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A dynamic model for the axial and transverse vibrations of a rotating drillstring is
presented. The governing non-linear equations, which are obtained by using a Lagrangian
approach, are fully coupled with time varying coefficients. They include the effects of
gyroscopic moments, contact with the borehole wall, axial excitation due to bit/formation
interactions, and hydrodynamic damping due to the presence of drilling mud outside the
drillstring. Simulation results show that parametric resonance and whirling may occur
simultaneously within the range of operating conditions of drilling. The dynamic behavior
is quite complicated and may become non-periodic, suggesting a chaotic behavior.
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1. INTRODUCTION

The Bottom Hole Assembly (BHA), which is the lower part of a drillstring used for drilling
of oil and gas wells, is subject to severe vibrations caused by bit/formation and
drillstring/borehole interactions. The drillstring vibration problem is fairly complex since
it generally involves phenomena such as parametric resonance, whirling and contact with
the borehole wall. The excessive lateral vibrations caused by such phenomena were
observed to cause fatigue failure, wear and borehole enlargements [1].

Although there has been considerable research in the modelling and analysis of
drillstring dynamics, a comprehensive understanding of all the vibration phenomena
involved is still lacking [2, 3]. Furthermore, the complex and varying nature of the
boundary conditions, and operational characteristics, undermine the utility of available
models with respect to their predictive capabilities [4]. For this reason, the use of
experimental drillstring measurement tools is currently the only reliable method for
improving performance and solving real-time drilling problems. Theoretical studies on
drillstring dynamics are still important, however, to improve the understanding of the
various phenomena and thus provide better interpretation of experimental data [4].

Parametric instabilities caused by fluctuating weight on the bit were studied by
Dunayevsky et al. [1]. They assumed the drillstring to be in permanent contact with the
borehole wall along its entire length. The effects of transverse vibrations on the axial
motion were also neglected. Shyu [5] studied extensively the bending vibrations of rotating
and non-rotating drillstrings, where he investigated whirling and parametric instabilities.
However, intermittent contact with the borehole wall was not addressed. A detailed study
on whirling was carried out by Jansen [4, 6]: he included the effects of impact with the
borehole wall. By using a lumped parameter model, he concluded that the resulting
unstable drill collar motion could be periodic or chaotic. Berlioz et al. [3] investigated the
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lateral instabilities of drillstrings experimentally. They demonstrated that various types of
instabilities, such as simple resonance, parametric resonance and combination resonance,
may occur in a real drillstring. A finite element model was also developed.

Recently, the authors developed a non-linear model for a non-rotating drillstring, in
which the full coupling between the transverse and axial motions was emphasized [7]. In
the present study, the model proposed in reference [7] is extended for rotating drillstrings.
In addition, parametric excitation due to bit/formation interactions as well as whirling due
to unbalanced mass are considered. Also, non-linear damping is included by modelling the
effects of mud outside the drillstring as hydrodynamic drag. Furthermore, the impact
model is improved to accommodate oblique impacts and friction. The resulting governing
equations are fully coupled and non-linear with time varying coefficients due to gyroscopic
effects, axial shortening, intermittent contact with the borehole wall and hydrodynamic
damping. The response to a harmonic axial bit load is obtained through numerical
simulation.

2. DYNAMIC MODELLING

The BHA is modelled as shown in Figure 1. It is usually composed of drill collars
(thick-walled tubulars) and stabilizers (coarsely grooved cylindrical elements of a larger
diameter than the drill collars, that fit loosely in the borehole). The part of the lower
portion of the drill collars supported by the stabilizers is under compression due to the
weight of the upper portion of the drill collars. The compressive force applied at the bit
is termed Weight-on-Bit (WOB) in the drilling literature and is essential for drilling. In
this study, the lower portion of the drill collars is assumed to be under combined axial
and lateral vibration, while the rest of the BHA is assumed to be undergoing only axial
vibration. This assumption can be justified by noting that in most real applications the
upper portion of the BHA is in permanent contact with the borehole wall. The transverse
motion of the collars is confined by the borehole, and is assumed to be adequately modelled
as a Rayleigh beam with simply supported boundary conditions at the stabilizer locations.

Figure 1. The sketch of the system.
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Figure 2. Section A–A through a borehole and deflected drill collar.

For the axial motion, the beam is assumed to be fixed at the bit and free at the end of
the BHA.

The drillstring is assumed to be a solid cylinder of uniform cross-section rotating about
the longitudinal z-axis with a constant angular speed V. The rotation of the drillstring
undergoing transverse vibration results in gyroscopic moments which are included through
external virtual work terms. The non-linear coupling between the axial and flexural
deformations is retained by using finite strain measures. The equations of motion are
obtained by using the assumed modes method and a Lagrangian approach. In this work,
torsional vibrations are not considered.

2.1.    

For a rotating drillstring, the total kinetic energy can be written as

T= 1
2 g

l

0

{rAV2
G + J1l

2
1 + J2l

2
2 + (J1 + J2 )l2

3 } dz, (1)

where l is the total BHA length, r is the density of the material, and A is the cross-sectional
area. VG is the magnitude of the velocity of the mass center of a unit disk along the
drillstring at a distance z. (Figure 2), which is given as

VG =(u̇1 − eV sin Vt)i+(u̇2 + eV cos Vt)j+ u̇3k, (2)

where the ui are the deflections in the x, y and z directions, respectively, e is the eccentricity
of the center of mass with respect to the geometric center of the collars, i, j and k are the
unit vectors along the x-, y- and z-axes, respectively, and (·) denotes a time derivative. J1

and J2 are the lateral mass moments of inertia per unit length with respect to the x-axis
and y-axis, respectively, and for a symmetrical cross-section they are given by

J1 = J2 = rI, (3)

where I is the area moment of inertia of the cross-section. The li are the components of
the angular velocity of the drillstring at distance z along the drillstring given as [8]

l1 =c� 1 cos c2 − u� cos c1 sin c2 , l2 =c� 2 + u� sin c1 ,

l3 =c� 1 sin c2 + u� cos c1 cos c2 . (4–6)
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where c1 and c2 are the rotations due to bending with respect to the x-axis and the y-axis,
respectively, and u� =V=constant, (i.e. no torsional deformation).

Assuming small angles, equations (4)–(6) are simplified to

l1 =c� 1 −Vc2 , l2 =c� 2 +Vc1 , l3 =c� 1c2 +V. (7–9)

Substituting expressions (2), (3) and (7)–(9) into the kinetic energy, equation (1), and
neglecting shear deformation, yields

T= 1
2 g

l

0

{rA[(u̇2
1 + u̇2

2 + u̇2
3 )+ e2V2 +2eV(u̇2 cos Vt− u̇1 sin Vt)]

+ rI[(u̇'1 )2 + (u̇'2 )2]+2rIV(V− u'1 u̇'2 − u'2 u̇'1 )} dz, (10)

where ()' denotes a partial derivative with respect to z.
The strain energy due to axial and transverse deformations can be expressed as

U= 1
2 g

l

0

{EI[(u01 )2 + (u02 )2]+EA[u'3 + 1
2 (u'1 )2 + 1

2 (u'2 )2]2} dz, (11)

where E is the Young’s modulus. Note that in the above equation the non-linear axial
strain is used to retain the coupling between the axial and transverse deflections.

2.2.  

In order to complete the formulation, the virtual work done by external forces and
gyroscopic moments is written as follows:

dW= dWp + dWf + dWh + dWg , (12)

where dWp , dWf , dWh and dWg are the virtual work due to axial load P, contact,
hydrodynamic damping and gyroscopic moments, respectively.

The virtual work due to the axial load is

dWp =Pdu3 (l1 ). (13)

The virtual work due to contact forces is

dWf =g
l

0

F
r

{[u1 + sign (F)mu2 ]du1 + [u2 − sign (F)mu1 ]du2}d(z− zc ) dz, (14)

where F is the impact force, d(z− zc ) is the Dirac delta function, zc being the impact
location, r is the position of the geometric center of the cross-section along
the drillstring (i.e., r=zu2

1 + u2
2 ), m is the friction coefficient, and F is the velocity of the

collar at the contact point, given as

F= rcf� +RV, (15)

where R is the outer radius of the drillstring, rc is the position of the geometric center at
the impact location and f is given by

f=tan−1(u2 /u1 ). (16)
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The impact force F is obtained from the Hertzian contact law as

F=6−sign (rc )Kh (r− bcl )3/2,
0,

if =rc =e bcl ,
if =rc =Q bcl ,

(17)

where Kh is the Hertzian stiffness, which can be obtained from the material properties and
the contact geometry [9], and bcl is the borehole clearance.

A damping force results from hydrodynamic drag and is modelled as a velocity squared
proportional force in the direction opposite to the velocity of the collars [4]. The virtual
work due to this force is

dWh =−rfCDR g
l

0

zu̇2
1 + u̇2

2 (u̇1du1 + u̇2du2 ) dz, (18)

where rf is the density of the drilling mud and CD is the hydrodynamic drag
coefficient.

Whenever the axis about which a body is spinning is rotating about another axis,
gyroscopic moments occur. For a rotating drillstring, gyroscopic moments result from the
change in the angular momentum of the drillstring due to its bending motion. Because of
the small angle assumption made in deriving the kinetic energy, these terms cannot be
obtained from the kinetic energy and must be included via external work terms [8]. The
virtual work due to gyroscopic moments can be written as

dWg =2rIV g
l

0

(u̇02 du1 − u̇01 du2 ) dz. (19)

2.3.   

The governing equations can now be derived by using the assumed modes method.
Due to the presence of the axial load acting at z= l1 , many modes will be necessary
for convergence of axial deflections. One method to accelerate the convergence is
to introduce forced modes [10]. In this case, this is achieved by adding one forced
mode for the axial deformation in the modal expansions of the elastic deflections, given
as

u1 (z, t)= s
M

i=1

fi (z)qi (t), u2 (z, t)= s
N

j=1

fj (z)hj (t), (20, 21)

u3 (z, t)= s
R

k=1

bk (z)gk (t)+ uf (z, t), (22)

where the qi (t), hj (t) and gk (t) are unknown generalized co-ordinates, fi (z) and bk (z) are
sets of admissible functions—that is, they satisfy the geometric boundary conditions [11]
and uf (z, t) is the forced mode due to the axial load P(t) acting at z= l1 , given as

uf (z, t)=g
G

G

F

f

P(t)
EA

z,

P(t)
EA

l1 ,

for 0E zE l1 ,

for l1 Q zE l.
(23)
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Here the fi (z) are selected as the normalized mode shapes of a simply supported beam
in transverse motion, and the bk (z) are chosen as the normalized mode shapes for the
fixed–free bar in axial motion; i.e.,

fi (z)=X 2
rAl1

sin
ipz
l1

, bk (z)=X 2
rAl

sin (2k−1)
pz
2l

. (24, 25)

In this study, the BHA is assumed to be stabilized by a single stabilizer located at a
distance l1 from the bit. Note that while the support condition at the bit is very close to
being simply supported, the actual support condition imposed by the stabilizer for the
transverse motion of the lower portion of the beam is between simply supported and fixed.
Thus, the above selection is only an approximation and is made on the basis of simplicity.
A more realistic boundary condition will yield slightly different frequencies.

Substituting equations (20)–(22) into equations (10)–(12) and applying Lagrange’s
equations for qi , hj and gk yields the following non-linear coupled set of ordinary
differential equations:

(1+m*i )q̈i +v2
i qi + s

N

j=1

s
R

k=1

Kijk qjgk −2GiVḣi −Si eV2 cos Vt=Qi , i=1, 2, . . . , M,

(26)

(1+m*j )ḧj +v2
j hj + s

M

i=1

s
R

k=1

Kijkhigk +2GjVq̇j −Sj eV2 sin Vt=Q�j , j=1, 2, . . . , N,

(27)

g̈k + v̄2
k gk + 1

2 s
M

i=1

s
N

j=1

Kijk (qi qj + hihj )+ ckP� =0, k=1, 2, . . . , R, (28)

where vi and v̄k are the characteristic frequencies for the transverse and the axial
vibrations, respectively, and are given by

v2
i =g

l1

0

EI(f0i )2 dz+g
l1

0

P(t) (f'i )2 dz, (29)

v̄2
k =g

l

0

EA(b'k )2 dz, (30)

and m*i , Kijk , Gi , Si , ck , Qi and Q�j are obtained from the modal integrals as

m*i =g
l1

0

rI(f'i )2 dz, Kijk =g
l1

0

EAf'i f'j b'k dz (31, 32)

Gi =g
l1

0

rIfif0i dz, Si =g
l1

0

rAfi dz, (33, 34)

ck =
r

E $g
l1

0

bk (z)z dz+g
l

l1

bk (z)l1 dz%, (35)
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T 1
Parameters used in the simulations

Drillstring Drilling mud

E=210 GPa rf =1500 kg/m3

r=7860 kg/m3 CD =1
R=0·1 m
l=200 m Contact
l1 =20 m Kh =6.78×1011 Nm−1·5

e=0·005 m m=0·1
bcl =0·05 m

Weight on bit
P0 =100 kN, Pf =50 kN

Qi =

F$ s
M

j=1

fj (zc )qj + s
N

j=1

sign (F)mfj (zc )hj% fi (zc )

X0 s
M

j=1

fj (zc )qj1
2

+0 s
N

j=1

fj (zc )hj1
2

−g
l1

0

rfCDRX0 s
M

j=1

fj q̇j1
2

+0 s
N

j=1

fj ḣj1
2

0 s
M

j=1

fj q̇j1 fi dz, (36)

Q�j =

F$s
N

i=1

fi (zc )hi − s
M

i=1

sign (F)mfi (zc )qi% fj (zc )

X0s
M

i=1

fi (zc )qi1
2

+0s
N

i=1

fi (zc )hi1
2

−g
l1

0

rfCDRX0 s
M

i=1

fi q̇i1
2

+0 s
N

i=1

fi ḣi1
2

0 s
N

i=1

fi q̇i1 fj dz. (37)

Figure 3. The radial deflection of the geometric center of the drill collar section (V=5 rad/s, n=1).
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Figure 4. The trajectory of the geometric center of the drill collar section (V=5 rad/s, n=1).

The axial excitation which represents WOB, and bit/formation interaction can be
expressed as

−P(t)=P0 +Pf sin vf t, (38)

where P0 is the static component of the WOB, and Pf and vf are the amplitude and the
frequency of the fluctuating component of the WOB which results from the rotation of
the drill bit. The frequency of this fluctuating component is related to the type of the bit

Figure 5. The phase plane for the transverse motion of the geometric center of the drill collar section
(V=5 rad/s, n=1).



    251

Figure 6. The radial deflection of the geometric center of the drill collar section (V=6·28 rad/s, n=1).

by vf = nV. For example, for a PDC (Polycrystalline Diamond Compact) bit, n=1, and
for a tricone bit n=3 [1].

The governing equations are fully coupled non-linear differential equations with time
varying coefficients. The axial and transverse motions are coupled due to non-linear elastic
deflections, whereas the transverse motions in the x and y directions are coupled due to
gyroscopic moments, hydrodynamic damping, impact and friction forces. The time varying
coefficients are due to the axial excitation and axial–transverse coupling. The governing
equations also contain harmonic excitations due to the axial force generated by the bit,
and an out-of-balance mass (i.e., the eccentricity of the center of mass of the collar section
with respect to its geometric center). These excitations introduce four types of vibration
phenomena: simple resonance, where the axial forcing frequency, vf is roughly equal to
the natural axial frequency, v̄k [12]; parametric resonance, where the forcing frequency, vf

Figure 7. The trajectory of the geometric center of the drill collar section (V=6·28 rad/s, n=1).
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Figure 8. The angular motion of the drill collar section (V=6·28 rad/s, n=1); ——, f; - - - -, f� .

is roughly twice the natural bending frequency, vi [1]; a combination resonance, where the
sum of two bending frequencies is equal to an integer multiple of vf [3]; and a whirling
resonance where the speed of rotation, V, is roughly equal to the natural bending
frequency, vi [4]. Although a lot can be learned by studying each phenomenon separately,
it is clear that all of the above-mentioned phenomena are coupled and may occur
simultaneously. In what follows, the results of a set of simulations are presented to show
the combined effects of these phenomena.

3. SIMULATION RESULTS AND DISCUSSION

A numerical solution procedure based on a variable-step variable order predictor–cor-
rector differential equation solver is used to integrate the equations of motion [13]. As is
well known, the accuracy of the numerical solution depends on the choice of the time step,

Figure 9. The radial deflection of the geometric center of the drill collar section (V=5·5 rad/s, n=1).
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Figure 10. The trajectory of the geometric center of the drill collar section (V=5·5 rad/s, n=1).

which is problem dependent. The nominal time step used was 1/10 of the smallest natural
period. In addition, the time step was reduced internally in the integrator to avoid
discontinuities in the response, especially during impacts with the borehole wall. The time
step is reduced by a factor of ten if the relative error bound specified (10−8) is exceeded
[13]. For the simulations given here, the time step varied between 0·1 ms and 0·0001 ms.
Therefore, the numerical accuracy of the results is assured. The parameter values are
chosen to represent cases close to those typically encountered in oilwell drilling, and are
given in Table 1.

In the following simulations, one-mode approximations are used for the axial and
transverse deformations. In addition, one forced mode is used for axial deformation to
improve convergence. Clearly, the existence of impacts would require a multi-mode
analysis, which will increase the dimension and complexity of the non-linear problem.

Figure 11. The angular motion of the drill collar section (V=5·5 rad/s, n=1); key as Figure 8.
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Figure 12. The radial deflection of the geometric center of the drill collar section (V=5·5 rad/s, n=3).

Since the objective of this work is to improve the understanding of the interactions between
various phenomena such as whirling, parametric excitation and non-linear coupling,
one-mode approximations for the deformations are deemed to be adequate. For a real
BHA configuration, however, the results should only be interpreted in a qualitative sense.
It should also be noted that the one-mode approximation used for the transverse motion
also simplifies the contact condition in that the impact always occurs at the mid-span of
the last drill collar section.

A set of simulations were carried out with the bit factor, n=1. In this case, the forcing
frequency, vf , is equal to the rotating speed V, and the critical whirling speed, estimated
from equation (29) is 5·5 rad/s. The dynamic response when the rotating speed V=5 rad/s
is shown in Figures 3–5. Note that the rotating speed is close to the critical whirling speed
and consequently the amplitudes of vibration will be large. Indeed, as can be seen from

Figure 13. The trajectory of the geometric center of the drill collar section (V=5·5 rad/s, n=3).
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Figure 14. The angular motion of the drill collar section (V=5·5 rad/s, n=3); key as Figure 8.

Figures 3 and 4, the amplitudes larger than the borehole clearance cause impacts with the
borehole wall. Because of the presence of dissipative effects such as friction and
hydrodynamic damping, the vibrations eventually settle into a limit cycle behavior. This
is clearly seen in the phase plane given in Figure 5. Overall, the drillstring behavior is
similar to a forward whirl with constant speed (f� =V).

When the rotating speed is increased to V=6·28 rad/s, the steady state whirling
amplitude is higher, which results in continuous impacts with the borehole wall as
illustrated in Figures 6 and 7. In Figure 8 it is shown that, for the time period covered
by the simulation, the drillstring experiences both forward and backward whirl. It seems
that after the large amplitude transient the motion becomes periodic with a larger
amplitude than that of the previous case.

In Figures 9–11 is shown the dynamic behavior when the rotating speed is equal to the
estimated critical whirling speed, V=5·5 rad/s. As expected, the whirling amplitudes are

Figure 15. The radial deflection of the geometric center of the drill collar section (e=0, V=3·67 rad/s, n=3).
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Figure 16. The trajectory of the geometric center of the drill collar section (e=0, V=3·67 rad/s, n=3).

larger than those of the previous cases (see Figure 9). As clearly seen in Figure 10, this
is a highly irregular whirling motion. More information about the whirling behavior can
be obtained by observing the angular rotation f, and whirling speed f� , shown in
Figure 11. For the time period covered by the simulation, the initial forward whirl changes
into a transitory phase, in which the whirl direction continuously changes between forward
and backward, and eventually settles into a backward whirl with a constant average whirl
speed which is close to the effective bending frequency [4].

For the next set of simulations the forcing frequency, vf , is assumed to be three times
the rotating speed, V (i.e., n=3). In Figures 12–14 is shown the response when the rotating
speed, V=5·5 rad/s, which again coincides with the estimated critical whirling speed. A

Figure 17. The phase plane for the transverse motion of the geometric center of the drill collar section (e=0,
V=3·67 rad/s, n=3).



    257

Figure 18. The angular motion of the drill collar section (e=0, V=3·67 rad/s, n=3); key as Figure 8.

comparison of Figures 9 and 12 reveals that the higher excitation frequency results in a
lower fluctuating component in the drillstring deflection amplitude. As can be seen in
Figure 14, the drillstring, after an initial transient, goes into backward whirling and stays
close to the borehole wall (compare Figures 12 and 13 with Figures 9 and 10).

In order to investigate the effect of parametric resonance alone, the excitation frequency
is taken to be equal to twice the effective bending frequency (i.e., vf =11 rad/s), and the
eccentricity is assumed to be zero to eliminate the excitation due to unbalance. Since n=3,
the corresponding rotating speed is V=3·667 rad/s. As expected in Figures 15–17 is shown
behavior typical of parametric instability. As can be seen in Figure 18, the motion is a
backward whirl with a constant average speed. The results with a non-zero eccentricity
are shown in Figures 19–22. The result of the excitation due to unbalance is a strongly
irregular motion, as seen in Figure 20. The combined effect of whirling and parametric
excitation can clearly be seen by comparing the results of the last two simulations.

Figure 19. The radial deflection of the geometric center of the drill section (V=3·67 rad/s, n=3).
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Figure 20. The trajectory of the geometric center of the drill collar section (V=3·67 rad/s, n=3).

Although the overall amplitudes are similar, they appear to be modulated due to the effect
of unbalance (see Figure 19), and consequently the number of impacts is reduced. Despite
the difference in the transient, the average whirling speeds are the same for both cases.

The above simulation results qualitatively confirm some of the field observations
reported by Vandiver et al. [2]. By inspecting bending moment and phase angle time
histories, they were able to detect the presence of forward and backward whirling and/or
impacts with the borehole wall. Parametric coupling was also cited among possible causes
of such vibrations. As mentioned earlier, experimental results [3] also confirm the existence
of similar behavior. Thus, the proposed dynamic model is capable of predicting the actual
dynamic behavior of drillstrings in a qualitative manner. The quantitative behavior,

Figure 21. The phase plane for the transverse motion of the geometric center of the drill collar section
(V=3·67 rad/s, n=3).



    259

Figure 22. The angular motion of the drill collar section (V=3·67 rad/s, n=3); key as Figure 8.

however, depends on the actual values of the model parameters such as borehole friction,
hydrodynamic damping and contact stiffness, which vary significantly during operation.
In most cases, the values of these parameters are very difficult to obtain. Although it may
be useful to study their effects on the dynamic behavior, a detailed parametric study is
beyond the scope of this paper.

4. CONCLUSIONS

A dynamic model of the coupled axial and transverse vibrations of a rotating drillstring
has been presented. The model includes gyroscopic moments, contact with the borehole
wall, axial excitation due to bit/formation interactions, and hydrodynamic damping due
to the presence of drilling mud outside the drillstring. The dynamic behavior is governed
by a system of fully coupled non-linear equations with time varying coefficients. The
governing equations are solved numerically for various sets of parameter values. The well
known phenomena of parametric resonance and whirling, which cause violent lateral
vibrations, are shown to occur simultaneously within the range of operating conditions
of drilling.

Because of the non-linear and time varying nature of the terms in the governing
equations, the dynamic behavior is quite complicated and may become non-periodic,
suggesting chaotic behavior. Further analytical and numerical studies are needed, however,
to improve the understanding of the associated non-linear phenomena.
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