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1. 

The current theories of plates and shells are established on certain hypotheses. For
example, some assume that the mechanical quantities are the polynomials of a certain
co-ordinate variable. It is shown later that the true solution for each mechanical
quantity cannot be a polynomial of any co-ordinate variable. If the form of a
polynomial is adopted, the incompatibility among the fundamental equations must appear
in the deductive process, and only some of the elastic constants can be taken into account.
This contradiction results in errors in all of the current theories, especially in thicker plates
and shells. In addition, all the existing theory is invalid for plates and of considerable
thickness.

With no initial assumptions regarding stress and deformation models [1–4], and using
three-dimensional elasticity, the free vibration problems of homogeneous isotropic,
orthotropic, and laminated thick cylindrical shells and plate were solved. In these
papers, the thick shells were divided into N fictitious subcylinders in order to simplify
the variable coefficient differential equations into a set of simpler ones that was solved by
using a method of successive approximations. The frequencies with desired accuracy
were obtained, by increasing the value of N. A similar approach was suggested by
Bhimaraddi to analyze the free vibration of doubly curved shallow shells [5]. But all of
the papers had to deal with the many unknowns that appear at the real or fictitious
interfaces. Based on the three-dimensional theory of elasticity, the buckling and vibration
of isotropic, orthotropic and laminated cylindrical shells have also been studied by
Kardomateas [6, 7], and by Ye and Soldators [8–10]. In reference [11–12] the method of
state space was developed and exact solutions for single-ply and laminated rectangular
plates were given. Ding and Fan [13] also used this method for the axisymmetric
statics problem of the closed laminated continuous cylindrical shell. In this paper, by
introducing the Hellinger–Reissner variational principle, the Hamilton canonical equation
is presented. Exact solutions are expressed for the dynamics and buckling of
the axisymmetric problem of thin, moderately thick and thick laminated closed
cylindrical shells. Numerical results are given to compare with those of FEM calculated
using SAP5.
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2.          

 

The modified Hamilton-type Hellinger–Reissner variational principle can be shown to
be of the form

P*=gV 61U
1r

trx +
1W
1r

sr −H72pr dr dx−gSs

(p̄rW+ p̄xU) ds, (1)

in which the usual index notation is used and Figure 1 shows the co-ordinate system. Ss

denotes the portion of the edge boundary where tractions p̄i are prescribed. The quadratic
form of the Hamilton function H can be written as

−H= sx
1U
1x

+ su

W
r

+ trx01w
1x

+
1U
1r 1− 1

2{s}T[C]{s}− 1
2r$01U

1t 1
2

+01W
1t 1

2

%, (2)

where r is the mass density and the matrix [C] is the elastic stiffness matrix. For an
orthotropic body, one has

C11 C12 c13 0

C12 C22 C23 0
[C]=G

G

G

K

k
C13 C23 C33 0

G
G

G

L

l

. (3)

0 0 0 C55

Using dP*=0, the following relations can be obtained

1U/1r= 1H/1trx , 1W/1r= 1H/1sr , 1trx/1r=−1H/1U, 1sr/1r=−1H/1W.

(4)

One denotes

q=(U W), p=(trx sr). (5)

Equation (4) can also be written in a simplified form

1q/1r= 1H/1p, 1p/1r=−1H/1q (6)

This is a classical Hamilton canonical equation.

Figure 1. A cylindrical co-ordinate system.
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Elimination sx and su from equation (4) by letting

a= 1/1x, z= r 12/1t2, s= sr , X= trx , C1 =−C13/C33,

C2 =C11 −C2
13C33,

C3 =C12 −C13C23/C33, C4 =C22 −C2
23/C33, C5 =−C23/C33,

C7 =1/C33, C8 =1/C55

one has

(1/1r)[U s X W]T =D(r)[U s X W]T (7)

in which

0 0 C8 −a

(C3/r)a −(C5 +1)/r −a C4/r2 + z2

D(r)=G
G

G

K

k
z2 −C2a

2 C1a −1/r −(C3/r)a
G
G

G

L

l

. (8)

C1a C7 0 C5/r

The mechanical expression of equation (6) is that they constitute mixed simpletic space.
When the modulus of the medium changes or two different median are in contact, the
simpletic variables must be kept continuous, but the variables sx and su may be
discontinuous, and can be written as

6sx

su7=$C2a

C3a

−C1

−C5

C3/r
C4/r%8UsW9. (9)

For a simply supported shell, the quantities in equation (7) are expanded into the following
series system

U= s
m

Um(r) cos
mpx

l
eivmt, s= s

m

sm(r) sin
mpx

l
eivmt,

X= s
m

Xm(r) cos
mpx

l
eivmt, W= s

m

Wm(r) sin
mpx

l
eivmt. (10)

Considering equations (10) and (9), it can be seen that the boundary conditions are
satisfied,

x=0, l, W= sx =0. (11)

Introducing equations (10) into equation (7) yields for each m:

(d/dr)[Um(r) sm(r) Xm(r) Wm(r)]T =D(r)[Um(r) sm(r) Xm(r) Wm(r)]T, (12)

where

0 0 C8 −j

−(C3/r)j −(C5 +1)/r j C4/r2 − rv2

D(r)=G
G

G

K

k
C2j

2 − rv2 C1j −1/r −(C3/r)j
G
G

G

L

l

, (13)

−C1j C7 0 C5/r
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with j=mp/l, v=vm . Equation (12) is called the variable coefficient non-homogeneous
state equation. Based on equation (12) one can prove that each mechanical quantity cannot
be a polynomial of co-ordinated r. If Um(r) and sm(r) were the polynomials of degree l
for variable r, from the third and fourth row of equation (12), Xm(r) and Wm(r) would
have to be the polynomials of degree l+1 for r. If so, observing the two other rows of
the same equation, Um(r) and sm(r) would be the polynomials of degree l+2 of r, which
contradicts what has been supposed.

3.            

A p-plied laminated thick cylindrical shell is made up of orthotropic layers. The length
and the thickness of the shell are l and h (=a− b), respectively. The state equation for
the jth ply is obtained from equation (12), as follows:

(d/dr)[Um(r) sm(r) Xm(r) Wm(r)]Tj =Dj [Um(r) sm (r) Xm(r) Wm(r)]Tj (14)

The solution of equation (14) is

Rj(r)=Gj(r− aj)Rj(aj), (15)

where

Rj(r)= [Um(r) sm(r) Xm(r) Wm(r)]Tj , (16a)

Rj(aj)= [Um(r) sm(r) Xm(r) Wm(r)]Tj , (16b)

Gj(r− aj)= exp[Dj(r− aj)]. (17)

Applying the transfer matrix method [13], the mechanical quantities of the interior surface
and outer surfaces for the entire laminated shell can be linked together in the form:

Rp(b)=P R1(a), (18)

where

P= t
1

p

Gj .

R1(a) and Rp(b) in equation (18) are the mechanical quantities for the outer and interior
surfaces of the laminated shell, respectively. R1(a) is called the initial value. P is a (4×4)
constant matrix. Usually, the loads acting on the interior and outer surfaces of a shell are
given a priori. Actually, equation (18) is a matrix equation for four displacements of the
outer and interior surfaces of a shell. When normal pressure q(q=const) acts on the
interior surface of the shell, the load is expanded in the same series as the s-series in
equation (10) and Xm(a)=Xm(b)= sm(a)=0 thus equation (18) becomes:

$P21

P31

P24

P34%6Um(a)
Wm(a)7=6sm(b)

0 7. (19)

In the calculation of natural frequencies, let the right side of equation (19) be zero. The
non-trivial solution of equation (19) gives

bP21

P31

P24

P34b=0. (20)
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T 1

Frequency parameters V and critical stress parameters l for a single-ply shell with different
ratios h/R0

SAP5 present study
ZXCXV ZXXXXXXXXXXXCXXXXXXXXXXXV

r1/r2C(1)
11 /C(2)

11 h/R0 V1 I1 I2 I3 V1, l1 V2, l2 V3, l3

1 1 0·1 0·0443 1 4 1 0·0453 0·0749 1·2579
1 1 0·2 0·0886 1 4 1 0·0906 0·1499 1·2626
1 1 0·4 2 5 2 0·1814 0·3017 1·2814
1 1 0·6 2 8 2 0·2727 0·4571 1·3131
1 1 0·8 3 6 3 0·3644 0·6169 1·3574
1 1 1·0 3 8 3 0·4567 0·7807 1·4151

It should be mentioned that instead of being a polynomial in v2 as in the ordinary theories,
equation (20) is a transcendental one. In fact, equation (20) is the exact frequency equation
of the laminated shell in the sense of satisfying a prescribed precision. Equation (20) has
an infinite number of roots corresponding to an infinite number of frequencies, which can
be determined by using the procedure for finding the zero points of a function. Obviously,
the frequency bandwidth in the present study is much larger than that produced by other
theories.

In order to solve the buckling problem, equation (2) should be written as

−H= sx
1U
1x

+ su

W
r

+ trx01W
1x

+
1U
1r 1− 1

2{s}T[C]{s}− 1
2px$01U

1x1
2

+01W
1x 1

2

% (21)

where px are the uniformly distributed compressive stresses acting on the two edges of a
shell, respectively, along the x direction. Comparing equation (2) and equation (21) one
sees that if z2 in equation (8) is replaced with pxa

2, an infinite number of critical stresses
can be obtained from equation (20). Of course, the minimum critical stress is the most
useful.

4.  

The example given below was done on a SIEMENS/7570c processor in four-fold
precision, I1, I2 and I3 in the following tables are the number of thin plies corresponding
to the first, second and third layer, respectively.

Example. A three-ply closed cylindrical shell is used. The materials for the first and
third layers are identical. Each layer has the same elastic constants: C12/C11 =0·246269,
C13/C11 =0·0831715, C22/C11 =0·543103, C23/C11 =0·115017, C33/C11 =0·530172,
C55/C11 =0·159914, C(1)

1 /C(2)
11 =5, where C(1)

11 and C(2)
11 denote C11 of the materials

corresponding to the first and second layers, respectively. When C(1)
11 =C(2)

11 =C11, the
three-ply shell degenerates into a homogeneous one. The laminated shell has the following
geometry parameters: h1 = h3 =0·1h, h2 =0·8, l= s=R0, where l=length of the shell,
s=the arc length of middle surface and R0 = the radius of middle surface.

The densities for the outer and middle layers are denoted by r1 and r2 respectively. When
m=1, the first three natural frequencies and critical stresses for the single-ply shell
(C(1)

11 =C(2)
11 =C11, r1 = r2 = r) and the three-ply shell are indicated in Table 1 and Table

2, respectively. The results for a three-dimensional finite element method (FEM) using
SAP5 are also shown in Tables 1 and 2. Because of the symmetry, 24 three-dimensional
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T 2

Frequency parameters V and critical stress parameters l for a three-plied laminated shell with
different ratios h/R0

SAP5 present study
ZCV ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

r1/r2C(1)
11 /C(2)

11 h/R0 V1 I1 I2 I3 V1 V2 V3 l1 l2 l3

3 5 0·1 1 4 1 0·0514 0·0849 0·9498 0·0453 0·0749 0·7890
3 5 0·2 1 4 1 0·1028 0·1703 0·9572 0·0908 0·1515 0·7344
3 5 0·4 2 5 2 0·2058 0·3438 0·9867 0·1824 0·3082 0·8111
3 5 0·6 2 8 2 0·3092 0·5222 1·0349 0·2730 0·4598 0·8627
3 5 0·8 0·4013 3 6 3 0·4127 0·7024 1·1002 0·3649 0·6165 0·9207
3 5 1·0 0·4991 3 8 3 0·5158 0·8744 1·1808 0·4568 0·7623 0·9938

isoparametric elements (for 1/4 shell) with 20 nodes are employed in the calculation.
It can be seen that the first-order frequency calculated by SAP5 is accurate enough. Where
V=vhzr2/C(2)

11 , l=(ph/l)zrxcr/C11, (rxcr/C11)i =cons tan t, i=1, 2, 3, rxcr =critical
stress.

5. 

The exact analysis of axisymmetric vibration and buckling using the Hamilton equation
is an efficient method. Exact frequencies and critical stresses are given for the axisymmetric
problem of thin, moderately thick and thick closed laminated cylindrical shells. The
principle and method suggested here have clear physical concepts and can overcome the
contradictions and limitations that arise from incompatibilty among the fundamental
equation in various theories of plates and shells. Numerical results denote that the method
of dividing the layer into several thin plies has the characteristics of fast convergence rate,
satisfactory precision, and controlled error. The present study satisfies the continuity
conditions of stresses and displacements at the interfaces, and the number of variables is
reduced greatly.
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