomial shape functions
plus a variable number of trigonometric hierarchical shape functions. The numbers of
trigonometric hierarchical terms are allowed to vary in both directions of the element
co-ordinate axes.

The results obtained for S–S–S–S, S–F–S–F, F–F–F–F and C–C–C–C square plates
have shown that the trigonometric hierarchical finite element solutions always converge
from above as the numbers of trigonometric hierarchical terms increase and highly
accurate values are obtained despite the use of a very few trigonometric hierarchical terms.

When compared with the 36-degree-of-freedom rectangular finite element, the
trigonometric hierarchical finite element was found to yield a better accuracy with fewer
system degrees of freedom.

When compared with the polynomial hierarchical finite element, the trigonometric
hierarchical finite element was found to yield a better accuracy with fewer system degrees
of freedom and fewer hierarchical terms for the S–S–S–S and S–F–S–F square
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plates and an equivalent accuracy with the same number of system degrees of freedom but
with fewer hierarchical terms for the F–F–F–F and C–C–C–C square plates.

Finally, the results obtained for a C–C–C–C rectangular plate of aspect ratio b/a=4
have shown that the rate of convergence is greatly improved as more trigonometric
hierarchical terms are taken in the longer direction rather than in the shorter one.
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APPENDIX: NOTATION

a plate element length in the x direction
b plate element length in the y direction
h plate thickness
E modulus of elasticity
n Poisson’s ratio
r mass per unit area
D flexural rigidity (= Eh3/(12(1− n2)))
x, y plate element co-ordinates
j, h plate element non-dimensional co-ordinates
t time
w plate transverse displacement
V plate element strain energy
T plate element kinetic energy
Kij element stiffness matrix
Mij element mass matrix
qj generalized co-ordinate
M number of hierarchical terms in the element x direction
N number of hierarchical terms in the element y direction
R order of the element stiffness and mass matrices
v natural frequency
V frequency parameter (= va2zr/D)


