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A new approximate method is presented for the analysis of the modal characteristics of
straight, pretwisted non-uniform blades corresponding to the coupled flapwise bending,
chordwise bending and torsion of both rotating and non-rotating blades. An integral
approach is described based on the use of Green functions (structural influence functions),
which are used to develop the equations of motion. A clamped–free blade is analyzed and
comparisons are made with numerical results from the literature. Several examples
regarding specific aspects of the flapwise bending, coupled bending–bending, coupled
bending–torsion and coupled bending–bending–torsion vibration analysis are presented.
The method presented gives good results and can be used for modelling of turbomachine
blades, aircraft propellers or helicopter rotor blades which may be considered as straight
non-uniform beams with built-in pretwist.

7 1997 Academic Press Limited

1. INTRODUCTION

The determination of the dynamic characteristics of rotating beams is of great importance
in the design of several engineering components, such as blades in turbines, compressors,
propellers or helicopter rotors. Indeed, in order to avoid possible resonances, for transient
response problems and in flutter analysis, it is necessary to determine accurate estimates
of the natural frequencies of the structure under test.

The general differential equations of motion for combined bending–bending–torsion of
a pretwisted non-uniform blade were derived in reference [1] and are, in the general form,
too complex to be solved exactly. As a consequence, several methods have been developed
to obtain approximate solutions for the general case or specific subcases as has been well
summarized in reference [2]. For example, the Integrating Matrix Method (I.M.M.)
presented in references [3–5] has also been used for studying buckling of rotating beams
[6] and more recently in rotary wing aeroelastic analysis [7]. Murthy [8] used the
Transmission Matrix Method (T.M.M.) and in the Lang and Nemat-Nasser paper [9], the
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method of the new quotient, based on a variational statement proposed by Nemat-Nasser,
was presented. Many works in this field are based on finite element models.

With reference to the bending vibration of rotating beams or blades, reference [10]
contains a review of several approximate methods such as the Myklestad method, the
Galerkin method, the Rayleigh–Ritz method, the finite element method, etc.

There are also several known exact solutions, and in references [11] and [12] a
semi-analytic technique was presented which is based on the Frobenius power series
method and which represents centrifugal forces exactly, including shear deformation and
rotatory inertia effects. In reference [13] the method of Frobenius was used for the dynamic
analysis of rotating beams having uniform or linear distributions of mass and flexural
stiffness. Results were presented for hinged or fixed root beams with root offset and tip
mass.

In the present paper an integral approach is introduced based on Green functions and
in which the analysis of the modal characteristics corresponding to the coupled flapwise
bending–chordwise bending and torsion of rotating/non-rotating straight, non-uniform,
pretwisted blades is addressed. Initially, the use of such a formulation for the study of the
transverse vibrations of rotating clamped–free beams is outlined and, subsequently, an
extension to the bending–bending–torsion case is described. Furthermore, the method is
limited to linear problems and, therefore, to free vibration analysis.

The main feature of this alternative method is the use of Green functions and, in the
case of a pretwisted blade, the introduction of a coupling structural influence coefficient
between flap and lag bending. In this approach weighting matrices we used for integration
and differentiation in a similar way to I.M.M. [5]. The boundary conditions are
incorporated in the formulation using appropriate Green functions (for the clamped–free
blade in the applications presented in this paper). The numerical results determined are
compared with available experimental data and other numerical solutions, demonstrating
that this method produces good results in terms of the prediction of the modal
characteristics.

2. THEORETICAL BACKGROUND

2.1.   

Upon assuming simple harmonic motion, the differential equation governing the
transverse (flapwise) vibration of a rotating beam, shown in Figure 1, is

[EI(x)w0(x)]0−[T(x)w'(x)]'−m(x)v2w(x)=0, (1)

Figure 1. The rotating beam of configuration.
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where EI(x) is the flapwise bending stiffness of the beam and T(x) is the centrifugal force
in a section given by (a list of notation is given in the Appendix)

T(x)=g
L

x

m(x)V2(x+ e1 ) dx. (2)

According to references [14] and [15], a differential equation of the form

[EI(x)w0(x)]0= p(x) (3)

may be written in the integral form

w(x)=g
L

0

G(x, j)p(j) dj, (4)

where G(x, j) is the Green function which represents the bending deflection w(x) at x due
to a unit force applied at j. The Green function for this case is given in reference [15] as

G(x, j)=g
min (x,j)

0

(x− j1 ) (j− j1 )
EI(j1 )

dj1 . (5)

The fundamental concept is to consider equation (1) of the form (3) with

p(x)=mv2w−V2$m(x+ e1 )w'−w0 g
L

x

m(j) (j+ e1 ) dj%, (6)

so that equation (3) becomes

w(x)=v2 g
L

0

G(x, j)mw dj−V2 g
L

0

G(x, j)m(e1 + j)w' dj

+V2 g
L

0

G(x, j)$g
L

j

m(j1 ) (e1 + j1 ) dj1%w0 dj. (7)

After choosing n collocation points along the beam axis, each integral can be approximated
by the summation

g
L

0

f(j) dj= s
n

i=1

fiWi , (8)

where the Wi are weighting numbers which depend on the method employed for numerical
integration [14]. As a consequence, relation (7) becomes

{w}=v2[G] [W] [M1 ]{w}+V2[G] [W] [[Min ] [D2 ]− [Mx ] [D1 ]]{w}, (9)

where [G] contains the values G(xi , jj ) and [M1 ], [Min ] and [Mx ] are diagonal matrices with
the values m(x), fL

x m(x+ e1 ) dx and m(x+ e1 ) respectively along the diagonal. The [W]
matrix is an (n, n) diagonal weighting matrix with values depending on the method of
integration employed (Simpson’s method in the present work) and [D1 ] and [D2 ] are
differentiating matrices used to obtain the vectors {w'} and {w0}. In this paper, a
central-difference operator is used to obtain the differentiating matrices. It should be noted
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that in the formulation presented, for a non-rotating beam, the differentiating matrices are
not required, while in the case of I.M.M., these matrices can also be avoided for the
rotating beam through properly chosen dependent variables [6]. Equation (9) has the form

{w}=v2[G1 ]{w}+V2[[G2 ]− [G3 ]]{w}, (10)

and can be written as a standard eigenproblem,

[[A]−v2[I]]{w}= {0}, (11)

with [A]= [G1 ]−1[[I]−V2[G2 ]+V2[G3 ]], which can provide the natural frequencies of
bending vibration of the beam. The method presented yields non-symmetric fully
populated matrices. However, this approach makes it possible to use values G(xi , jj )
obtained from experimental measurements.

2.2.   

In this section, coupled bending–torsion vibration is considered for the case of a
pretwisted blade. The differential equations of the free bending–bending–torsion vibration
of a pretwisted rotating blade, shown in Figure 2, can be written as

(EIyw0+EIzy v0)0=(Tw')'+ pz1 = pz , (12)

(EIz v0+EIzyw0)0=(Tv')'+ py1 = py , (GJf')'+mx =0, (13, 14)

where py1 , pz1 and mx include the linear inertial terms of the equations of Houbolt and
Brooks:

pz1 = [V2em(x+ e1 )f cos u]'+v2m(w+ ef cos u), (15)

py1 =−[V2em(x+ e1 )f sin u]'−V2emf sin u+v2m(v− ef sin u)+V2mv, (16)

mx =V2em(x+ e1 ) (v' sin u−w' cos u)−V2emv sin u

−V2m(k2
m2 − k2

m1 )f cos 2u+v2mk2
mf−v2em(v sin u−w cos u). (17)

The expressions (15), (16) and (17) are specialized to the case of simple harmonic motion
with kA = eA =EB1 =EB2 = eo =0 and a singly symmetric cross-section, with the
introduction of a horizontal offset e1 . The profile of the blade is symmetric relative to axis
Oh and therefore

Iy = Ih cos2 u+ Iz sin2 u, Iz = Iz cos2 u+ Ih sin2 u, Izy =(Iz − Ih) sin u cos u. (18)

The linear equations (12), (13) and (14) are coupled due to the angle u, which includes
the pretwist and the setting angle (in the case of the controlled blade), and to the offset
e between the elastic center and the center of gravity of the section.

Figure 2. The blade configuration.
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For the analysis of the coupled bending equations (12) and (13), a key element is the
introduction of different structural influence functions. These functions are called Gww , Gwv ,
Gvv and Gvw , and their physical significance, illustrated in Figures 3(a) and (b), is as follows:
Gww (x, j) is the displacement w at x due to a unit force at j acting on the direction z;
Gvv (x, j) is the displacement v at x due to a unit force at j acting on the
direction y; Gwv (x, j) is the displacement w at x due to a unit force at j acting on
the direction y; Gvw (x, j) is the displacement v at x due to a unit force at j acting on the
direction z. For equation (14), the function Gt (x, j), which represents the torsion angle
f at x due to a unit torque at j, is used.

The main idea is to regard the solution of equations (12) and (13) for the displacements
v(x) and w(x) as a superposition of two components:

w(x)=g
L

0

Gww (x, j)pz (j) dj+g
L

0

Gwv (x, j)py (j) dj, (19)

v(x)=g
L

0

Gvv (x, j)py (j) dj+g
L

0

Gvw (x, j)pz (j) dj. (20)

Furthermore, according to references [14–16], equation (14) can be written in the integral
form

f(x)=g
L

0

Gt (x, j)mx (j) dj. (21)

Figure 3. The physical significance of the Green functions. (a) Gww and Gvw; (b) Gvv and Gwv; (c) Gt .
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In the case of a clamped–free beam, Green functions are calculated according to some
simple concepts of strength of materials reported in reference [17]:

Gww (x, j)=g
min (x,j)

0

(x− j1 ) (j− j1 )Iz (j1 )
EIz (j1 )Ih (j1 )

dj1 , (22)

Gvv (x, j)=g
min (x,j)

0

(x− j1 ) (j− j1 )Iy (j1 )
EIz (j1 )Ih (j1 )

dj1 , (23)

Gwv (x, j)=Gvw (x, j)=g
min (x,j)

0

(x− j1 ) (j− j1 )Izy (j1 )
EIz (j1 )Ih (j1 )

dj1 , (24)

Gt (x, j)=g
min (x,j)

0

dj1

GJ(j1 )
. (25)

For u(x)=0, Izy =0, Iz = Iz and Iy = Ih , Gwv =Gvw =0 and the Green functions established
in reference [15] are obtained.

In the manner presented in section 2.1, by choosing n collocation points along the blade
and transforming in summations all the integrals in equations (19), (20) and (21), the
following three relations in matrix form are obtained:

{w}=v2[Gww ] [W] [M]{w}+V2[Gww ] [W] [[Min ] [D2 ]− [Mx ] [D1 ]]{w}

+ev2[Gww ] [W] [Mc ]{f}+V2e[Gww ] [W] [[Mxc1 ]+ [Mc ]− [Mxstp ]

+[Mxc ] [D1 ]]{f}+(v2 +V2) [Gwv ] [W] [M]{v}

+V2[Gwv ] [W] [[Min ] [D2 ]− [Mx ] [D1 ]]{v}− ev2[Gwv ] [W] [Ms ]{f}

−V2e[Gwv ] [W] [[Ms ]+ [Mxs1 ]+ [Mxs ] [D1 ]+ [Mxctp ]]{f}, (26)

{v}=(v2 +V2) [Gvv ] [W] [M]{v}+V2[Gvv ] [W] [[Min ] [D2 ]− [Mx ] [D1 ]]{v}

−ev2[Gvv ] [W] [Ms ]{f}−V2e[Gvv ] [W] [[Ms ]

+[Mxs1 ]+ [Mxs ] [D1 ]+ [Mxctp ]]{f}+v2[Gvw ] [W] [M]{w}

+V2[Gvw ] [W] [[Min ] [D2 ]− [Mx ] [D1 ]]{w}+ ev2[Gvw ] [W] [Mc ]{f}

+eV2[Gvw ] [W] [[Mxc1 ]+ [Mc ]− [Mxstp ]+ [Mxc ] [D1 ]]{f}, (27)

{f}=v2[Gt ] [W] [k2
m [M]{f}+ e[Mc ]{w}− e[Ms ]{v}]

−V2[Gt ] [W] [(k2
m2 − k2

m1 ) [M2c ]{f}+ e[Mxc ] [D1 ]{w}

−e[Mxs ] [D1 ]{v}+ e[Ms ]{v}]. (28)

Here [M], [Min ], [Mx ], [Mc ], [Mxc1 ], [Mxstp ], [Ms ], [Mxs1 ], [Mxs ], [Mxctp ], [M2c ] and [Mxc ] are
(n, n) diagonal matrices having on the main diagonal the following values: m(x),
fL
x m(x+ e1 ) dx, m(x+ e1 ), m cos u, m'(x+ e1 ) cos u, m(x+ e1 )u' sin u, m sin u,
m'(x+ e1 ) sin u, m(x+ e1 ) sin u, m(x+ e1 )u' cos u, m cos 2u and m(x+ e1 ) cos u,
respectively.
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T 1
Comparison of approximate frequency ratios with exact values for a uniform cantilever beam

Frequency ratio, v/V
ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

This paper (I.F.)
Rotation Exact ZXXXXXXXXXXCXXXXXXXXXXV

v/V speed ratio, h [13] n=10 n=20 n=40 n=80

v1 /V 0 3·516 3·516 3·516 3·516 3·516
3 4·7973 4·7863 4·7945 4·7966 4·7971
6 7·3604 7·3226 7·3509 7·3580 7·3598

12 13·1702 13·024 13·1349 13·1614 13·168

v2 /V 0 22·0345 22·0344 22·0344 22·0345 22·0345
3 23·3203 23·2292 23·2965 23·3143 23·3188
6 26·8091 26·4964 26·7283 26·7887 26·8040

12 37·6031 36·7341 37·3828 37·5478 37·5893

v3 /V 0 61·6972 61·7148 61·6954 61·6971 61·6972
3 62·9850 62·7402 62·9120 62·9666 62·9804
6 66·6840 65·7144 66·4160 66·6159 66·6668

12 79·6145 76·3843 78·7535 79·3964 79·5598

v4 /V 0 120·902 121·212 120·889 120·900 120·901
3 122·236 122·067 122·083 122·198 122·226
6 126·140 124·592 125·589 125·999 126·105

12 140·534 134·175 138·628 140·045 140·411

The [W] matrix is the weighting matrix, while [D1 ] and [D2 ] are differentiating matrices
used to obtain the vectors {w'}, {w0}, {v'}, {v0} and {f'}. The equations may be written
simply as

{z}=[v2[A1 ]+ [B1 (V2)]]{z}, (29)

where {z}=[[w], [v], [f]]T is a vector of dimension 3n and [A1 ], [B1 (V2)] are (3n, 3n)
matrices. If u=0 and e=0, the motions become uncoupled. Equation (29) can be written
in the form

[[A]−v2[I]]{z}= {0}, (30)

Figure 4. The relative error versus n in the case of a uniform rotating clamped–free beam. e1 =0, h=12.
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Figure 5. The relative error versus CPU time in the case of a uniform rotating clamped–free beam. e1 =0,
h=12.

where

[A]= [A1 ]−1[[I]− [B1 ]]. (31)

Equation (30) represents an eigenvalue problem, the solution of which yields
eigenfrequencies and corresponding mode shapes. When just two motions are considered,
the dimensions of the matrix [A] in equation (30) is (2n, 2n) and the vector {z} becomes
[[w] [v]]T for coupled bending–bending or [[w] [f]]T for coupled flap bending–torsion.

3. ILLUSTRATIVE EXAMPLES

3.1. 

In this section, several examples of flap–bending, lag–bending and coupled vibration
analysis are presented, together with an evaluation of the convergence of the method (all
of the calculations presented have been performed by using MATLAB on a Pentium PC
(90 MHz)).

3.2.  –  – 

If it is assumed that v=f= e= u=0, only flap deflection is considered, such that
{z}= {w} and it is possible to use either equation (9) or equation (26). In order to evaluate
the merits of the proposed method, the numerical results are compared with the exact

Figure 6. The non-uniform cross-section clamped–free aluminum blade.
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T 2

Model data of an aluminum rotor blade

Section Length Area m Bending stiffness,
number (m) (cm2) (kg/m) EIy (Nm2)

1 0·6 42 11·7054 92 106
2 0·12 50 13·9350 76 170
3 0·08 51 14·2137 35 819
4 4 50 13·9350 19 006

solution presented in reference [13]. To facilitate this comparison, the following
non-dimensional coefficients are introduced:

l=mL4v2/EI, a= h2 =mL4V2/EI. (32)

For the simple case of a uniform cantilever beam with no root offset, in Table 1 are
shown both the exact solution and the numerical results, indicating that errors tend to
increase with the order of the modes. In Figure 4 is shown the behaviour of relative errors
for the first four natural frequencies in the case of rotation speed ratio h=12. It can be
seen that relative errors decrease increasing number of collocation points n which, in this
graph, are varied from 10 to 100. Furthermore, the authors have observed that for hQ 12
errors are smaller. For the same case study, relative errors are shown versus CPU time
in Figure 5.

The natural frequencies of the flap–bending modes of a non-uniform untwisted
clamped–free aluminum blade (Figure 6) were calculated by using the data given in
reference [18] and are reproduced in Table 2. The properties of the blade are piecewise
constant along the axial co-ordinate. In this reference, a finite element analysis of this blade
is performed and the first five eigenfrequencies are given for V=0 and for V=45 rad/s.

Figure 7. Natural frequencies for flap–bending modes of the aluminum blade. —, I.F. results, n=50; w,
ANSYS results.
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Figure 8. A comparison of results for a cantilevered rotating beam with a symmetric section. (, w, ETB [11];
—, lead–lag; ·······, flap.

The results of the present integral formulation (I.F.) are plotted in Figure 7, and good
agreement can be observed.

To evaluate the method also in the case of lag bending vibrations by using available
results of reference [11], a study was made of a cantilevered beam having a symmetric
section with mL4/EI=1, h= a1/2 =V and l1/2 =v. The uncoupled equations (26) and (27)
were used for f=0, u=0, e= e1 =0 and EIz =EIy =EI. In reference [11], the
dimensionless frequency l1/2 for the first six flap and lag modes with and without
Timoshenko corrections were given. In Figure 8 the results obtained by using the proposed

T 3

Comparison of results for a non-uniform rotating twisted blade; bending–bending natural
frequencies (Hz)

Results
V Mode ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV
(rpm) number Exp., [3] [8] [9] I.F., n=30 I.F., n=50

1567 1 40·08 39·89 40·96 40·73 40·87
2 — 107·40 109·22 108·16 108·83
3 — 276·32 279·79 276·18 278·18

1589 1 — 40·26 41·35 41·12 41·26
2 107·53 107·93 109·77 108·72 109·38
3 — 276·97 280·47 276·86 278·86

2609 1 58·73 58·05 60·07 59·92 60·04
2 — 135·99 139·52 138·52 139·18
3 — 313·98 319·40 315·48 317·71

2614 1 — 58·14 60·16 60·01 60·13
2 137·02 136·14 139·68 138·68 139·34
3 — 314·19 319·62 315·70 317·93

3583 1 76·52 75·30 78·34 78·19 78·31
2 — 166·25 — 170·94 171·62
3 — 357·70 — 362·08 364·54
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T 4

Comparison of results for a uniform non-rotating untwisted blade; bending–torsion natural
frequencies (Hz)

I.M.M. I.M.M. T.M.M. This paper (I.F.),
Mode [5], n=5 [5], n=15 [8] n=30

1 31·05 31·05 31·05 31·06
2 189·37 193·74 193·74 193·79
3 390·80 390·87 390·87 390·91
4 578·93 539·54 539·54 539·64
5 1168·22 1043·94 1041·72 1043·87

formulation with n=50 collocation points and the solution by the Engineer’s Theory of
Bending (E.T.B.) given in Figure 4 of reference [11] are shown; again, good agreement can
be observed.

3.3.  –  – 

In this section an example is given of a non-uniform pretwisted rotating blade. The same
example was used in reference [9], where the method of the new quotient was used, and
also in reference [8] in which the analysis was conducted by using T.M.M. In this case
f=0 and coupled equations (26) and (27) are used.

The length of the blade is L=18 in and it is cantilevered at e1 =6 in from the axis of
rotation. The properties m(x), EIh (x) and EIz (x) of the non-uniform blade are presented
in references [8] and [9]. In this example, for each collocation point, these properties are
obtained by linear interpolation. In Table 3 are presented the first three natural frequencies
of this clamped–free blade for several rotational speeds. The dashes in the table indicate
the lack of data in the corresponding references. In this case study, the results of the present
integral formulation agree better with those of reference [9].

Natural frequencies have been evaluated also for an untwisted clamped–free
non-rotating blade having flap–bending and torsional degrees of freedom. According to
reference [8], the data of this blade are the following: L=40 in, EIz =25 000 lb in2,
GJ=9000 lb in2, e=0·4 in, e1 =0, k2

m1 =0·18 in2, k2
m2 =0·71 in2, m=0·0015 slugs/in. The

results are shown in Table 4 and agree well with those obtained in reference [8] with
T.M.M. and in reference [5] with I.M.M.

T 5

Comparison of results for a uniform non-rotating twisted blade;
bending–bending–torsion natural frequencies (Hz)

This paper (I.F.)
T.M.M. ZXXXXXXXXCXXXXXXXXV

Mode [9] n=10 n=20 n=30

1 30·8295 30·8374 30·8379 30·838
2 53·8277 53·8403 53·8404 53·8404
3 184·6175 184·5628 184·661 184·6821
4 337·3333 337·4104 337·4105 337·4116
5 484·3373 482·3053 483·9182 484·2932
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Figure 9. A comparison of results for a uniform rotating twisted blade. —, I.F.
results, n=30; w, T.M.M. results.

3.4.  –– 

An example of a pretwisted non-rotating blade having flap, lag and torsional degrees
of freedom is taken also from reference [8]. The characteristics of the uniform blade studied
are L=40 in, u=45°, EIh =25 000 lb in2, EIz =75 000 lb in2, GJ=9000 lb in2,
m=0·0015 slugs/in, k2

m1 =1 in2, k2
m2 =1 in2, e=z2 in. The results for this case are

compared with those obtained with T.M.M. [8] in Table 5.
Finally, a complete example is the evaluation of the dynamic characteristics of a

fixed–free uniform rotating blade having the following properties [19, 20]: L=260 in,
uc =15·026°, uB =0°, EIh =0·2977×108 lb in2, EIz =109 lb in2, GJ=9000 lb in2,
EA=1011 lb, m=0·0015 lb s2/in2, mk2

m1 =0·89545×10−3 lb s2, mk2
m2 =0·04 lb s2,

e=−0·6 in. The calculated natural frequencies are shown in Figure 9 in comparison with
the available results at V=0 and V=360 rpm of references [19, 20] obtained by using the
Transfer Matrix Method. Good agreement is obtained for these values of V.

4. CONCLUSIONS

The approach described in this paper addresses the vibration analysis of non-uniform
pretwisted rotating/non-rotating straight blades. The complete flap–lag–torsion vibration
analysis may be performed by using this method with good results.

A system of appropriate Green functions for the clamped–free beam was utilized to solve
the Houbolt and Brooks equations for the free vibration motion of a rotating/non-uni-
form, pretwisted blade in a simple matrix manner. The dynamic characteristics obtained
with this approach are in good agreement with the results of other methods.

The proposed approach uses weighting matrices for integration and also differentiating
matrices like the more general I.M.M. [5, 21]. For a non-rotating blade the differentiating
matrices are unnecessary. Boundary conditions are included through properly chosen
structural influence (Green) functions.

This technique yields unsymmetric, non-banded matrices. It may be concluded that the
proposed approach can provide an interesting alternative in this kind of analysis, as the
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influence coefficients at specific points can be computed or, in specific cases, estimated by
static testing to find stiffness distributions [14]. The matrix form of this method also makes
possible a simple MATLAB implementation.

In this paper, the formulation is limited to the clamped–free beam case, which is of
particular interest for several engineering devices, but the structural influence functions
may be obtained also for other boundary conditions. For example, in reference [22],
including a tip mass in the formulation, the method is used for analyzing the bending
vibration of rotating beams with a flexible root.

ACKNOWLEDGMENTS

The authors wish to thank the reviewers for their very helpful comments and
suggestions.

REFERENCES

1. J. C. H and G. W. B 1958 NACA Report 1346. Differential equations of motion
for combined flapwise bending, chordwise bending and torsion of twisted non-uniform rotor
blades.

2. A. R 1991 Applied Mechanics Reviews 44(12), 483–515. Structural and dynamic behavior
of pretwisted rods and beams.

3. W. F. H 1970 NASA TN D-6064. The integrating matrix method for determining the
natural vibration characteristics of propeller blades.

4. W. F. W and R. E. M 1975 NASA TM X-72, 751. A numerical method for
determining the natural vibration characteristics of rotating nonuniform cantilever blades.

5. V. R. M 1977 American Institute of Aeronautics and Astronautics Journal 15(4), 595–597.
Dynamic characteristics of rotor blades: integrating matrix method.

6. W. F. W, R. G. K and K. R. V. K 1979 International Journal of Mechanical
Science 21, 739–745. Buckling of rotating beams.

7. F. N and E. J. B 1994 Journal of Aircraft 31(5), 1178–1188. Using adaptive
structures to attenuate rotary wing aeroelastic response.

8. V. R. M 1976 Journal of Sound and Vibration 49, 483–500. Dynamic characteristics of
rotor blades.

9. K. W. L and S. N-N 1979 American Institute of Aeronautics and Astronautics
Journal 17, 995–1002. An approach for estimating vibration characteristics of rotor blades.

10. R. L. B 1992 Rotary Wing Structural Dynamics and Aeroelasticity (AIAA Education
Series). Washington, D.C.: AIAA Inc.

11. R. O. S and V. G 1975 International Journal of Mechanical Science 17,
719–723. Semi-analytic methods for rotating Timoshenko beams.

12. V. G and R. O. S 1977 Vertica 1, 291–306. Semi-analytic methods for
frequencies and mode shapes of rotor blades.

13. A. D. W, C. E. S, R. W. T and J. L. C. W 1982 Journal of Applied
Mechanics 49(3), 197–202. Vibration modes of centrifugally stiffened beams.

14. R. L. B, H. A and R. L. H 1955 Aeroelasticity. Reading,
Massachusetts: Addison-Wesley.

15. A. P 1973 Theory of the Aeroelasticity-dynamic Periodic Phenomena (in Romanian).
Bucharest: Romanian Academy Publishing House.

16. E. H. D, H. C. C J., R. H. S and F. S 1978 A Modern Course in
Aeroelasticity. Alphen aan der Rijn, The Netherlands: Sijthoff & Noordhoff.

17. V. A 1997 Rev. Roum. Sci. Tech. – Mec. Appl. 42(1–2), 197–203. Coupled bending
vibration analysis of pretwisted blades: an integral formulation using Green’s functions.

18. O. W, J. S and J. R 1990 Proceedings of the First International Conference on
Dynamic of Flexible Structures in Space, Cranfield, 15–18 May, 233–247. Superposition method
for stress stiffening in flexible multibody dynamics.

19. V. R. M and A. M. J 1986 Journal of the American Helicopter Society 31(5), 43–50.
Free vibration characteristics of multiple load path blades by the transfer matrix method.



.   .486

20. P. J. M, L. A. S and V. R. M 1988 Computers and Structures 29(5), 763–776.
Dynamics of helicopter rotor blades.

21. M. B. V 1966 Izvestia VUZ, Aviatsionnaya Teknika 3, 50–61. Integrating matrices as
a means of numerical solution of differential equations in structural mechanics.

22. G. S, L. C and V. A 1997 Fifty Pan-American Congress of Applied
Mechanics, PACAM V, Puerto Rico, 2–4 January, 310–313. Vibration of rotating beams with
tip mass: a formulation based on Green’s functions.

APPENDIX: NOTATION

B1 , B2 cross-section constants
E Young’s modulus of elasticity
e distance between center of mass and elastic center
e1 root blade offset
eA distance between tension center and elastic center
eo distance at root between elastic axis and pitch change axis of the blade, positive when

elastic axis lies ahead
G shear modulus of elasticity
Ih , Iz bending moments of inertia about major and minor neutral axes
J torsional stiffness constant
kA polar radius of gyration of cross-sectional area effective in supporting tensile stresses

about the elastic axis
km polar radius of gyration of cross-sectional mass about elastic axis, k2

m = k2
m1 + k2

m2

km1 , km2 mass radii of gyration of cross-sectional mass about major and minor neutral axes
L blade length
m mass of unit length of the blade
min (x, j) smallest value from x or j
n number of collocation points
T tension in the blade
v bending lag displacement
w bending flap displacement
x, j, j1 co-ordinates along the Ox axis
f torsion deformation, positive leading edge upwards
uB blade section pretwist
uc collective setting angle
u total section setting angle u= uB + uc

V angular velocity of rotation
v frequency of vibration
[·]' differentiation w.r.t. x
[·]0 double differentiation w.r.t. x
[·]T transpose of a matrix
Other symbols are defined in the text.


