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1. 

The increasing application of fracture mechanics concepts in design has prompted
researchers to gain an understanding of the dynamic behaviour of structures with cracks
or crack-like defects. Extensive studies have been reported on cracked rotors [1]. The study
of the dynamic behaviour of annular plates with periodic radial cracks is important, as
several machine components, such as flywheels, clutch plates, etc., with cracks can be
considered as annular plates for the purpose of analysis. In this note, an experimental
investigation on the effects of the number and length of periodic radial cracks on the
natural frequencies of an annular plate is reported. The inner edge of the plate is clamped,
while the outer edge is kept free.

2.  

In Figure 1 are shown the details of the annular plate, along with the specialized
mounting to simulate the clamped end conditions at the inner boundary. The annular plate
is cut from a rolled aluminium sheet of 3·18 mm thickness. The effective inner diameter
of the plate is 60 mm and the outer diameter is 260 mm. Annular plates with cracks
emanating from the inner boundary as well as the outer boundary are investigated for
various crack lengths (25, 40, 60 and 75 mm). The cracks are simulated by milling thin
slots of 0·5 mm width and the slot is finally finished to 0·35 mm width at the crack tip using
a saw. For cracks emanating from the inner boundary, experiments are carried out with
four, six, eight and twelve cracks, whereas for cracks emanating from the outer boundary
the results are presented for only six cracks.

Natural frequencies are detected in two ways. In the first, a rap test is performed by
hitting the plate with a hammer (B&K 8202). The response at a point of the plate is
measured using an accelerometer (B&K 4374). The output of the accelerometer is amplified
by a charge amplifier (B&K 2635) and is analyzed using a spectrum analyzer (HP 3582A).
In the second method, the clamped disk is mounted on an IMV electrodynamic shaker
and different resonances are detected by varying the exciting frequency. As before, the
response is measured by an accelerometer.

The fixed end condition at the inner boundary is effected by an annular ring pressed
by a set of six clamping bolts (see Figure 1). Sufficient care is exercised to tighten these
bolts uniformly so that the fixed end condition is closely simulated. The cracked plates are
experimented with at different orientations of the cracks with respect to the clamping bolts
to see whether the relative orientation of the cracks with the clamping bolts affects the
results. The change in resonance frequencies is found to be of the order of 1–2 Hz, which
is very small.

Apart from recording the natural frequencies, nodal patterns are also recorded by
sprinkling sand particles uniformly over the specimen. Initially, experiments are conducted
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Figure 1. The clamping details of the annular plate.

for an annular plate without cracks. In Table 1 is shown a comparison of the experimental
results obtained for an uncracked annular plate with the analytical results reported by
Vogal and Skinner [2]. Since a perfectly clamped inner edge, assumed in the theoretical
analysis, provides a higher stiffness than can be achieved in practice, the experimental
frequencies have turned out to be lower than the theoretical values.

An uncracked annular plate is an axisymmetric structure. However, when periodic radial
cracks are introduced, it becomes a cyclically symmetric structure. With axisymmetric
structures, it is known that most modes of vibration occur in degenerate orthogonal pairs.
The possible mode shapes in a cyclically symmetric structure fall into three classes,
depending on the relationship between the shapes for individual substructures [3]. These
are as follows: (a) that each substructure has the same mode shape as its neighbours; (b)
that each substructure has the same mode shape as its neighbours, but is vibrating in
antiphase with them; and (c) all other possible mode shapes. Modes of class (a) and (b)
do not exhibit degeneracy, except for any ‘‘accidental’’ degeneracy that may occur if an
unrelated mode shape is associated with the same natural frequency. All of the mode
shapes that fall in category (c) exhibit degeneracy. Mallik and Mead [4] observed that even
for a one-dimensional closed structure such as a ring that is supported periodically, the
degenerate modes exist. They verified their analytical development by conducting

T 1

A comparison of theoretical and experimental resonance frequencies for an annular plate

Resonance frequencies (Hz)
Mode ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

(nodal diameter, Analytical Experimental,
nodal circle) (reference [2]) vu % difference

(1, 0) 231·8 225 2·85
(0, 0) 262·6 256 2·51
(2, 0) 320·6 307 4·24
(3, 0) 594·9 590 0·83
(0, 1) 1730·8 1567 9·46
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T 2

Resonance frequencies for an annular plate with cracks emanating from the inner boundary.
The table summarises the results from both the shaker table test and the rap test. The mode
shapes observed are shown in Figures 2(a)–2(d), and the figure sequence (i), (ii), (iii) etc.

represents the sequence of frequencies observed in the shaker table test

Crack length (mm)
Number of Mode Mode ZXXXXXXXXCXXXXXXXXV

cracks number type 25 40 60 75

4 1 (1, 0) 209 198 199 195
2 — 225* 209* 212* 208*
3 (0, 0) 256* 241* 234* 225*
4 (2, 0) 300 294 293 292
5 (3, 0) 590 583 577 567
6 — — — 577 —
7 — — — 995† 956†
8 (0, 1) 1560 1549 1543 1525
9 — — — 1559† —

6 1 (1, 0) 210* 205 190 188
2 — — — 208* —
3 (0, 0) 245 234* 223 203
4 (2, 0) 301 293 292 300
5 — — — 303* —
6 (3, 0) 586* 582* 582* 580
7 (0, 1) 1552 1544 1534 1506
8 — — 1560† 1550† 1540†

8 1 (1, 0) 210 204 187 184
2 (0, 0) 239 224 208 201
3 (2, 0) 301 291 287 286
4 — — — 298* —
5 (3, 0) 586* 579* 566 539*
6 (0, 1) 1540 1513 1509 1487

12 1 (1, 0) 208 200 193 180
2 (0, 0) 234 220 202 190
3 (2, 0) 293 299 286 281
4 — — — — 290*
5 (3, 0) 585 578 556 525
6 — — — — 996†
7 (0, 1) 1525 1529 1507 1456

* Observed only in a rap test.
† Observed only in the shaker table test.

experiments on a ring supported by three radial supports. For a degenerate mode, although
theoretically one has to observe two different modes for the same value of frequency,
experimentally Mallik and Mead observed two modes (one symmetric and the other
antisymmetric) at slightly different frequencies. This is referred to as a split in the resonance
frequency and is attributed to the fact that, in an experimental situation, the structure may
not be perfectly cyclically symmetric.

The natural frequencies for an annular plate with cracks emanating from the inner
boundary are shown in Table 2. The table shows the possible mode classification in terms
of nodal diameters and nodal circles as in the case of an annular plate without cracks.
Although this classification is strictly not correct, nevertheless it offers a convenient
standpoint for discussion of the results.
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T 3

A table of parameters to evaluate vl for the modes (1, 0), (0, 0) and (2, 0) for various number
of cracks

(1, 0) (0, 0) (2, 0)
Number of ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

cracks vs (Hz) m vs (Hz) m vs (Hz) m

4 193·796 3·019 200·758 0·584 291·355 2·612
6 179·623 1·336 174·289 0·571 287·779 1·852
8 171·371 1·129 185·040 1·134 282·378 1·608

12 170·332 1·137 169·650 1·053 281·575 2·531

Most of the modes are observed in both the rap test and the shaker table test.
However, a few modes are observed only in a rap test or in the shaker table test, and
these are appropriately indicated in the tables. As expected, in Table 2 it is shown
that the value of the natural frequency decreases when the number of cracks or the
length of the crack is increased. This decrease is more prominent for the umbrella mode
(0, 0).

The results reported in Table 2 are meant for specific crack lengths. It is desirable that
an empirical relation is obtained from the experimental data, so that the natural
frequencies for any arbitrary crack length can be obtained. For any arbitrary
non-dimensional crack length l (l= l/(b− a), where l is the crack length, and b and a
are the outer and inner radii of the annular ring), the natural frequency vl , can be
represented as,

vl =vs +(vu −vs )(1− l)m, (1)

T 4

Resonance frequencies for an annular plate with six periodic radial cracks emanating from
the outer boundary. The table summarizes the results from both the shaker table test and
the rap test. The mode shapes observed are shown in Figures 3(a)–3(d) and the figure sequence
(i), (ii), (iii) etc. represents the sequence of frequencies observed in the shaker table test

Crack length (mm)
ZXXXXXXXXXCXXXXXXXXXV

Mode number Mode type 25 40 60 75

1 (1, 0) 205 180 200 201
2 — 226 — 214 —
3 (0, 0) 254 249 230 233
4 (2, 0) 289 — — —
5 — 300* — — —
6 (3, 0) 539 491 — 516
7 — 860* 729 1333 1296
8 — 895 993 — —
9 — 1305 1470 1457 1472

10 — 1330 — — 1515
11 — 1554 1763 1619 1551
12 — — — 1654 —
13 — 1662 — 1699 1706

* Observed only in a rap test.
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where vu is the natural frequency of the uncracked plate. It can be seen that when
l=0, equation (1) gives the frequency corresponding to an uncracked plate (vu ), and
when l=1 it gives the natural frequency of a sector of the plate (vs ). The parameters,
vs , representing the natural frequency of the sector of a cyclically cracked plate and m,
the exponent of (1− l), are to be determined from experimental data reported in Table 2.

The parameters vs , and m of equation (1), are determined in a least squares sense from
the results reported in Table 2 for the modes (1, 0),(0, 0) and (2, 0). The values of these
two parameters so obtained are given in Table 3. For all these cases, the experimental value
of vu is used, and is taken from Table 1 for the respective modes.

In Figures 2(a)–2(d) are shown the typical nodal patterns observed for a crack of 60 mm
length emanating from the inner boundary for four, six, eight and twelve cracks
respectively. The frequencies for the figure sequence (i), (ii), (iii) etc. are the ones mentioned
in Table 2 corresponding to the shaker table test. Figures 2(a), iii and 2(a), iv represent

Fig. 2. (Continued—overleaf )



    271

Figure 2. Nodal patterns corresponding to radial cracks of 60 mm length for various number of cracks
emanating from the inner boundary: (a) Four cracks; (b) Six cracks; (c) Eight cracks; (d) Twelve cracks.

the nodal patterns for the degenerate mode at the frequency 577 Hz. The result is
significant in that, even experimentally, two different nodal patterns could be observed for
a single resonance frequency (within the margin of measuremental accuracy). However,
the result is more of an exception, as for most of the other degenerate modes a split in
the natural frequency is observed, as reported by Mallik and Mead. The split is more
readily observed in a rap test than while exciting the plate by a shaker. In most of the
experiments, a split is observed for the modes (1, 0) and (2, 0), as these happen to be the
degenerate modes. It is to be noted that the mode (2, 0) is a degenerate mode only for plates
with cracks above four.

A limited experimental study is also performed for cracks emanating from the outer
boundary. In Table 4 are shown the natural frequencies for the case of six cracks
emanating from the outer boundary for various crack lengths. The table shows that several
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new modes are excited and the split in resonance frequencies is observed for a large number
of modes. In Figures 3(a)–3(d) are shown typical nodal patterns observed for an annular
plate with six periodic cracks for crack lengths of 25, 40, 60 and 75 mm, respectively. In
contrast to the case of cracks emanating from the inner boundary, the individual sectors

Fig. 3. (Continued overleaf )
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Figure 3. Nodal patterns corresponding to six radial cracks of various crack lengths emanating from the outer
boundary: (a) 25 mm; (b) 40 mm; (c) 60 mm; (d) 75 mm.

of the plate (inner boundary is clamped) with radial cracks emanating from the outer
boundary are strongly coupled. This has resulted in the excitation of a large number of
new modes, and the degenerate modes are also observed more frequently.
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3. 

In general, the presence of periodic radial cracks in an annular plate introduces
additional modes, and these are very significant for the case of cracks emanating from the
outer boundary, as the individual sectors are strongly coupled. A split in the resonance
frequencies is observed for degenerate modes and these are readily observed for cracks
emanating from the outer boundary. Normally, the change in the resonance frequencies
is more for circumferential modes than for the diametral modes. The trend is well defined
when either the number or the length of the cracks is increased. However, the change in
resonance frequencies due to the presence of cracks is rather too small to develop any
condition monitoring technique based on this premise. Nevertheless, the result presented
in this paper supports the wave propagation concept [4, 5] for analyzing the dynamic
behaviour of cyclically symmetric structures.
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