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1. 

Several authors have recently explored transverse motion stability of a thin moving elastic
strip subjected to a plane deterministic or random load. This problem has been analyzed
in the papers of Soler [1], Tylikowsky [2] and Kozin and Milstead [3]. They have used
various models for deriving equations of the strip motion as well as for external loading.
Their aim was to determine the motion stability conditions or to define the system
parameter’s impact upon frequencies of various mechanical systems such as band saws,
transmission belts or strip motion in modern instrumentation tape recorders. In reference
[1] the deterministic problem has been discussed and in addition the dependence of
frequency upon the system parameters has been determined. In reference [2] uniform
stochastic stability has been discussed by using the Lyapunov direct method. In reference
[3] the method developed by Wu and Kozin was applied in order to determine the
conditions for an almost-sure asymptotic system stability of an order greater than the
second.

In what follows, combining the method of stochastic averaging and the procedure for
determining the largest Lyapunov exponent, the largest Lyapunov exponent has been
defined for the mechanical system concerned when subjected to random non-correlative
parametric excitations. On the basis of these expressions and provided that the largest
Lyapunov exponent is negative, an asymptotic stability region has been determined for the
case when P(t)=0 for various system parameters. The mean square stability region has
also been determined.

2.    

In reference [1] the nondimensional differential equations of motion of a moving thin
elastic strip (see Figure 1) were derived under the following conditions.

It is assumed that displacements in the co-ordinate directions are small so that the
classical von Kármán formulation is used; additionally, it is assumed that the transverse
displacement in the z direction is sufficiently small so that the strip’s cross-section deflects
and rotates like a rigid body. The effect of the gyroscopic terms is neglected.
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Here the following parameters have been introduced for the sake of simplifying the
expression as well as for forming the non-dimensional equations of motion:
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Here: E is the Young’s modulus of the strip material, G is the shear modulus of the strip
material, r is the strip’s mass density, W is the transverse displacement (z direction), u is
the rotation of the strip about the x-axis, C is the constant axial (x direction) translation
velocity, n is the Poisson’s ratio of the strip, T0 is the constant tension in the strip, P0 is
the constant edge load at the support, T(t) and P(t) are stationary stochastic wide-band
non-correlated processes of small intensity with zero mean value, b is the strip thickness,
h is the strip width, L is the separation between pinch rollers or drive capstans, and bq 0
is the small coefficient of linear damping.

In order to simplify equations (1a, 1b) Galerkin’s method has been used to reduce them
to an equivalent system of ordinary differential equations with respect to the
time-dependent parts of the solution as shown in reference [3]:
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Figure 1. Sketch and geometry of the moving strip.
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3.   ‘‘ ’’

The eigenfrequencies v(n)
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2 of the unperturbed system (o=0) are given by the roots
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The transformation of equations (2, 3) to the ‘‘standard form’’ is done by using the
relations
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By the well-known procedure, an equivalent system is obtained consisting of four first
order equations of the ‘‘standard form’’;
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4.  

By applying the procedure of stochastic averaging [6] to equations (6a–d) one obtains
the following Itô differential equations with respect to the averaged amplitudes a1 and a2,
in the first approximation:

da1 = oK1 dt+ o1/2s11 dW1 + o1/2s12 dW2 (7)

da2 = oK2 dt+ o1/2s21 dW1 + o1/2s22 dW2. (8)

Here W1(t) and W2(t) are independent Wiener processes of unit intensity while the drift
K1, K2 and the diffusion coefficients sij , i, j=1, 2 are given by the following relations:
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Spectral densities Sf and Sg of the processes f (n)
(t) and g(n)

(t) are defined by the relations
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where E[] denotes the expectation.
One can notice that the averaged amplitude vector (a1, a2) is a two-dimensional diffusion

process while the coefficients on the right side of equations (7, 8) are homogeneous with
respect to the first degrees of the amplitudes a1 and a2. In order to apply the Khas’minskii
transformation and to derive the expression for the largest Lyapunov exponent the
logarithmic polar transformation is introduced:
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By the procedure given in references [4, 5] the expression for the largest Lyapunov
exponent are obtained as
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For the case when DQ 0 the Lyapunov exponent is

l= 1
2 [(l1 + l2)+ (l1 − l2) coth [l1 − l2)a/(−D)1/2]}, DQ 0, (9b)
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where a is given by
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In the case when D=0, Lyapunov exponent is
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in which the constants k11, k12, k21, k22, l1, l2 and D are defined by the relations
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5.       

By using the expressions (9a–c) for real numerical system parameters, from the condition
that the largest Lyapunov exponent is negative, it is theoretically possible to determine an
almost-sure region of asymptotic stability, with the probability of one, of the mechanical
system under study. In this case this is a very complex numerical problem. Consider the
case when the load on the support is of constant intensity: that is when P(t)=0, Sg =0.
Then the constants are
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For the values of the constant Dq 0 the stability region boundaries are determined by
the expression (9a), from which it follows that a:a and

l1 =−b'+ k2
11/8Q 0. (10)

By substituting the constants in expression (10) the condition for an almost-sure
asymptotic stability is found to be,

b'q (1/8[v(n)
1 ]2)Sf. (11)

By using the Itô rule for differentiating complex stochastic functions one can simply
determine the differential equations in the second order moment of the amplitudes, and
take the expectations of both sides of the resulting equations, yielding

dE [a2
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2 ]2] E [a2
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Therefore, on the basis of equations (12, 13) the necessary and sufficient condition for
mean square stability is

b'q (1/4[v(n)
1 ]2)Sf (14)

The variations of the stable regions almost-sure asymptotic stability from expression (11)
and mean-square stability from expression (14), for different values of the squared
eigenfrequency [v(n)

1 ]2 =100, 150 s−2, are shown in Figure 2. Notice that the stability region
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Figure 2. Stability regions for a moving elastic strip. - - - -, Mean-square stability; —, almost-sure asymptotic
stability.

of the mean-square amplitudes is twice as large as the stability region of almost-sure
asymptotic stability for both values of the square eigenfrequency [v(n)

1 ]2.

6. 

Stochastic stability of a thin moving elastic strip when it is subjected to parameters of
random excitations that are wide-band stochastic processes of small intensity has been
examined. By combining the Khas’minskii method of stochastic averaging and the
procedure for determining the largest Lyapunov exponent, expressions for the largest
Lyapunov exponent with respect to the system parameters have been determined.
Especially for the case P(t) = 0, by using the derived expressions an almost-sure asymptotic
stability region of the mechanical system has been determined. The mean-square stability
region has also been determined. One can also notice that with the higher eigenfrequency
of the system one has the higher stability region as determined for both criteria.
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