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A complex modal testing theory is newly developed for asymmetric rotor systems. The
theoretical development is made strictly in the stationary co-ordinate system, and this
enables a unidirectional excitation technique efficiently to estimate the directional frequency
response functions, which greatly lessens the testing efforts and enhances the practicality
of the theory.
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1. INTRODUCTION

In general, a rotor system consists of a rotor and a stator, which may have some degree
of non-axisymmetric properties. According to the non-axisymmetric properties, a rotor
system may be classified as follows [1–3]: isotropic (symmetric) rotor system, both the rotor
and the stator are axisymmetric; anisotropic rotor system, the rotor is axisymmetric but
the stator is not; asymmetric rotor system, the stator is axisymmetric but the rotor is not;
general rotor system, neither the rotor nor the stator is axisymmetric.

The presence of asymmetric properties can significantly affect the dynamic
characteristics of a rotor, such as the unbalance response, critical speeds and stability.
Thus, the accurate identification of such asymmetric properties plays an important role
in the physical understanding of the dynamic characteristics of asymmetric rotors. Typical
examples of a rotor with an asymmetric moment of inertia include a two-bladed propeller
and a two-pole generator. A rotor shaft with a rectangular cross-section or keyway is of
asymmetric stiffness.

The complex modal testing method, which has been recently developed for rotor
systems, utilizes the so-called directional frequency response functions (dFRFs) between
complex inputs and outputs for effective modal parameter identification [4–6]. For the
unbiased estimation of dFRFs associated with anisotropic rotor systems, Lee et al. [7–10]
proposed bidirectional random excitation techniques, which require the simultaneous
(bidirectional) excitations in two directions at right angle and perpendicular to the
rotating axis. As the system anisotropy becomes null, i.e., for isotropic rotors, only a
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unidirectional excitation suffices, with the response measurements along the two
perpendicular directions. For asymmetric rotors, Lee and Joh [2] and Joh and Lee [3]
proposed a similar bidirectional excitation technique for anisotropic rotors, which converts
the measured input and output signals in the stationary co-ordinate system to those in the
rotating co-ordinate system. This approach, which is in essence a modulation technique,
has been experimentally proved to be valid. However, the testing procedure is quite
involved.

The main objective of this work is to develop an efficient modal testing theory for
asymmetric rotor systems. This new approach is essentially based upon the direct use of
the stationary co-ordinate system to formulate the equation of motion and to derive the
dFRFs of asymmetric rotors, which has been prohibited previously owing to the
appearance of time-varying properties in the formulations. The key idea is that the use
of the stationary co-ordinate system is more sensible than the use of the rotating
co-ordinate system in the application of the developed theory to practical asymmetric
rotors, since the excitations and responses are usually measured with respect to the
stationary co-ordinate system. Then, we confirm the previous finding that the estimation
of dFRFs by the bidirectional excitation technique is possible when the complex input
processes are jointly stationary. Finally, we propose a unidirectional random excitation
technique to estimate dFRFs, which is based upon jointly non-stationary complex input
processes.

2. DIRECTIONAL FREQUENCY RESPONSE FUNCTIONS

Using the stationary co-ordinate system, xyz, shown in Figure 1(b), the equation of
motion of an asymmetric rotor system can be written in the complex domain as [2, 11]

Mf p̈(t)+Mr ej2Vtp� (t)+Cf ṗ(t)+Cr ej2Vtp̄� (t)+Kf p(t)+Kr ej2Vtp̄(t)= g(t), (1)

where the N×1 complex response and input vectors, defined by the real response vectors,
y(t) and z(t), and the real input vectors, fy (t) and fz (t), respectively, are

p(t)= y(t)+ jz(t), p̄(t)= y(t)− jz(t),

g(t)= fy (t)+ jfz (t), ḡ(t)= fy (t)− jfz (t). (2)

Here V is the rotational speed of the rotor; the bar denotes the complex conjugate; j is
the imaginary number; M, C and K are the complex valued N×N generalized mass,
damping and stiffness matrices, respectively; and the subscripts f and r refer to the

Figure 1. A simple rotor with asymmetric inertia and stiffness. (a) Front view; (b) Side view.
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symmetric and asymmetric properties, respectively. Note that the excitations and the
response measurements are usually realized with respect to the stationary co-ordinate as
in equation (1).

Equation (1), along with its complex conjugate form multiplied by ej2Vt, can be written as

$Mf Mr

M� r M� f%$ p̈(t)
p� (t) ej2Vt%+$Cf Cr

C� r C�f%$ ṗ(t)
p� (t) ej2Vt%+$Kf Kr

K�r K�f%$ p(t)
p̄(t) ej2Vt%=$ g(t)

ḡ(t) ej2Vt%.

(3)

Taking the Fourier transform of equation (3), we obtain

$Df ( jv) Dr {j(v−2V)}
D
 r ( jv) D
 f {j(v−2V)}%$ P( jv)

P
 {j(v−2V)}%=$ G( jv)
G
 {j(v−2V)}%, (4)

where P( jv), P
 ( jv), G( jv) and G
 ( jv) are the Fourier transforms of p(t), p̄(t), g(t) and
ḡ(t), respectively, and the partitioned dynamic stiffness matrices are

Df ( jv)=Kf −v2Mf +jvCf ,

Dr {j(v−2V)}=Kr −(v−2V)2Mr +j(v−2V)Cr ,

D
 r ( jv)=K�r −v2M� r +jvC�r ,

D
 f {j(v−2V)}=K�f −(v−2V)2M� f +j(v−2V)C�f .

From equation (4), the two-sided directional frequency response matrices (dFRMs) can
be defined in the stationary co-ordinate system as

$ P( jv)
P
 {j(v−2V)}%=$Hgp ( jv)

Hg̃p ( jv)
Hgp̃ ( jv)
Hg̃p̃ ( jv)%$ G( jv)

G
 {j(v−2V)}%, (5)

where

Hgp ( jv)= [Df ( jv)−Dr {j(v−2V)}D
 f {j(v−2V)}−1D
 r ( jv)]−1,

Hg̃p ( jv)=−[Df ( jv)−Dr {j(v−2V)}D
 f {j(v−2V)}−1D
 r ( jv)]−1Dr {j(v−2V)}

×D
 f {j(v−2V)}−1,

Hgp̃ ( jv)=−[D
 f ( j(v−2V)}−D
 r ( jv)Df ( jv)−1Dr {j(v−2V)}]−1D
 r ( jv)Df ( jv)−1,

Hg̃p̃ ( jv)= [D
 f {j(v−2V)}−D
 r ( jv)Df ( jv)−1Dr {j(v−2V)}]−1. (6)

Here Hgp ( jv) and Hg̃p̃ ( jv) are referred to as the normal dFRMs, whereas Hg̃p ( jv) and
Hgp̃ ( jv) are referred to as the reverse dFRMs, and it is assumed that all inverse matrices
exist. From equations (4) and (5), it can easily be proved that

Hgp̃ ( jv)=H� g̃p {−j(v−2V)}, Hg̃p̃ ( jv)=H� gp {−j(v−2V)}. (7)

Therefore, in order to completely define the dFRMs, it is sufficient to consider two dFRMs,
i.e.,

P( jv)= [Hgp ( jv) Hg̃p ( jv)]$G( jv)
G	 ( jv)%, (8)

where G	 ( jv)=G
 {j(v−2V)} is the Fourier transform of g̃(t)= ḡ(t) ej2Vt.
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Figure 2. The two-complex input/single-complex output model.

3. ESTIMATION OF DIRECTIONAL FREQUENCY RESPONSE FUNCTIONS

The estimation of dFRFs between complex inputs and outputs is the key feature of the
complex modal testing for rotor systems. In this section, we investigate the estimation
methods of the dFRFs defined in the previous section, and propose appropriate excitation
methods.

3.1.   dFRFs     

The simple two-complex input/single-complex output model which describes any pair
of input/output elements of an asymmetry rotor system expressed by equation (8) is shown
in Figure 2. It can easily be proved that the complex random processes, {g(t)} and {ḡ(t)},
are jointly wide-sense stationary (WSS) with zero mean if the real random input processes,
{ fy (t)} and { fz (t)}, are jointly WSS with zero mean. Note that the original signals can
always be transformed to have zero mean values by subtracting their mean values, and
the commonly used random input processes for the complex modal testing, { fy (t)} and
{ fz (t)}, or equivalently {g(t)} and {ḡ(t)}, are jointly WSS. This will be assumed henceforth.
However, similar to a modulated real signal [12, 13], the complex input processes, {g(t)}
and {g̃(t)}, in Figure 2, are jointly WSS if and only if the complex input processes, {g(t)}
and {ḡ(t)}, are jointly WSS with zero mean and their correlation functions are such that

Rgḡ (t)=Rḡg (t)=0, (9)

or, equivalently, since Rgḡ (t)=Rfyfy (t)−Rfzfz (t)− j{Rfyfz (t)+Rfzfy (t)},

Rfyfy (t)=Rfzfz (t), Rfyfz (t)=−Rfzfy (t). (10)

The proof of this is as follows.
Clearly,

E[g(t)]=E[ fy (t)]+ jE[ fz (t)]=0,

E[g̃(t)]=E[g(t)] ej2Vt =0,

Rgg (t)=E$ḡ0t− t

21g0t+ t

21%=Rfyfy (t)+Rfzfz (t)+ j{Rfyfz (t)−Rfzfy (t)},

Rg̃g̃ (t)=Rgg (−t) ej2Vt. (11)

Here E[·] indicates the expected value. Furthermore,

E$ḡ0t− t

21g̃0t+ t

21%=Rgḡ (t) ejVt ej2Vt. (12)
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Note that, if {g(t)} is a zero mean WSS complex random process, {g̃(t)} also becomes a
zero mean WSS complex random process. However, in order that the complex input
processes {g(t)} and {g̃(t)} become jointly WSS, the expected value of equation (12) should
also be independent of time t. This is possible if and only if equation (9) holds unless the
rotational speed, V, is zero.

Equations (9) and (12) immediately suggest that the complex random process {g(t)} also
becomes uncorrelated with {g̃(t)}, if it is uncorrelated with {ḡ(t)}. Let us assume that we
can properly measure the complex time signals, g(t), g̃(t) and p(t), from the jointly WSS
and uncorrelated complex input processes, {g(t)} and {g̃(t)}, and the output process,
{p(t)}, respectively. Then the dFRFs can be estimated from [14]

Hgp ( jv)=
Sgp ( jv)
Sgg ( jv)

, Hg̃p ( jv)=
Sg̃p ( jv)
Sg̃g̃ ( jv)

, (13)

where the quantities Sik ( jv), i= g, g̃ and k= p, g, g̃, are the two-sided directional auto-
(for i= k) and cross- (for i$ k) spectral density functions (dPSDs and dCSDs) between
the signals g(t), g̃(t) and p(t), respectively.

From the condition (10), the spectral density functions of excitations should satisfy

Sfyfy ( jv)=Sfzfz ( jv) and Re{Sfyfz ( jv)}=0. (14)

Two conventional excitation methods can be used to estimate the dFRFs for the jointly
WSS input processes: one method, with Im{Sfyfz ( jv)}$ 0, is called the directional (or
bidirectional rotating) random excitation; and the other, with Im{Sfyfz ( jv)}=0, is called
the uncorrelated isotropic (or bidirectional stationary) random excitation [2, 8, 9].

3.2.   dFRFs   -  

In practice, it may be difficult to generate excitations that ideally satisfy the condition
(9), due to the difficulties associated with the precise alignment and tuning of actuators.
This implies that the processes, {g(t)} and {ḡ(t)}, may be jointly stationary but correlated.
Thus, we will deal, in this section, with the case when the two random input processes,
{g(t)} and {g̃(t)}, are individually stationary but jointly non-stationary, to estimate dFRFs
from the signals g(t), g̃(t) and p(t).

For non-stationary random processes, the double frequency spectral density functions
at any pair of fixed frequencies, jv1 and jv2 , are defined by the expected values [14], and
their relationships are derived, from the model in Figure 2, as

Sgp ( jv1 , jv2 )=E[G�( jv1 )P(jv2 )]

=E[G�( jv1 ){Hgp ( jv2 )G( jv2 )+Hg̃p ( jv2 )G	 ( jv2 )}]

=Hgp ( jv2 )Sgg ( jv1 , jv2 )+Hg̃p ( jv2 )Sgg̃ ( jv1 , jv2 ),

Sg̃p ( jv1 , jv2 )=E[G	� ( jv1 )P( jv2 )]

=EG	� ( jv1 ){Hgp ( jv2 )G( jv2 )+Hg̃p ( jv2 )G	 ( jv2 )}]

=Hgp ( jv2 )Sg̃g ( jv1 , jv2 )+Hg̃p ( jv2 )Sg̃g̃ ( jv1 , jv2 ), (15)

where the quantities Sik ( jv1 , jv2 ), i= g, g̃ and k= g, g̃, p, are the two-sided double
frequency directional auto- and cross-spectral density functions (dPSDs and dCSDs)
between the signals g(t), g̃(t) and p(t), respectively. Unless the double frequency directional
coherence function (dCOH) between g(t) and g̃(t) for the line v1 =v2 =v in the (jv1, jv2)
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plane, g2
gg̃ ( jv, jv), is unity, the estimates of dFRFs, Hgp ( jv) and Hg̃p ( jv), become, from

equation (15),

Hgp (jv)=
Sgp (jv, jv)
Sgg (jv, jv) $1−

Sg̃p (jv, jv)Sgg̃ (jv, jv)
Sgp (jv, jv)Sg̃g̃ (jv, jv)%>[1− g2

gg̃ (jv, jv)],

Hg̃p (jv)=
Sg̃p (jv, jv)
Sg̃g̃ (jv, jv) $1−

Sgp (jv, jv)Sg̃g (jv, jv)
Sg̃p (jv, jv)Sgg (jv, jv)%>[1− g2

gg̃ (jv, jv)], (16)

where

g2
gg̃ (jv, jv)=

=Sgg̃ (jv, jv) =2
Sgg (jv, jv)Sg̃g̃ (jv, jv)

. (17)

Equations (A12), (A13) and (A14) in the Appendix indicate, for a sufficiently long record
length Te p/2V, that

Sg̃g (jv, jv)=Sgg̃ (jv, jv)=0. (18)

Equations (17) and (18) imply that the estimate of g2
gg̃ (jv, jv) will eventually become null

as the number of ensemble averages increases. Recalling that the individual random
processes {g(t)} and {g̃(t)} are stationary, we can write, from equation (A17),

Sgg (jv, jv)=TSgg (jv), Sg̃g̃ (jv, jv)=TSg̃g̃ (jv). (19)

Substituting equations (18) and (19) into equation (16), we obtain the expressions for the
estimates of the normal and reverse dFRFs for the jointly non-stationary input processes,
{g(t)} and {g̃(t)}, as

Hgp (jv)=
Sgp (jv, jv)
TSgg (jv)

, Hg̃p (jv)=
Sg̃p (jv, jv)
TSg̃g̃ (jv)

, (20)

where

Sgp (jv, jv)=E[G�(jv)P(jv)], Sg̃p (jv, jv)=E[G	� (jv)P(jv)],

Sgg (jv)=
1
T

E[G�(jv)G(jv)], Sg̃g̃ (jv)=
1
T

E[G	� (jv)G	 (jv)],

which are, in essence, not different from the method given in equation (13) developed for
the jointly WSS and uncorrelated processes, {g(t)} and {g̃(t)}. In other words, equations
(18) and (20) hold irrespective of the correlation between the jointly WSS processes with
zero mean, {g(t)} and {ḡ(t)}. This implies that any unidirectional random stationary
excitation in the y–z plane is sufficient to estimate the dFRFs of asymmetric rotor systems,
if we can properly measure the complex input and output time signals, g(t), g̃(t) and p(t).
Thus the proposed technique greatly lessens the modal testing effort for asymmetric rotor
systems compared with the conventional method [8] developed for anisotropic rotor
systems, which requires simultaneous (bidirectional) excitations in the y and z directions.

4. NUMERICAL EXAMPLE

In this section, a numerical simulation is performed to demonstrate and examine the
effectiveness of the proposed estimation of dFRFs in asymmetric rotor systems.

Consider a simple asymmetric rotor shown in Figure 1, where an asymmetric rigid disk
is located at the mid-span of a massless shaft and the straightening tendency of the bent
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shaft is modelled as an asymmetric torsional stiffness. Let us assume for simplicity that
the orientations of the principal elastic and inertia axes coincide with the rotating
co-ordinates (j, h) as indicated in Figure 1(b). For the small complex angular displacement
of the disk, p(t), and the complex input torque to the system, g(t), the equation of motion
in the stationary co-ordinate system can be written as [6, 15]

p̈(t)+ o ej2Vtp� (t)+ (2zv0 − jaV)ṗ(t)+ j2oV ej2Vtp� (t)+v2
0 p(t)+Dv2

0 ej2Vtp̄(t)=
g(t)
J

, (21)

where

o=
Jj − Jh

2J
, z=

c

2zJk
, v0 =Xk

J
, a=

Jp

J
(0Q aQ 2),

D=
kj − kh

2k
, J=

Jj + Jh

2
, k=

kj + kh

2
,

p(t)= uy (t)+ juz (t), g(t)=My (t)+ jMz (t).

Here, Jj and Jh are the diametrical mass moments of inertia of the disk with respect to
the j- and h-axes; Jp is the polar mass moment of inertia of the disk; c is the torsional
damping coefficient of the bent shaft; kj and kh are the torsional stiffnesses of the bent shaft
with respect to the j- and h-axes; uy (t) and uz (t) are the small angular displacements of
the disk about the y- and z-axes; and My (t) and Mz (t) are the input torques acting on
the rotor about the y- and z-axes, respectively. Thus, o and D indicate the degree of the
inertia and stiffness asymmetry, respectively, and z is the damping ratio. The normal and
reverse dFRFs associated with equation (21) can be expressed theoretically, from equation
(6), as

Hgp (jv)=
D
 f {j(v−2V)}

D
 f {j(v−2V)}Df (jv)−Dr {j(v−2V)}D
 r (jv)
,

Hg̃p (jv)=
−Dr {j(v−2V)}

D
 f {j(v−2V)}Df (jv)−Dr {j(v−2V)}D
 r (jv)
, (22)

Figure 3. Magnitude–phase plots of the simple asymmetric rotor (o=−0·1 and r=0·1). (a) normal dFRF,
Hgp (jv); (b) reverse dFRF, Hg̃p (jv). ——, Theoretical; ——, estimated.
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Figure 4. The double frequency dCOH between complex inputs g(t) and g̃(t). (a) nd =2; (b) nd =10; (c)
nd =50; (d) nd =250.

where

Df (jv)= J{−v2 + (aV+j2zv0 )v+v2
0 },

Dr {j(v−2V)}= J{−ov2 +2oVv+Dv2
0 },

D
 r (jv)= J{−ov2 +2oVv+Dv2
0 },

D
 f {j(v−2V)}= J{−(v−2V)2 − (aV−j2zv0 ) (v−2V)+v2
0 }.

In the simulation, we considered the simple unidirectional excitation method, in which
the input signals were of the pseudo-random Gaussian processes with zero mean, and
solved the equation of motion using the Runge–Kutta integration method to generate the
complex response, p(t). The data used in the simulation were as follows: o=−0·1, D=0·1,
z=0·05, a=1·6, v0 =1 rad/s, V=0·5 rad/s and J=1 kg m2. Using equation (16), the
dFRFs were estimated with ten averages of 1024 point-FFT using the Hanning window,
so that the frequency resolution was 0·02 rad/s when the unidirectional excitation torque
was applied about the y direction in Figure 1(b). As pointed out in the previous section,
the direction of excitation torque makes no difference in the estimation of dFRFs, so far
as it remains perpendicular to the x-axis. The magnitude–phase plots of the theoretical
and estimated dFRFs are shown in Figure 3. Note that the theoretical and estimated
dFRFs are in good agreement. In Figure 4 it is indicated that the double frequency dCOH,
g2

gg̃ (jv, jv), approaches null as the number of ensemble averaging, nd , increases, for
T=100pw p/2V= p, so that equation (18) holds.

The simulation results clearly show that the theoretical development made in this paper
is valid, and that the proposed unidirectional random excitation method in the stationary
co-ordinate system is very effective in estimating the normal and reverse dFRFs of
asymmetric rotor systems.

5. CONCLUSIONS

A complex modal testing theory has been newly developed for asymmetric rotor systems,
based upon their equations of motion written in the stationary co-ordinate system. The
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theory essentially assumes that the complex random excitation process and its conjugate
defined in the stationary co-ordinate system are jointly wide sense stationary but may be
correlated, which often occurs in practice. In particular, the simple unidirectional
excitation technique, which requires greatly less testing effort than the previous
bidirectional excitation method, in the stationary co-ordinate is proposed for the complex
modal testing of asymmetric rotor systems.
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APPENDIX: SPECTRAL STRUCTURE OF NON-STATIONARY COMPLEX RANDOM
PROCESSES {g(t)} AND {g̃(t)}

Consider a pair of complex random processes, {g(t)} and {g̃(t)}, with the particular
relation {g̃(t)}= {ḡ(t)} ej2Vt; that is, {g̃(t)} is a modulated complex random process. When
the process {g(t)} is non-stationary, the process {g̃(t)} also becomes non-stationary. To
account for such non-stationary complex random processes, the spectral structure of
non-stationary real random processes in reference [14] can be easily extended. Now assume
that any complex time signals, g(t) and g̃(t), from the non-stationary complex random
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processes with zero means, {g(t)} and {g̃(t)}, have finite Fourier transforms, for a very
long but finite record length T, given by

GT (jv)=G(jv, T)=g
T

0

g(t) e−jvt dt, G	 T (jv)=G	 (jv, T)=g
T

0

g̃(t) e−jvt dt. (A1)

From now on, the dependence on T will be omitted for notational simplicity. The inverse
Fourier transform pairs to equation (A1) are

g(t)=
1
2p g G(jv) ejvt dv, g̃(t)=

1
2p g G	 (jv) ejvt dv, (A2)

where limits of integration may be from −a to a. For any pair of fixed times t1 and
t2 and frequencies v1 and v2 , it follows from equation (A2) that

ḡ(t1 )g̃(t2 )=$ 1
2p g G�(jv1 ) e−jv1 t1 dv1%$ 1

2p g G	 (jv2 ) ejv2 t2 dv2%. (A3)

Taking the expected values of both sides, we obtain the double time cross-correlation
function as

Rgg̃ (t1 , t2 )=
1

4p2 g g Sgg̃ (jv1 , jv2 ) e−j(v1 t1 −v2 t2 ) dv1 dv2 , (A4)

where the double time cross-correlation and double frequency cross-spectral density
function are

Rgg̃ (t1 , t2 )=E[ḡ(t1 )g̃(t2 )], Sgg̃ (jv1 , jv2 )=E[G�(jv1 )G	 (jv2 )].

Similarly, we obtain the double time autocorrelation functions as

Rgg (t1 , t2 )=
1

4p2 g g Sgg (jv1 , jv2 ) e−j(v1 t1 −v2 t2 ) dv1 dv2 ,

Rg̃g̃ (t1 , t2 )=
1

4p2 g g Sg̃g̃ (jv1 , jv2 ) e−j(v1 t1 −v2 t2 ) dv1 dv2 , (A5)

where the double time autocorrelation and double frequency autospectral density functions
are

Rgg (t1 , t2 )=E[ḡ(t1 )g(t2 )], Sgg (jv1 , jv2 )=E[G�(jv1 )G(jv2 )],

Rg̃g̃ (t1 , t2 )=E[g̃� (t1 )g̃(t2 )], Sg̃g̃ (jv1 , jv2 )=E[G	� (jv1 )G	 (jv2 )].

A different correlation and spectral structure can be defined by the transformations given
by

t1 = t− t/2, t2 = t+ t/2, v1 =v− x/2, v2 =v+ x/2. (A6)

That is,

Rik (t1 , t2 )=Rik0t− t

2
, t+

t

21=Rik (t, t), i, k= g, g̃, (A7)
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Sik (jv1 , jv2 )=Sik6j0v−
x

21, j0v+
x

217=Sik (jv, jx), i, k= g, g̃, (A8)

with the relationship

Sik (jv, jx)=g g Rik (t, t) e−j(vt+ xt) dt dt, i, k= g, g̃, (A9)

where the script letters R and S are used in place of R and S to distinguish planes (t, t)
and (jv, jx) from planes (t1 , t2 ) and (jv1 , jv2 ), respectively.

Now consider the case in which the process {g(t)} is stationary with zero mean. Then
the complex random processes, {g(t)} and {ḡ(t)}, become jointly WSS with zero mean.
However, the processes, {g(t)} and {g̃(t)}, will be WSS but not jointly WSS unless the
processes, {g(t)} and {ḡ(t)}, are completely uncorrelated or the rotational speed of rotor,
V, is zero. The double time cross-correlation and double frequency cross-spectral density
function between the signals g(t) and g̃(t) are given, from the relation g̃(t)= ḡ(t) ej2Vt and
equations (A7), (A8) and (A9), by

Rgg̃ (t, t)=Rgg̃ (t1 , t2 )=Rgḡ (t2 − t1 ) ej2Vt2 =Rgḡ (t) ejVt ej2Vt, (A10)

Sgg̃ (jv, jx)=2pSgĝ {j(v−V)}d1 (x−2V). (A11)

Here Sgĝ (jv) is the dCSD between g(t) and ḡ(t), and d1 (v) is a finite delta function, defined
by

d1 (v)= 8 T
2p

,

0,
0−p

T1QvQ0pT1,

otherwise.
(A12)

Equation (A11) can be written, from the transformation (A6) and the relation (A8), as

Sgg̃ (jv1 , jv2 )=2pSgĝ6j0v1 +v2

2
−V17d1 (v2 −v1 −2V), (A13)

and, similarly,

Sg̃g (jv1 , jv2 )=2pSĝg6j0v1 +v2

2
−V17d1 (v2 −v1 +2V). (A14)

Here the quantity Sĝg (jv) is the dCSD between ḡ(t) and g(t). For the stationary complex
random processes, {g(t)} and {g̃(t)}, we can obtain, from equation (A5), that

Rii (t, t)=Rii (0)=
1

4p2 g g Sii (jv1 , jv2 ) dv1 dv2 =
1
2p g Sii (jv2 ) dv2 , i= g, g̃, (A15)

where

Sii (jv2 )=
1
2p g Sii (jv1 , jv2 ) dv1 ,
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or, equivalently,
Sii (jv1 , jv2 )=2pSii (jv2 )d1 (v2 −v1 ). (A16)

It follows that the double frequency PSDs, Sii (jv1 , jv2 ), i= g, g̃, exist only on the line
v1 =v2 in the (jv1, jv2) plane, assuming the frequencies v1 and v2 are spaced 2p/T apart.
Finally, equations (A12) and (A16) lead to the relation given by

Sii (jv, jv)=TSii (jv), i= g, g̃, for v1 =v2 =v. (A17)


