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In this paper, the outlined model is extended to cover the dynamics of thin-walled
members with open or closed cross-section, making use of Hamilton’s principle. Based on
the displacement variational principle, a systematic method, called the spline finite member
element method, is developed for vibration analysis of thin-walled members with arbitrary
cross-section. The displacements at two ends of the member element are adopted as basic
variables in the method. A transformed B3 -spline function is used to simulate the warping
displacements along the cross-section of the thin-walled member. The analysis takes into
account the effect of shearing strains of the middle surface of walls on the vibration, which
reflect the shear lag phenomenon. To verify the accuracy and efficient of the proposed
method, four experiments are conducted in which the present results are compared with
those using other analytical methods and the ‘‘COSMOS/M’’ finite element analysis
program.
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1. INTRODUCTION

Many structures, such as a shear wall core or a frame-shear wall structure, are typically
idealized as thin-walled members that exhibit significant out-of-plane warping due to
torsion. Urgent practical requirements have given rise in recent years to extensive
investigations, both theoretical and experimental, of the dynamic analysis of the
thin-walled structural members. Some closed form solutions for small amplitude vibrations
of such members were published by Vlasov [1]. Useful explicit formulae to determine the
lowest natural flexural and torsional frequencies for thin-walled members with open and/or
closed cross-section can also be found in other publications [2–4]. However, these methods
cannot evince the shear lag effect in their results. When the structure exhibits a considerable
flexural stiffness, as in the shear wall core of a building, shear strains play an important
role even in the presence of lower frequencies. The shear lag phenomenon was first
recognized by Timoshenko, who introduced two distinct functions, i.e., the deflection of
the centroid of the cross-section and the rotation of the normal to the cross-section through
the centroid [5]. In Timoshenko’s theory the warping of the cross-section, proportional to
the shear resultant, can vary along the member axis without giving rise to additional
stresses (shear lag). By giving an alternative definition of the two unknown functions
introduced by Timoshenko, Cowper proposed a more appropriate way of determining the
shear coefficient [6, 7]. However, these solutions were often restricted to particular
cross-section shapes and are generally difficult to apply. Friberg [8] solved Vlasov’s
equations [1] analytically and formed the exact dynamic stiffness matrix without the
assumption of cross-sectional symmetry of the member. Among the previous methods for
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dynamic analysis, the finite element method is widely used for vibration and buckling
analyses of structures, including thin-walled structures [9, 10]. However, to obtain an
accurate solution in the analysis, a large number of elements are required, resulting in a
heavy consumption of CPU time and data preparation and manipulation efforts.
Therefore, its application to practical design for a complex thin-walled structure is greatly
limited. On the other hand, some deficiencies in the classical theory [1] have yet to be solved
or improved. For instance, in the theory there are two different approaches for analyzing
thin-walled members with an open cross-section and those with a closed cross-section; i.e.,
Vlasov’s theory for the former and Umansky’s theory for the latter. In engineering
practice, a lot of thin-walled members have mixed cross-sections composed of pure open
walls and closed cells. Therefore, it is of practical significance to develop a general
consistent method for dynamic analysis of thin-walled members with any cross-section.
Four typical numerical examples are used to demonstrate the versatility, accuracy and
convergency of the proposed method. It can be observed clearly in the results that the
present method may be a type of systematic method which can be applied to the dynamic
analysis of thin-walled members of any cross-section with branches of walls, and which
can save much more computing time than the standard finite element analysis program.

In this paper, only one of two Vlasov’ assumptions, i.e. the ‘‘rigid cross-section’’ is
retained, while the condition of no shearing strain in the middle surface of walls is
abandoned. Also, another common assumption is adopted, i.e., the stress ss in the tangent
direction and the stress sn in the normal direction of the central line of the cross-section
are much smaller than the longitudinal stress sz and both are neglected in the dynamic
analysis.

2. ENERGY EQUATION OF THIN-WALLED MEMBER

A member element of a prismatic thin-walled member with arbitrary cross-section is
shown in Figure 1, in which the z-axis is the longitudinal axis, the x- and y-axes are the
principal axes passing through the centroid c of the cross-section; s is the curvilinear
co-ordinate along the central line of the cross-section; and H is the longitudinal length of
the member element.

The Hamilton principle in variation form for free vibration can be expressed as follows:

d g
t2

t1

(T−U) dt=0, (1)

Figure 1. An arbitrary cross-section of a thin-walled member and its parameters.
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in which U is the possible strain energy induced in vibration; T is the corresponding
possible kinetic energy. The integral interval can be chosen as

t1 =0, t2 =2p/v,

in which v is the circular frequency of vibration.
The possible strain energy [11] and the possible kinetic energy in a general member

element of length H can be given by the expression

U= 1
2 g

H
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in which w(s, z) is the longitudinal displacement along the z direction; vt is the displacement
along the tangent direction of the central line at point s; u is the twisting angle of the
cross-section; vx and vy are the displacements of any point of the cross-section in the x and
y directions respectively; E is Young’s modulus; G is the shear modulus; Jd is the St.
Venant’s torsional constant; r0 is the density of material of the member; Ss is the length
of the whole cross-section; t0 is the actual thickness of the wall at point s; and t is the
equivalent thickness of the wall when there is a row of holes in the wall.

According to the ‘‘rigid cross-section’’ assumption [1], the tangent displacement can be
expressed by the centroid displacement

vt (z)= vcx cos a+ vcy sin a+ ru,

in which a is the angle between the x-axis and the tangent of point s; r(s) is the distance
from c to the tangent of point s; and vcx and vcy are the x and y direction components of
the centroid displacement vc respectively. It can be written in matrix form

vt (z)= [ht ]1×3{vc }3×1 , (4)

in which

[ht ]= [cos a sin a r],

{vc }=[vcx vcy u]T. (5)

3. LONGITUDINAL WARPING DISPLACEMENT FUNCTION

The ordinary cubic B3 -spline function, because of its localized nature, not only reduces
computational effort, but also allows different boundary conditions to be specified by
slightly modifying a few local spline functions. Owing to the complexity of the cross-section
of thin-walled members, especially for the cross-section with branches of walls, it is difficult
to use the ordinary B3 -spline function properly to simulate the longitudinal displacement
at the bifurcate point of the walls. Therefore, a new modified B3 -spline function is needed
to overcome this defect. By the separation of variables and semi-discrete technique, the
longitudinal warping displacement w(s, z) is taken as the summation of (m+3) local
B3 -splines by

w(s, z)= s
m+3

i=1

ai (z)ci (s), (6)
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Figure 2. The sub-intervals of a segment.

in which ai is the node generalized displacement parameters; m is the number of equal
sub-intervals of a segment of the cross-section as shown in Figure 2, and ci is an ordinary
local B3 -spline as shown in Figure 3, defined by

(s− si +2h)3 [si−2 , si−1 ],

(s− si +2h)3 −4(s− si + h)3 [si−1 , si ],
ci (s)=

1
6h3g

G

G

G

G

F

f

(si +2h− s)3 −4(si + h− s)3 [si , si+1 ],
(7)

(si +2h− s)3 [si+1 , si+2 ],

in which si is the node co-ordinate; h= si+1 − si , and h is its equal section length.
Let wj be the real node displacement in the segment, i.e.,

w1 =
1w(s2 , z)

1s
,

w2 =w(s2 , z),

· · ·

wi =w(si , z),

· · ·

wm+2 =w(sm+2 , z),

·

wm+3 =
1w(sm+2 , z)

1s
(8)

Figure 3. The ordinary local B3 -spline of equal section length.
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in which s2 and sm+2 are the co-ordinates of the beginning and the end nodes in the segment
respectively. Because of the localization of the spline function, equation (6) can be
expressed by m interval functions as

wsj (s, z)= s
j+1

i= j−2

ai (z)ci (s), sj−1 E sE sj , j=3, 4, 5, . . . , m+2; (9)

Combining equations (7), (8) and (9), we have

w1 =
1
2h

(a3 − a1 ),

wi = 1
6 (ai−1 +4ai + ai+1 ), i=2, 3, . . . , m+2,

wm+3 =
1
2h

(am+3 − am+1 ); (10)

Solving the above simultaneous equations using the package ‘‘Maple V’’ [12], the node
general displacement parameters ai (i=1, 2, . . . , m+3) can be expressed by real node
displacements wi as follows:

ai = s
m+3

k=1

bikwk , i=1, 2, . . . , m+3, (11)

in which bik are the coefficients computed by means of the package ‘‘Maple V’’.
Substituting the above equation into equation (9) gives

wsj (s, z)= s
m+3

k=1 $ s
j+1

i= j−2

bikci (s)%wk (z)

= s
m+3

k=1

c� jk (s)wk (z), sj−1 E sE sj , j=3, 4, . . . , m+2, (12)

in which

c� jk (s)= s
j+1

i= j−2

bikci (s), sj−1 E sE sj , j=3, 4, . . . , m+2,

is called the ‘‘transformed spline function’’ and is constructed from four ordinary local
B3 -spline functions c(s). Because the parameters of the transformed spline function in
every segment, including the four of the two ends, are the real node displacement
parameters, this new simulation technique will overcome the difficulty of the ordinary
spline function in simulating the cross-section with branches of walls. Finally, the
longitudinal warping displacement w(s, z) of the whole cross section can be expressed as

w(s, z)= s
n

i=1

c� i (s)wi (z)= [c�]1× n {w}n×1 , (13)

. . .

. . .
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in which n denotes the total number of nodes which divided the whole cross-section into
sub-intervals, and

[c�]1× n =[c�1 (s), c�2 (s), . . . , c�n (s)],

{w}n×1 = [w1 (z), w2 (z), . . . , wn (z)]T.

4. DYNAMIC EQUATIONS OF THIN-WALLED MEMBER

As to free vibration at a natural frequency of the thin-walled member, the motion at
any point is simple, harmonic, and the deflected shapes are independent of time. Equations
(4) and (13) can be written as

vt (z, t)= v̄t (z) sin (vt+ o)= [ht ]1×3{v̄c }3×1 sin (vt+ o), (14)

w(s, z, t)= w̄(s, z) sin (vt+ o)= [c�]1× n {w̄}n×1 sin (vt+ o), (15)

in which vt (z) and w(s, z) are the mode shape functions and o is the phase angle.
Provided that the x- and y-axes are the principal axes passing through the centroid c

of a cross-section, vx and vy are related to vcx , vcy and u by

vx (y, z, t)= (vcx − yu) sin (vt+ o),

vy (x, z, t)= (vcy + xu) sin (vt+ o).

Substituting equations (14) and (15) into equations (2) and (3) gives

U= 1
2 g

H

0

(E{w'}T[A]{w'}+G{w}T[B]{w}+2G{w}T[C]{v'c }

+G{v'c }T[Dt ]{v'c }+G{u'}TJd {u'}) dz, (16)

T= 1
2 g

H

0

r0v
2({w}T[A]{w}+ {vc }T[D�]{vc }) dz, (17)

in which the superscript prime represents d()/dz; and

[A]n× n =gSs

[c�]T[c�]t ds, [B]n× n =gSs

[c�']T[c�']t ds,

[C]n×3 =gSs

[c�']T[ht]t ds, [Dt ]3×3 =gSs

[ht ]T[ht ]t ds,

[D�]3×3 =gSs& 1
0

−y

0
1
x

−y
x

x2 + y2't ds= &A00 0
A
0

0
0

Ix + Iy',
where A is the area of cross-section of the thin-walled member; and Ix and Iy are the second
moments of inertia of the cross-section with respect to the principal axes x and y
respectively.

From Hamilton’s principle, taking the first variation of the functional with respect to
{w} and {vc } in equation (1), and using some standard techniques such as integration by
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parts in the derivation, we have the following differential equations and boundary
conditions:

E[A]n× n {w0}−G[B]n× n {w}n×1 −G[C]n×3{v'c }3×1 + r0w2[A]n× n {w}n×1 = {0}n×1 , (18)

G[C]T3× n{w'}n×1 +G[D]3×3{v0c }3×1 + r0v
2[D�]3×3{vc }3×1 = {0}3×1 ; (19)

on the boundaries

E[A]n× n {w'}n×1 = {0}n×1 , (20)

[C]T3× n{w}n×1 + [D]3×3{v'c }3×1 = {0}3×1 ; (21)

in which the double prime superscript (0) represents d2()/dz2, and

[D]3×3 = [Dt ]3×3 + Jd&0 0
1'.

Equations (18) and (19) are the governing differential equations for the dynamic analysis
of a thin-walled member.

5. SOLUTION OF THE DYNAMIC EQUATIONS

The main differences between the present method and the finite element method can be
grouped under two aspects. (1) From the ‘‘rigid cross-section’’ assumption, the lateral
displacements at one end of the member element are only three, and the number of
longitudinal displacements are n, where n is the number of nodes artificially chosen by
which the cross-section is divided in suitable sub-intervals to meet accuracy requirements
of analysis for different complexities of the cross-section. The degree of freedom in a
member element is then equal to 2n+6, and n is not fixed, but depends on the complexity
of the cross-section. (2) In the present method, only the longitudinal warping displacements
along the cross-section need be interpolated; their distribution along the longitudinal
direction can be obtained analytically and will be discussed in this section. Instead of the
ordinary interpolation function used in the finite element method, a special interpolation
function called the ‘‘transformed spline function’’ described in the previous section, is used
in the present method. In matrix form, the end displacements of the member element are
expressed by a vector {WE } as

{WE }(2n+6)×1 = [v1x , v1y , u1 , w11 , w12 , . . . , w1n , v2x , v2y , u2 , w21 , w22 , . . . , w2n ]T, (22)

in which the first subscript 1 or 2 denotes the first (z=0) or second (z=H) end
cross-section; v1x denotes the lateral displacement of the cross-section in the x direction at
the first end; w11 denotes the longitudinal displacement of the first node at the first end,
etc. Note that n is an arbitrary chosen number of nodes by which the cross-section is
divided into sub-intervals to fulfil the accuracy requirements of analysis for different shapes
of cross-sections. By this means, the versatility of the method is increased.

Equations (18) and (19) can be written as a standard eigenvalue problem of finite element
dynamic equation form, as

([K]+v2[M])(2n+6)× (2n+6){WE }(2n+6)×1 = {0}(2n+1)×1 , (23)

in which [M] is referred to as the non-linear general mass matrix and can be derived from
possible kinetic energy T; [K] is the linear strain stiffness matrix.
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From reference [13], the displacement vectors of the member element can be found in
terms of the end displacements of the member element:

6vc

w7{n+3}×1

= [N]{n+3}× {2n+6} {WE }{2n+6}×1 , (24)

in which

[N]{n+3}× {2n+6} =0 [Tv (z)]3× {2n+6}

[a]n× n [Tw (z)]n× {2n+6}1[TE ]−1
{2n+6}× {2n+6}

where [N] is a matrix of the interpolation functions,

[a]n× n =[{a1}, {a2}, . . . {an }]

in which {ai } is an eigenvector;

[Tv (z)]3× {2n+6} =$−[D]−1
3×3[C]T3× n [a]n× n g

z

0

[R0 ]n× n dz[a]Tn× n [C]n×3 + z
G
E

[I]3×3 , [I]3×3 ,

−[D]−1
3×3[C]T3× n [a]n× n g

z

0

[R]n×2n dz%,

[Tw (z)]n× {2n+6} =[[R0 ]n× n [a]Tn× n [C]n×3 , [0]n×3 , [R]n×2n ],

[Tv (0)3× {2n+6}K L
G G[a]n× n [Tw (0)]n× {2n+6}
G G[TE ]{2n+6}× {2n+6} = [Tv (H)]3× {2n+6}

,
G G

[a]n× n [Tw (H)]n× {2n+6}k l

K Lz2

2G G
G Gz2

2
0G G

G G
G Gz2

2G G
G G

[R0 ]n× n =

−
1
L4

E
G

,

G G
G G0 · · ·G G
G G−

1
Ln

E
Gk l
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z, 1K L
G Gz, 1 0
G Gz, 1G G

e−l4j, e−l4hG G
G G[R]n×2n = · ·

,

G G· ·G G
0 · ·G G

k le−ln j, e−ln h

h=
z
H

, j=1− h, li =HXG
E

Li ,

where L1 , L2 , . . . , Ln are the eigenvalues of the eigenvalue equation.
Following the standard procedures of the finite element method, the spline member

element’s stiffness matrix [K] can be obtained.
Substituting equation (24) into equation (17) yields

T= 1
2v

2{WE }T
1× {2n+6}[M]{2n+6}× {2n+6} {WE }{2n+6}×1 , (25)

in which

[M]{2n+6}× {2n+6} =([TE ]−1)T
{2n+6}× {2n+6} g

H

0

r0([Tv (z)]T{2n+6}×3[D�]3×3 [Tv (z)]3× {2n+6}

+[Tw ]T{2n+6}× n [a]Tn× n [a]n× n [Tw ]n× {2n+6} ) dz[TE ]−1
{2n+6}× {2n+6}. (26)

6. NUMERICAL EXAMPLES

Cantilever thin-walled members with four shapes of cross-sections, as shown in Figure 4,
are studied by the proposed method for vibration analysis. In the presentation of the
results, the characteristics of the mode shapes are simply described by labels, in which BX
and BY denote the bending mode in the x and y directions respectively, while BA denotes
the axial vibration in the z direction and BT denotes the torsion mode around the z-axis.

Example 1. The thin-walled member with a channel-shaped cross-section as shown in
Figure 4(a) is discussed for vibration analysis. The related data are as follows:
E=3·0×106 KN/m2; the Poisson ratio, n=0·15; t=0·2 m; r0 =2500 kg/m3; the total
height of the member Ht =15·0 m. In the example, the numerical solution in the present
paper is compared with the available solution by the ‘‘COSMOS/M’’ finite element analysis
program [15] and another analytical method [14] for the same member, as shown in
Table 1. Comparing the present results with those of Capuani ones, good agreement can
be seen for the thin-walled members except for the sixth frequency. From the table it can
be observed that the results obtained by the present method and COSMOS/M have some
differences, but they are all under 8·0%. In addition, the spline finite member element
method has several advantages over the COSMOS finite element analysis program when
applied to thin-walled structures. These include the greatly reduced number of degrees of
freedom for the given structural system amounting to only 680 degrees of freedom. In the
same example, a considerably larger number of degrees of freedom is required in the finite
element analysis compared with the present method. The total system data of the
COSMOS program are as follows: number of equations=1860; number of matrix
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Figure 4. The cross-section of the thin-walled members.

elements=521 714; mean half-bandwidth =1803; number of elements=900; number of
nodal points=341, resulting in a heavy consumption of CPU time and data preparation
and manipulation efforts.

Example 2. The thin-walled member with a rectangle-shaped cross-section shown in
Figure 4(b) is analyzed for the dynamic analysis. The useful data are as follows:
E=3·0×106 KN/m2; E/G=2·3; t=0·4 m; r0 =2500 kg/m3; Ht =15 m. This example
has been investigated in reference [16]. The first eight natural frequencies are compared
with the method mentioned above and the available solution by the ‘‘COSMOS/M’’ finite
element analysis program [15] in Table 2.

The comparison of the results in Table 2 shows that the proposed method is efficient
and accurate for thin-walled closed members.

T 1

Comparisons of the results of Example 1

COSMOS [15] Present
Mode no. Capuani et al. [14] mesh, 30×10 method Mode shape

1 22·9 25·9611 24·0518 BY
2 — 92·8102 97·9921 BX, BA
3 110·3 121·2504 113·8121 BY
4 125·4 128·5741 132·9215 BY, BA, BT
5 247·0 277·0317 247·5250 BY
6 364·8 364·6105 354·5467 BY
7 392·9 366·5328 400·6028 BY
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T 2

Comparisons of the results of Example 2

COSMOS [15] Present
Mode no. Laudiero et al. [16] mesh, 36×10 method Mode shape

1 61·10 61·7288 63·8695 BY
2 — 100·7278 106·2159 BX, BA
3 189·0 188·2396 187·2816 BT
4 244·1 245·1885 252·1227 BY
5 — 406·2652 401·6215 BX, BA
6 515·6 513·9982 521·9535 BY
7 568·9 561·9905 564·5677 BT
8 760·3 752·3274 786·8634 BY

T 3

Comparisons of the results of Example 3

Mode no. Capuani et al. [14] ODE solver [17] Present method Mode shape

1 57·7 57·99 60·7692 BT
2 — 59·34 61·9695 BY
3 — 76·11 80·8645 BX, BA
4 — 214·1 221·7987 BY
5 250·7 251·3 263·8864 BT, BA
6 — 362·8 361·0387 BX, BA
7 — 435·0 443·8796 BY
8 540·5 545·0 556·6316 BY, BA

Example 3. An open I-shaped cross-section as shown in Figure 4(c), which was
originally Capuani’s example [14], is studied for vibration analysis. The first eight circular
frequencies from various methods are tabulated in Table 3. The data are as follows:
E=3·0×106 KN/m2; E/G=2·3; t=0·2 m; r0 =2500 kg/m3; Ht =15 m.

From Table 3 it can be seen that the results given by the proposed method and ODE
solver are close to each other.

Example 4. A cross-section composed of a rectangular box section with two outstanding
flanges, as shown in Figure 4(d), is investigated for vibration analysis. The data are as
follows: E=3·0×106 KN/m2; E/G=2·3; t=0·2 m; r0 =2500 kg/m3; Ht =15 m. The
numerical solution in the present paper is compared with the available solution by using
ODE solver [17] and another analytical method [14] for the same member, as shown in
Table 4.

T 4

Comparisons of the results of Example 4

Mode no. Capuani et al. [14] ODE solver [17] Present method Mode shape

1 47·3 51·76 53·9611 BY, BT
2 — 84·52 89·6907 BX
3 130·4 127·4 131·6682 BY, BT
4 170·8 203·5 208·9655 BY, BT
5 294·0 338·1 365·9100 BX, BA
6 — 362·8 393·4237 BY, BT
7 421·7 421·6 448·7700 BY, BA, BT
8 — 607·9 610·2427 BY, BT
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T 5

Effect of number of section nodes, n, on the natural frequency

Mode no. n=9 n=14 n=15

1 24·052496 24·051927 24·051849
2 97·994656 97·992214 97·992123
3 113·910684 113·873514 113·873514
4 132·927734 132·920993 132·921512
5 249·808318 248·965643 247·525003
6 366·885542 362·551934 354·546709
7 400·661146 400·605999 400·602763

From Table 4 it can be seen that the results given by the proposed method and ODE
solver are close to each other. Compared with Capuani’s method, some greater differences
can be observed.

7. CONVERGENCE STUDIES

An important part of an eigenvalue and vector solution is to estimate the accuracy
with which the required eigensystem has been calculated. The solution is terminated
once convergence within the prescribed tolerances has been obtained. Because the
transformed B3 -spline function is taken as the interpolation function of longitudinal
displacement of the cross-section, example 1 in the present paper is used to investigate
the rate of convergence of the natural frequency of the thin-walled members
using the proposed method with increasing numbers of section nodes, as shown in
Table 5.

It can be seen from the above table that the numerical results can converge very rapidly
to stable results. The convergence of the results fully demonstrates the efficiency of the
transformed B3 -spline function. In Table 6 is shown the effect of the number of member
elements along the longitudinal direction on the natural frequencies in which the data
come from example 4. Table 6 demonstrates the convergence of the solution for the
cantilever thin-walled member. From the convergence study in that section of the paper,
the accuracy of the solution is determined not only by the number of segment of the cross
section and of its sub-intervals, but also by the number of member elements into which
a member is divided along the longitudinal direction.

T 6

Effect of number of member elements, e, on natural frequencies

Mode no. e=18 e=19 e=20

1 54·166589 54·058419 53·961078
2 90·069106 89·869749 89·690674
3 131·901823 131·778134 131·668236
4 209·124943 209·044644 208·965535
5 366·107382 366·015002 365·909990
6 394·072896 393·771889 393·423697
7 448·781120 448·778784 448·781120
8 611·875245 611·117729 610·242744
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8. CONCLUSIONS

Based on the energy method, a systematic method, called the spline finite member
element method, is developed for dynamic analysis of thin-walled members with arbitrary
cross-section in the present paper. According to the above discussions, the following
conclusions can be drawn:

(a) The proposed method has an advantage over methods based on the classical theory
[1] because the effect of the shearing strains of the middle surface of walls, which reflect
the shear lag phenomenon, on the vibration is considered.

(b) The transformed B3 -spline function is used to simulate the warping displacement
along the cross-section of the thin-walled member. By using the spline function as an
interpolation function, a cross-section will be divided into equal or unequal segments to
meet some special need. This arrangement greatly improves the flexibility of the
transformed spline function. Because the parameters of the transformed spline function
in every segment are the real node displacement parameters, this overcomes the difficulty
of the ordinary spline function in simulating the longitudinal displacements of cross section
with branches of walls.

(c) Because there is no need to introduce the concepts of shear center and sectorial
co-ordinate, this method is easily understood and applied. It can be used to analyze the
closed cross-section member as conveniently as the open cross-section without extra labor.

(d) Compared with the results from the ‘‘COSMOS/M’’ finite element analysis program
and other analytical methods, the numerical examples proposed in this paper demonstrate
the versatility, accuracy and efficiency of the proposed method.

(e) The convergence shown in the above numerical examples predicts the reliability of
the results.
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