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Aircraft cabin noise due to the fuselage boundary layer is determined by, among other
factors, the wavenumber–frequency spectrum of the fluctuating boundary layer pressures,
a quantity for which a number of models have been proposed. In this work predictions
for the sound radiated by a boundary layer driven plate are investigated, with a view to
determining which model is most appropriate to the cabin noise problem. It is found that,
for the structural and boundary layer parameters typical of transport aircraft, the
contributions of resonant, acoustically inefficient plate modes dominate the radiated power.
When these modes are strongly driven by the boundary layer, their excitation levels are
determined by the ‘‘convective peak’’ of the wavenumber–frequency spectrum (where most
of the fluctuation energy lies), and the radiated sound is found to be sensitive to details
of the shape and location of the peak, giving differing results for models normally thought
to agree at this point. Otherwise, it is the sub-convective region of the wavenumber–
frequency spectrum that is important, and differences between models here lead to
corresponding discrepancies in radiated sound predictions. Since the first case is generally
more problematic, one can conclude that a suitable model must above all describe the
convective peak accurately; however, the extent to which existing alternatives do so remains
unclear.
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1. INTRODUCTION

Boundary layer induced noise is already a significant contributor to cabin sound levels in
the current generation of passenger aircraft [1], and is likely to increase in importance as
other sources (e.g., jet noise) are further reduced. It is also certain to be an important issue
in any forthcoming supersonic civil transport project. If the problem is to be tackled
successfully, it must be addressed at the design stage, and there is thus a need for a simple
model of the noise generation process, which can be used to formulate design criteria.

A model which fits this description, and which may be justified on the basis of the typical
structural and boundary layer parameters of the problem [2], is a simply supported
rectangular elastic plate driven by a flat-wall turbulent boundary layer. The sound power
radiated by the plate may be calculated in terms of the cross-correlation function of the
boundary layer fluctuation pressures, and an estimate of cabin noise levels then obtained
by summing the incoming power contributions from all fuselage panels (plates). The model
may also be extended to describe the modifying effects of the cabin interior wall
treatment [3].

* Original version published in the proceedings of the First CEAS/AIAA Aeroacoustics Conference, Munich,
Germany, 12–15 June 1995.
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The specific form in which the boundary layer pressure cross-correlation enters this
model is the wavenumber–frequency spectrum, F	 p (k, v), obtained by Fourier transforming
the correlation function in time and space. A number of more or less empirical expressions
for this quantity are available, and it is the object of this work to determine the sensitivity
of the model predictions for radiated sound to differences in these expressions, and thereby
to assess their applicability to this and similar problems.

At this point, one should note that the formulation described here relies on the
assumption that the pressure field on the flow side of the plate consists of the sum of the
turbulence pressures which would be observed on a rigid wall and the acoustic pressures
which would be generated by the plane motion in the absence of turbulence. This ‘‘weak
coupling’’ approximation can be derived from an acoustic analogy analysis of the problem
(examples of this approach may be found in references [4, 5]), subject to the condition that
the acoustic velocities are small in comparison with the turbulence velocities. (Such a
condition simply corresponds to the assumption implicit in acoustic analogy analyses;
namely, that the basic turbulence structure is essentially unaffected by the acoustic
motions.) The quantitative predictions that are obtained from the weak coupling
approximation have been shown to work well in a wide range of cases [6–10], including
supersonic flows [8, 9]. It has thus become accepted as a standard method, and is in
widespread current use.

However, the assumption that the turbulence characteristics are unaffected by the
acoustic field is sweeping, and is especially difficult to justify at supersonic flow speeds.
Recently, Frendi [11] has presented calculations which avoid this problem, in that a fully
coupled solution is sought for the turbulent flow and plate vibration. Current
computational resources limit the flow model to an ‘‘unsteady Reynolds-averaged’’ (or
‘‘very large eddy simulation’’) formulation, but predictions are nonetheless obtained over
a useful range of frequencies. This is clearly a valuable way forward, although it is not
clear whether the errors associated with the weak coupling approximation justify the
massively increased computational requirement. (Frendi [11] cites differences in plate
damping between experimental and theoretical results presented by Wu and Maestrello [12]
as evidence that these errors are large in supersonic flow; however, it is not clear to what
extent the differences could have been due to difficulties in the modelling of structural
damping. Certainly the results of references [8] and [9] show good agreement between
supersonic flow experiments and predictions obtained with the weak coupling
approximation, albeit not in very great detail.)

In any case, one is currently a long way from being able to apply fully coupled
computations to problems of practical interest, such as the prediction of boundary layer
induced cabin noise for complete aircraft [13]. Furthermore, even when it becomes feasible
to do so, there will still be a requirement for simple models which enhance understanding
and allow rapid computations to be performed at an early design stage. One can thus
expect that the weak coupling approximation will remain in use for some considerable time
yet; hence the importance of assessing the merits of the various models for the rigid wall
pressure spectrum.

The paper commences with a description of the flat plate model and the results of the
analysis for the radiated sound (section 2). The final expression takes the form of a sum
of contributions from plate modes, and the physical interpretation of the components of
each summand term is described, for both the bare and trimmed plate cases. Particularly
important for this investigation is the modal excitation term, F	 mn , which represents the
influence of the boundary layer wavenumber–frequency spectrum on the radiated sound,
and this quantity is investigated further in section 3. Here the relationship between
F	 p (k, v) and F	 mn is discussed, and possible models for F	 p (k, v) are described. An initial
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Figure 1. The flat plate model. A simply supported thin elastic plate, set in an infinite rigid baffle, is driven
by a turbulent boundary layer. The resulting vibrations radiate acoustic energy to the interior (xQ 0) and exterior
(xq 0).

selection of promising candidates is made at this stage. In section 4 these formulations are
then applied to two test cases, one representative of a high speed subsonic transport, and
the other of a somewhat slower aircraft. The results are discussed and explained in terms
of the characteristics of the candidate wavenumber–frequency spectrum models, and the
conclusions of the investigation are then summarized in section 5.

2. THE BOUNDARY LAYER DRIVEN PLATE

2.1.     

The basic model consists of a simply supported thin elastic plate, of length a and breadth
b, set in an infinite rigid baffle and driven by a turbulent boundary layer (see Figure 1).
The plate has bending stiffness B, membrane tensions Ny , Nz and mass per unit area M,
and the bounding fluids are of density and sound speed r0, c0 and r1, c1 respectively. Under
the weak coupling assumption, the driving pressures consist of the ‘‘blocked’’ (i.e., rigid
wall) boundary layer pressure, pt , and the acoustic pressure fluctuations induced by the
plate motion. The harmonic plate velocity component v(y, z, v) e−ivt/2p then satisfies

B94v−Nz 12v/1z2 −Ny 12v/1y2 −Mv2v=iv[pt + p0 − p1]x=0, (2.1)

where p0 (x, y, z, v) and p1 (x, y, z, v) are the external and internal acoustic pressures. As
such, they obey the Helmholtz equations*

(92 + k2
i )pi =0, i=0, 1, (2.2)

(here ki is the acoustic wavenumber, v/ci ), and are linked to the plate velocity via the
boundary conditions

(1/ri ) 1pi /1x=x=0 = ivv, i=0, 1, (2.3)

which specify equal plate and fluid displacements in the x direction. To complete the
formulation of the problem, it remains only to include structural damping, which will be
represented as a small imaginary component in the restoring force terms:

B=Br (1− ios ), Nz =Nzr (1− ios ), Ny =Nyr (1− ios ). (2.4)

The quantity of interest is the spectrum of the inwardly radiated sound power, S1 (v),
defined by

* The influence of the flow on p0 is neglected in equation (2.2).
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Figure 2. The trimmed flat plate model. The interior surface of the plate is now covered by a series of infinite
layers, representing the interior treatment of a trimmed aircraft.

2pd(v−v')S1 (v)=−2 g
a

0 g
b

0

Re [p1 (0, y, z, v)v*(y, z, v')] dy dz. (2.5)

The components of the integrand may be found from equations (2.1–2.3) via a modal
analysis [2], and equation (2.5) then yields the dimensionless spectrum*

S	 1 (v)=
Mv3

U2
c F(v)

S1 (v)=2of1 s
m,n

Re [Z(1)
mn ]

F	 mn

=dmn =2
, (2.6)

where the terms have the following meanings: F(v) is the boundary layer pressure
spectrum, Uc is the boundary layer eddy convection velocity, of1 is the fluid loading
parameter (=r1 c1 /Mv), m and n are longitudinal and lateral mode numbers, Z(1)

mn is the
dimensionless acoustic modal impedance, F	 mn is the dimensionless modal excitation, and
dmn is the dimensionless overall modal impedance. Thus equation (2.6) expresses S	 1 (v) as
a sum of individual mode contributions, each contribution consisting of the modal energy,
F	 mn /=dmn =2, multiplied by the ‘‘radiation efficiency’’, Re [Z(1)

mn ]. Expressions for these terms
are given in section 2.2, where their physical interpretations are discussed. (Note that the
non-dimensionalization used here differs from that of reference [2] in employing F(v)
instead of more fundamental boundary layer properties. This ensures that differences in
S	 1 (v) for the various wavenumber–frequency spectrum models will be entirely due to the
feature one wishes to assess—the representation of the spatial correlation of the fluctuating
pressures.)

The trimmed model, which includes a representation of the aircraft cabin
interior treatment, is shown in Figure 2. Here the plate of Figure 1 is covered by two layers
of dissipative material and a limp, massive sheet (representing an insulation bag), these
in turn being separated from the internal air space by an air gap and an elastic plate
(representing a trim panel). The modal analysis is similar to that for the bare plate, and
yields [3]

S	 1 (v)=2of1 s
m,n

Re [Imn ]
F	 mn

=d'mn =2. (2.7)

This equation is formally similar to equation (2.6), with Z(1)
mn replaced by Imn and dmn by d'mn .

The model’s behaviour, however, is radically altered by the interior treatment, as described
below.

* The expression given here is valid for light fluid-loading, when modal coupling due to the acoustic pressures
is negligible [14].
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2.2.  

Each summand term in equations (2.6) and (2.7) represents one of the three factors in
the behaviour of the model problem—excitation, structural response and acoustic
radiation. Here the terms will be considered in more detail, with equation (2.6) used as
a basis for the discussion. The differences between equations (2.7) and (2.6) will be
described where appropriate.

The acoustic modal impedance, Z(1)
mn , is given by the integral

Z(1)
mn =

k1

(2p)2 g
a

−a g
a

−a

=Smn (ky , kz ) =2
(k2

1 − k2
y − k2

z )1/2 dky dkz , (2.8)

where the square root is to be taken as positive real or positive imaginary, and the shape
function Smn (ky , kz ) is the spatial Fourier transform of the (m, n)th simply supported mode
shape:

Smn (ky , kz )=
2

zab g
a

0 g
b

0

sin 0mpz
a 1 sin 0npy

b 1 e−iky y e−ikz z dy dz. (2.9)

The integral is easily evaluated, and =Smn (ky , kz ) =2 is found to be given by a product of
functions in ky and kz , peaking around the modal wavenumbers kn (=np/b) and
km (=mp/a) respectively. To either side of the peak are an infinite number of side lobes,
as shown in Figure 3. These functions represent the wavenumber content of the mode
shape, which weights the acoustic impedance of each individual (ky , kz ) Fourier component
in equation (2.8) to give the acoustic modal impedance. The radiation efficiency is the real
part of Z(1)

mn , arising from the integration range k2
y + k2

z E k2
1 . Its magnitude thus depends

on whether or not the shape function peak at the modal wavenumbers (km , kn ) lies in this
range: i.e., on whether the mode is below (k2

m + k2
n q k2

1 ) or above (k2
m + k2

n Q k2
1 )

coincidence. Below coincidence, the mode trace speed is subsonic and Re [Z(1)
mn ] is small;

above coincidence the trace speed is supersonic and Re [Z(1)
mn ]1 1. This behaviour may

Figure 3. Shape function variation with longitudinal wavenumber for m=5. The plot shows the squared
magnitude of Smn (ky , kz ) with ky =0. It is strongly peaked around the modal wavenumber, kz =mp/a.
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Figure 4. Mode (5,3) radiation efficiency for a=1 m and b=0·6 m. The radiation efficiency is plotted against
a dimensionless frequency, which is equal to one when the acoustic wavelength becomes equal to the modal
wavelength. At lower frequencies the dominant modal wavenumber components are subsonic, and the radiation
efficiency is low. At higher frequencies, the radiation efficiency asymptotes to one.

clearly be seen in Figure 4, which shows a typical example. One may thus divide modes
into two classes, ‘‘inefficient’’ and ‘‘efficient’’, corresponding to below and above
coincidence.

The corresponding term for the trimmed plate, Re (Imn ), similarly represents the
radiation efficiency of mode (m, n), but differs significantly from Re [Z(1)

mn], due to the
attenuating effect of the insulation and trim, which increases with frequency [3]. However,
at any given frequency, an above-coincidence mode still has a much higher supersonic
wavenumber content than one below coincidence, and the concepts of efficient and
inefficient modes still apply.

The second term in equation (2.6), dmn , describes the structural response. It is given by

dmn =i6B(k2
m + k2

n )2 +Nz k2
m +Ny k2

n

Mv2 −17+ of0 Z(0)
mn + of1 Z(1)

mn , (2.10)

where of0 and Z(0)
mn are the external equivalents of of1 and Z(1)

mn . At the modal resonance
frequency, Im (dmn )=0, and the mode’s response is limited only by the (small) real part
of dmn , which arises from the structural damping terms of equation (2.4) and the external
and internal modal radiation efficiencies.

For the trimmed plate, d'mn is formed by replacing the term of1 Z(1)
mn with one representing

the modal impedance of the insulation/trim/internal air system, ofi Z(i)
mn . In contrast to the

former, ofi Z(i)
mn can have a significant real part even for inefficient modes, due to the

dissipative nature of the insulation, and the effect is greatly to increase the apparent
damping of the plate [3].

Finally, the excitation term F	 mn is, like Z(1)
mn , given by a wavenumber integral,

F	 mn =
1

(2p)2 g
a

−a g
a

−a

F	 p (ky , kz , v) =Smn (ky , kz ) =2 dky dkz , (2.11)
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where F	 p (ky , kz , v) is the dimensionless wavenumber–frequency spectrum of the boundary
layer pressures, defined by

2pd(v−v')F	 p (ky , kz , v)

=
v2

U2
c F(v)g

a

−a g
a

−a

pt (0, y+ ry , z+ rz , v)p*t (0, y, z, v') e−ikyry e−ikzrz dry drz .

(2.12)

Most of the energy in the boundary layer pressure fluctuations lies around the
wavenumbers kz =v/Uc , ky =0*, so that F	 p (k, v) is strongly peaked there. The modes
undergoing the highest excitation are thus those with modal wavenumbers (km , kn ) close
to kz =v/Uc , ky =0, when the shape function and wavenumber–frequency spectrum peaks
coincide.

The extent of a given mode’s contribution to the radiated sound is thus dependent on
whether it is acoustically efficient or inefficient, whether it is resonant or non-resonant,
and whether or not it is highly excited. Of particular interest are modes which
combine two of these properties, either acoustic efficiency and resonance, or high excitation
and resonance (‘‘hydrodynamic coincidence’’). (The third possibility, high excitation and
acoustic efficiency, is not possible for subsonic boundary layers.) For resonant modes
to be acoustically efficient, the frequency must be above the ‘‘coincidence’’ or
‘‘critical’’ frequency, at which the free wave speed in the corresponding infinite plate
becomes supersonic. By contrast, hydrodynamic coincidence may occur at any frequency,
and simply requires the boundary layer convection velocity Uc to match the longitudinal
trace speed v/km of a resonant mode, the effect being most pronounced for modes with
kn small.

Clearly, given the above discussion, it is not possible to determine a priori
which modes will dominate the radiated power spectrum. This is a significant limitation,
because it affects the choice of model for the boundary layer wavenumber–frequency
spectrum, as will become evident in the following assessment of possible candidates.

3. THE MODAL EXCITATION TERM

3.1.     

In discussing the integral for F	 mn , equation (2.11), and how it is affected by the
choice of model for F	 p (k, v), one must first consider which regions of the integrand
contribute most to it. This is clear for highly excited modes, where the peaks in the modal
and boundary layer wavenumber spectra coincide. However, one also potentially needs to
know where the main contributions to F	 mn arise for weakly excited modes. In this case the
integrand functions may typically be as shown in Figure 5, and one must consider which
peak gives the larger contribution. In addressing this problem, Hwang and Maidanik [15]
concluded that, for simply supported modes, it is the modal peak, which implies that it
is necessary to know F	 p (k, v) accurately away from the convective peak. Thus, in the
following discussion of possible models for F	 p (k, v), one of the features of interest will
be their behaviour here.

* If the boundary layer were a perfectly frozen eddy pattern convecting at speed Uc , all of the energy would
be concentrated here.
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Figure 5. Components of the modal excitation integral. ——, Shape function; - - - -, wavenumber–frequency
spectrum. The shape function peaks at kz =mp/a, the wavenumber–frequency spectrum at kz =v/Uc .

3.2. –  

3.2.1. Introduction
Of early models for F	 p (k, v), the spatial Fourier transform of Corcos’ curve fit to

measured narrow-band pressure correlations [16] quickly established itself. However,
experimental evidence suggesting that the Corcos model overpredicts levels at
wavenumbers below the convective peak began to accumulate [17], and later workers,
notably Chase [18, 19] and Ffowcs Williams [20] used analytical or quasi-analytical
approaches in attempts to describe this region more accurately. More recently, refined
versions of the Corcos approach have also appeared [21, 22]. The six models described in
these references will form the basis for this investigation, and a brief description of each
follows.

3.2.2. The Corcos model
Corcos’ curve-fit for the narrow-band spatial correlation between wall pressures

separated by (ry, rz ) in (y, z) is [16]

Fp (ry, rz, v)=F(v) e−ay =vry =/Uc e−az =vrz =/Uc eivrz/Uc , (3.1)

where ay and az are parameters chosen to yield the best agreement with experiment. After
Fourier transforming in ry , rz , one finds [2, 17]

F	 p (k, v)=4ay az /[a2
y +U2

c k2
y /v2] [a2

z +(Uc kz /v−1)2]. (3.2)

Various values for ay and az are given in the literature; here ay =0·77 and az =0·1 are used,
in contradiction to Blake’s recommended values (ay =0·7, az =0·32) for aircraft boundary
layers [17]. The reasons for this choice are discussed below.

3.2.3. The Efimtsov model
The Efimtsov model [21] follows the Corcos philosophy, but takes into account the

dependence of spatial correlation on boundary layer thickness, d, as well as spatial
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separation. Thus the correlation lengths Ly (=Uc /=v =ay ) and Lz (=Uc /=v =az ) are given
by the empirical expressions

Lz

d
=$0a1 Sh

Uc /ut1
2

+
a2

2

Sh2 + (a2 /a3)2%
−1/2

, (3.3)

Ly

d
=$0a4 Sh

Uc /ut1
2

+
a2

5

Sh2 + (a5 /a6)2%
−1/2

, Ma Q 0·75, (3.4a)

Ly

d
=$0a4 Sh

Uc /ut1
2

+ a2
7%

−1/2

, Ma q 0·9, (3.4b)

where Ma is the free-stream Mach number, and Sh=vd/ut , with ut the friction velocity.*
The constants a1–a7 are, respectively, 0·1, 72·8, 1·54, 0·77, 548, 13·5 and 5·66. Values for
Ly when 0·75QMa Q 0·9 are not given; here interpolation is used if necessary.

Thus, at high frequencies these expressions correspond to a Corcos model with ay =0·77
and az =0·1, the values chosen above. Since Efimtsov’s results are derived from an
extensive series of measurements on aircraft, over a Mach number range 0·41–2·1, they
have been taken in preference to Blake’s recommendations, which are based on a much
more limited data set reported by Bhat [23]. Bhat found lower correlation lengths than
those corresponding to the (smooth wall) parameters ay =0·77 and az =0·1, and suggested
that this was partially due to misalignment between the z-axis and the flow direction, and
partially to surface roughness; hence Blake’s choice of the rough-wall value az =0·32.
However, the discrepancy with Efimtsov’s results could be entirely accounted for by flow
misalignment and another effect not considered: the drop in correlation lengths with Sh,
which would affect the lower frequencies in Bhat’s data set. Efimtsov’s expressions must
therefore be accepted as more reliable.

The corresponding wavenumber–frequency spectrum is obtained by replacing ay and az

in equation (3.2) by Uc /=v =Ly and Uc /=v =Lz respectively. Thus, although this model
represents an improvement on that of Corcos, it still suffers from the same tendency to
overpredict the spectrum at low wavenumbers.

3.2.4. The Smol’yakov and Tkachenko model
Like Efimtsov, Smol’yakov and Tkachenko [22] measured spatial pressure correlations

as a function of spatial separation and boundary layer thickness, and fitted exponential
curves to their results. However, rather than directly multiplying their expressions
for pure lateral and pure longitudinal separation, giving an exponential with
argument −(=ry =/Ly + =rz =/Lz ), they took the combined correlation to be of the form
exp [−(r2

y /L2
y + r2

z /L2
z )1/2], and Fourier transformed this expression. The resulting

low wavenumber levels are an improvement on the Corcos prediction, but are still
higher than experimental values, so a correction was added to the model to bring it into
agreement without significantly affecting the convective peak levels. The final expression
is

F	 p (k, v)=0·974A(v)h(v) [F(k, v)−DF(k, v)], (3.5)

* In terms of the skin-friction coefficient cf, and free-stream velocity Ua, ut =Uazcf /2.
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with

A(v)=0·124 $1−
Uc

4vd*
+0 Uc

4vd*1
2

%
1/2

, h(v)=$1−
m1 A

6·515zG%
−1

, (3.6, 3.7)

m1 =
1+A2

1·025+A2, G=1+A2 −1·005m1, (3.8)

F(k, v)=$A2 +01−
kz Uc

v 1
2

+0 ky Uc

6·45v1
2

%
−3/2

, (3.9)

DF(k, v)=0·995 $1+A2 +
1·005
m1 60m1 −

kz Uc

v 1
2

+0ky Uc

v 1
2

−m2
17%

−3/2

. (3.10)

(Here d* is the boundary layer displacement thickness, and is taken to be d/8.)

3.2.5. The Ffowcs Williams model
Starting from Lighthill’s acoustic analogy, and assuming that the velocity source terms

were of the general Corcos form, Ffowcs Williams [20] derived an expression for F	 p (k, v)
containing several unknown constants and functions, to be determined experimentally. To
date, these remain unknown, but Hwang and Geib [24] have proposed a simplified version,
in which they neglect the effects of compressibility and assume a specific form for the
remaining functions; their expression, slightly adjusted to agree with the Corcos
parameters used here, is

F	 p (k, v)=0Uc =k=
v 1

2 4ay az

[a2
y +U2

c k2
y /v2] [a2

z +(Uc kz /v−1)2]
. (3.11)

3.2.6. The Chase models
From essentially the same starting point as Ffowcs Williams, but employing a number

of heuristic arguments in his derivation, Chase [18] formulated a more specific model,
containing a number of adjustable constants. His expression is

F	 p (k, v)
(2p)3 =

r2v2u3
t

U2
c F(v) 0 CM k2

z

[K2
+ + (bM d)−2]5/2 +

CT =k=2
[K2

+ + (bT d)−2]5/21, (3.12)

with

K2
+ =

(v−Uc kz )2

h2u2
t

+ =k=2, F(v)
2p

=
2phr2u4

t

3v(1+ m2)
(CM FM +CT FT ), (3.13, 3.14)

FM =[1+ m2a2
M + m4(a2

M −1)]/[a2
M + m2(a2

M −1)]3/2, (3.15)

FT =[1+ a2
T + m2(3a2

T −1)+2m4(a2
T −1)]/[a2

T + m2(a2
T −1)]3/2, (3.16)

a2
M or T =1+(Uc/bM or T vd)2, m= hut /Uc, (3.17)

and, based on Chase’s recommendations, the constants have values CM =0·0745,
CT =0·0475, bM =0·756, bT =0·378 and h=3·0. (In fact, Chase’s comparisons were
performed allowing h to vary somewhat, with m kept constant, but here later workers [17,
24] are followed in keeping to the spirit of the model and holding h constant. Also neglected
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is the difference between Chase’s source convection velocity and Uc , the measured pressure
convection velocity, and the expressions defining F(v) differ from Chase’s in being exact.
These alterations make little difference to the model’s predictions.)

This model suffers from two deficiencies: it takes no account of the supersonic region
(=kz =Qv/c0) and it does not reproduce the approximately ‘‘wavenumber white’’
characteristics of experimental observations in the low wavenumber (v/c0 Q kz�v/Uc )
region [17]. In an attempt to remedy these problems, Chase [19] relaxed the requirement
for a low wavenumber dependence0 =k=2 (the Kraichnan–Phillips theorem) and included
terms describing the acoustic region. Unfortunately, however, the constants multiplying
the latter factors are not known and, like the Ffowcs Williams model, this formula can
be used only in a limited form, without the terms describing the supersonic region. In this
case, the result is

F	 p (k, v)/(2p)3 =
r2v2u3

t

U2
c F(v) [K2

+ + (bd)−2]5/2 0CM k2
z +CT =k=2 K2

+ + (bd)−2

=k=2 + (bd)−21, (3.18)

with

F(v)/2p=[2phr2u4
t /3v(1+ m2)] (CM FM +CT FT ), (3.19)

FM =[1+ m2a2 + m4(a2 −1)]/[a2 + m2(a2 −1)]3/2, (3.20)

FT = 3
2 (1+ m2) (1+ a2)/a3. (3.21)

Here the term FM is still exact, but FT is Chase’s approximate result. The recommended
constants are h=3·0, hCM =0·466, hCT =0·014 and b=0·75.

3.3.   

Before returning to the modal excitation term, F	 mn , and how it is influenced by the choice
of model, it will be helpful first to consider the expressions for the wavenumber–frequency
spectrum in isolation. In Figure 6 are shown the predictions for the variation of F	 p (k, v)

Figure 6. Wavenumber–frequency spectra for Sh=248. ——, Corcos; — —, Efimtsov; - - - Smol’yakov and
Tkachenko; · · · · ·, Ffowes Williams; — · — · , Chase I; – · – · , Chase II. The spectra are plotted against
longitudinal wavenumber non-dimensionalized on the convective wavenumber v/Uc , and thus peak around one.
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with dimensionless longitudinal wavenumber Uc kz /v, for Sh=248. At this frequency, the
Corcos and Efimtsov models coincide, and their curves virtually overlie one another,
predicting levels comparable to the other models at the convective peak, but significantly
higher at lower wavenumbers.

The effect of the Smol’yakov and Tkachenko novel formulation for combining the effects
of longitudinal and lateral spatial separation is seen in the narrower convective peak
associated with their model, and in the smaller low wavenumber levels, although the latter
difference is also due to the correction function DF. Somewhat comparable low
wavenumber behaviour is shown by the second Chase model; the first, like the Ffowcs
Williams model, demonstrates the effect of being required to exhibit a =k=2 dependence at
low wavenumbers.

At lower frequencies, the influence of boundary layer thickness becomes important, and
Figure 7 (for Sh=24·8) shows how this affects the various models. The Corcos spectrum,
which takes no account of d, is unchanged, but now the Efimtsov convective peak is
significantly broader, due to its much smaller correlation lengths. Smol’yakov and
Tkachenko also have correlation lengths limited by boundary layer thickness, but predict
intermediate values, so their peak is less affected by broadening. Little difference in the
peaks of the other models is visible, but the second Chase model now shows no signs
whatsoever of a ‘‘wavenumber white’’ region—it is, in fact, observed only for
(bd)−1�kz�v/Uc , a range which is not distinct at lower frequencies.

At this stage, the models under consideration are reduced to Corcos, Efimtsov,
Smol’yakov and Tkachenko, and Chase I. The Hwang and Geib interpretation of
the Ffowcs Williams model is rejected because it does not satisfy the integral
requirement

1
(2p)2 g

a

−a g
a

−a

F	 p (ky , kz , v)0Uc

v1
2

dky dkz =1. (3.22)

In fact, for the expression given in equation (3.11), the integral is divergent, as one would
expect from the high wavenumber behaviour observed in Figures 6 and 7. In any case,

Figure 7. Wavenumber–frequency spectra for Sh=24·8. ——, Corcos; — —, Efimtsov; - - - - Smol’yakov and
Tkachenko; · · · · , Ffowes Williams; — · — · , Chase I; – · – · , Chase II.
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the low wavenumber behaviour of this model is mirrored by the first Chase model, so that
one will still be able to assess the effect of a =k=2 dependence in F	 p (k, v) in the
subconvective region.

A similar argument applies to Chase II, since the Smol’yakov and Tkachenko model
gives a better representation of a flat spectrum at low wavenumber. Additionally, though,
the peak levels predicted in Figures 6 and 7 are significantly above those of other models,
leading one to suspect that Chase’s approximation to F(v), equation (3.19), may not be
wholly accurate and hence that this model too would not satisfy condition (3.22). This
assertion tends to be confirmed when the calculations presented in section 4 are repeated
with Chase II.

3.4.     F	 mn 

In general, analytical solutions of equation (2.11) are not available. The integral
must therefore be evaluated numerically, and this is achieved by using Gaussian
quadrature. At frequencies where the convective peak in F	 p (k, v) is broad in
comparison to the lobes in =Smn (ky , kz ) =2, the integral can be performed lobe-by-lobe,
with the lobe shape taken as a weighting function. Otherwise, a uniform Gaussian
quadrature is employed either side of the convective peak. Analytical expressions for
the integral of the shape function term are used to provide upper bounds on the
truncation error for the integrals, which is required to be less than 0·5%. The
numerical results have been checked with analytical expressions derived for the
Corcos model [2], and found to agree closely, with an overall accuracy typically better than
0·5%.

4. THE RADIATED SOUND POWER

4.1.  

In this section, the effect of the choice of wavenumber–frequency spectrum model on
the predicted sound radiation from the plate, with and without insulation and trim, is
investigated for the frequency range typically of interest for boundary layer noise,
500–5000 Hz [1]. Two test cases are considered, (a) and (b), the former being representative
of a high-speed subsonic aircraft, and the latter of a lower speed vehicle. Parameters for
case (a) are as follows: free-stream velocity Ua, 240 m s−1; skin friction coefficient cf , 0·002;
boundary layer thickness d, 0·06 m; plate mass/unit area M, 2·77 kg m−2; plate bending
stiffness Br , 6·0 Nm; plate longitudinal tension Nzr , 29300 N m−1; plate lateral tension Nyr ,
62100 N m−1; structural damping factor os , 0·02; plate length a, 0·5 m; plate width b, 0·2 m;
external air density r0, 0·44 kg m−3; external sound speed c0, 300 m s−1; internal air density
r1, 1·2 kg m−3; internal sound speed c1, 340 m s−1.

At this stage, it is instructive to consider which class of modes is likely to contribute
most to the radiated sound in case (a). Since the excitation is subsonic, there can be no
efficient, resonant and highly excited modes, but efficient and resonant, or highly excited
and resonant modes are possible. For the parameters cited, however, the critical frequency
is around 10 kHz, which obviates the first possibility. The second depends on whether
hydrodynamic coincidence occurs, and to determine this one needs to know the boundary
layer convection velocity Uc , and the modal resonance frequencies. The latter are shown
in Figure 8(a), where resonance frequency is plotted against mode number m for modes
with n=1, . . . , 4. Also plotted are the lines corresponding to km =v/Uc for Uc =0·75Ua
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Figure 8. Resonance frequencies and convective peak locations. (a) Case (a); (b) case (b). Resonance
frequencies (plotted against the longitudinal mode number m). —r—, n=1; —=—, n=2; —q—, n=3; —×—
n=4. Convective peak frequencies (defined by v/Uc =mp/a): ——, Uc from equation (4.1); — - — -,
Uc =0·75 Ua; - - - -, Uc =0·8 Ua.

(the value recommended by Chase for his first model), Uc =0·8Ua (the Smol’yakov and
Tkachenko figure) and

Uc

ut

=9·55Sh1/5 $1+ (6·38×10−4Sh)2

1+ (3·98×10−3Sh)4%
1/10

, (4.1)

which is the empirical fit obtained by Efimtsov. Hydrodynamic coincidence is evident over
the majority of the frequency range, with the convective peak at or close to the modal
wavenumbers of the resonant modes for frequencies between 500 Hz and 4000 Hz. In this
case, then, one may expect highly excited, resonant, inefficient modes to dominate the
radiated sound, in preference to the weakly driven, non-resonant efficient modes. If this
is so, then the influence of the wavenumber–frequency spectrum model should be confined
to its description of the convective peak.

Less clear is what would happen if there were no hydrodynamic coincidence over the
frequency range. To investigate this possibility, one can consider case (b), where the
free-stream velocity is reduced to 140 m s−1 and, to emphasize the difference, the plate is
stiffened by doubling the in-plane tensions. The Sh range is kept unchanged by taking
d=0·04 and cf =0·0025. The resonance frequencies and convective peak positions for
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these parameters are plotted in Figure 8(b), showing that the resonant mode wavenumbers
now lie in the low wavenumber region of F	 p (k, v). In this case, either the highly excited
modes, or the resonant modes, or the efficient modes might give the largest contribution
to the radiated sound, and one cannot predict which range of F	 p (k, v) is likely to be most
important.

In order to isolate the influence of wavenumber–frequency spectrum shape in the test
cases, the comparison between models will use the same convection velocity for all; this
being given by equation (4.1). However, as there is some disagreement on this point, results
from the Chase I and Smol’yakov and Tkachenko models with their recommended
constant values are also compared. All the results presented were obtained by using the
numerical approach to evaluating F	 mn described in section 3.4; other details of the
calculation method, in particular the evaluation of the modal radiation efficiency, may be
found in references [2–4].

4.2.   ()

4.2.1 Model comparisons
To confirm the expectation that the hydrodynamic coincidence modes will dominate the

radiated sound in this case, the contributions from four mode classes are considered:
namely, in order of decreasing wavelength, class 1 (efficient, above coincidence), class 2
(below coincidence, mass-limited), class 3 (below coincidence, resonant) and class 4
(below coincidence, stiffness-limited). A below coincidence mode is deemed mass- or
stiffness-limited if its in vacuo vibration energy would be predicted to within 1% with the
structural damping term removed from dmn . The contributions from these classes to the
radiated sound, with the Efimtsov model for F	 p (k, v), are shown in Figure 9, where it
is evident that the only significant contribution comes from resonant modes. As the
Efimtsov model has the highest low wavenumber spectrum levels relative to the convective
peak, this conclusion will also hold for the other wavenumber–frequency spectrum models.

Figure 9. Radiated power spectrum by mode class for case (a), obtained by using the Efimtsov model. ——,
Overall power; – –, efficient modes; - - - -, mass-limited modes; · · · · , resonant modes; – · – · , stiffness-limited
modes. The resonant mode contribution dominates over the entire frequency range.
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Figure 10. Radiated power spectra for case (a). ——, Corcos; – –, Efimtsov; - - - -, Smol’yakov and Tkachenko;
· · · ·, Chase I.

may thus now confine attention to the overall radiated power, plotted in Figure 10 for the
four models under consideration. At low frequencies the predictions of the Corcos,
Smol’yakov and Tkachenko and Chase I models are strikingly consistent, while that of
the Efimtsov model is significantly lower. The latter approaches the Corcos curve with
increasing frequency, while the Smol’yakov and Tkachenko and Chase I plots first rise
above it, and then finally drop below.

In discussing these observations, one can note first that the spectrum plots of Figures 6
and 7 correspond to conditions at 5000 Hz and 500 Hz respectively. Thus the Efimtsov
prediction should indeed tend towards Corcos with increasing frequency, and is lower
because its convective peak levels are lower. However, the detailed shape of the other three
models’ convective peaks is irrelevant to the sound radiation at low frequencies, because
here they are sufficiently narrow in comparison to the lobes of =Smn (ky , kz ) =2 (see Figure 5)
to behave essentially like delta functions, picking out the value of the shape function
magnitude at kz =v/Uc . At higher frequencies, though, the situation tends to reverse, the
shape function lobes becoming narrow in comparison to the convective peak, and here the
details of the latter’s shape start to become important. Thus, when the main peak in
=Smn (ky , kz ) =2 lies close to v/Uc , the higher levels at the convective peak lead to larger
predictions from Smol’yakov and Tkachenko and Chase I, while at the highest frequencies
the modal wavenumbers have moved sufficiently far away for =Smn (ky , kz ) =2 to be picking
out larger values from the Corcos model. This is significant, as it implies that the choice
of model for F	 p (k, v) is important even if the crucial region is the convective peak, rather
than the low wavenumber regime. In particular, the form of spatial correlation assumed
in the empirical models may be influential, and this issue will be returned to in section
4.2.3.

The effect of the choice of Uc on the Smol’yakov and Tkachenko and Chase I models
is shown in Figures 11 and 12, where significant differences in spectrum levels are evident.
At low frequencies, the constant convection velocities are higher than Efimtsov’s value,
moving the narrow convective peaks away from the maximum value of =Smn (ky , kz ) =2 and
reducing the predicted radiation. The broadening of the convective peak with increasing
frequency and the convergence of the convection velocities in the mid-frequency range



     557

Figure 11. Case (a): sensitivity of the Smol’yakov and Tkachenko radiated power prediction to the choice of
convection velocity: ——, Uc from equation (4.1); - - - -, Uc=0·8Ua.

leads to a merging of spectrum levels, but above about 4 kHz the resonant modes find
themselves further into the low wavenumber region of F	 p (k, v) for the fixed convection
velocities, and the predictions again diverge.

4.2.2. Influence of cabin trim
In the case of the trimmed plate, with the parameters given in reference [3], the increased

effective structural damping takes out the sharp peaks in the resonant mode response, and
the sound attenuation in the insulation drops both efficient and resonant mode radiation
efficiencies by about the same factor. From Figure 9 then, one can see that the resonant
modes will remain the dominant contributors to the radiated sound, and this is confirmed

Figure 12. Case (a): sensitivity of the Chase I radiated power prediction to the choice of convection velocity:
——,Uc from equation (4.1); - - - -, Uc=0·75Ua.
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Figure 13. Radiated power spectra for case (a) with insulation and trim. ——, Corcos; – –, Efimtsov; - - - -,
Smol’yakov and Tkachenko; · · · ·, Chase I.

by the corresponding calculation for the trimmed plate. One thus expects to observe the
same behaviour in the model comparisons as for the bare plate, and this is confirmed by
Figures 13–15, which are the trimmed plate analogues of Figures 10–12.

4.2.3. Influence of the oblique spatial correlation function
The customary assumption for oblique spatial pressure correlations is that they may be

found from the product of the empirically determined longitudinal and lateral correlation
functions, as in the Corcos and Efimtsov models. However, this assumption is challenged
by Smol’yakov and Tkachenko, who combine the longitudinal and lateral separation
arguments geometrically, rather than additively. It is therefore of interest to investigate

Figure 14. Case (a) with insulation and trim: sensitivity of the Smol’yakov and Tkachenko radiated power
prediction to the choice of convection velocity: ——, Uc from equation (4.1); - - - -, Uc=0·8Ua.
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Figure 15. Case (a) with insulation and trim: sensitivity of the Chase I radiated power prediction to the choice
of convection velocity: ——, Uc from equation (4.1); - - - -, Uc=0·75 Ua.

how the choice of oblique correlation formulation affects the convective peak geometry,
and hence the radiated sound power. To do so, one can discard the ad hoc low wavenumber
correction terms (3.7) and (3.10) from the Smol’yakov and Tkachenko model, and write
the basic results in terms of the correlation lengths Ly and Lz . This gives

F	 p (k, v)=
v2

U2
c

2pLy Lz

[1+L2
z (kz −v/Uc )2 +L2

y k2
y ]3/2, (4.2)

which may be compared directly with the Efimtsov spectrum

F	 p (k, v)=
v2

U2
c

4Ly Lz

[1+L2
z (kz −v/Uc )2] [1+L2

y k2
y ]

. (4.3)

Figure 16. The effect of the oblique correlation formulation on the wavenumber–frequency spectrum for
Sh=248: ——, Standard formulation; - - - -, geometric formulation. The geometric formulation leads to a
significantly narrower convective peak.
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Figure 17. The effect of the oblique correlation formulation on the wavenumber–frequency spectrum for
Sh=24·8: ——, Standard formulation; - - - -, geometric formulation. The differences between the two
formulations are less marked at this frequency, due to the influence of the boundary layer thickness in limiting
the correlation lengths.

The dependence of these spectra on kz , for ky =0, and Ly and Lz given by Efimtsov’s
expressions, is plotted in Figures 16 and 17. At the higher frequency (Sh=248, Figure 16),
the results are similar to those of Figure 6, as the correlation lengths in the Smol’yakov
and Tkachenko model nearly match those of the Efimtsov model. The main differences
here are due to the omission of the low wavenumber correction term. However, at the
lower frequency (Sh=24·8, Figure 17), the Efimtsov correlation lengths are much shorter,
and the geometric formulation yields a significantly broader spectrum than the Smol’yakov
and Tkachenko result of Figure 7. Note also that the contrast between the two

Figure 18. The effect of the oblique correlation formulation on the radiated power spectrum: ——, Standard
formulation; - - - -, geometric formulation.



     561

Figure 19. Radiated power spectrum by mode class for case (b), obtained by using the Efimtsov model: ——,
Overall power; – –, efficient modes; - - - -, mass-limited modes; · · · ·, resonant modes; – · – · , stiffness-limited
modes. The resonant mode contribution again dominates over the entire frequency range.

formulations is less marked here, due to the reduction in Lz v/Uc imposed by the boundary
layer thickness.

The influence of these differences on the radiated sound is evident in Figure 18, which
shows similar trends to the original comparison (Figure 10). Although the effect is now
less significant, the geometric formulation, with its narrower convective peak, still predicts
a generally higher radiated sound power than the standard Efimtsov model.

4.3.   ()
For test case (a), it has been seen that it is the convective peak in F	 p (k, v) that

determines the overall sound radiation, but that models which are all accepted as giving
‘correct’ levels there can still yield different results at higher frequencies, when the detailed
shape of the peak becomes important. Additionally, the differing predictions for the
convection velocity can affect spectrum levels significantly for models with narrow
convective peaks. One can now move on to consider whether these conclusions are
modified for case (b), where no hydrodynamic coincidence occurs.

As previously, one first considers the contributions to the radiated sound from the four
mode classes defined in section 4.2.1. Although this case exhibits no hydrodynamic
coincidence, the resonant modes are still found to dominate each model’s overall
prediction, with the efficient and highly excited, stiffness-limited modes well down in
comparison. (The breakdown for the Efimtsov model is shown in Figure 19.) The solutions
for the different wavenumber–frequency spectrum models will thus reflect their low
wavenumber behaviour, as is evident from Figure 20. The Efimtsov model still tends
towards the Corcos model, as it should*, with the effect of its broader peak still tending
to be a reduction in low frequency levels (although equally some mid-frequency levels are
higher as a result). By comparison, the Smol’yakov and Tkachenko and Chase I models’
predictions are significantly lower, reflecting their reduced low wavenumber levels in
F	 p (k, v). The difference between the low wavenumber behaviour of the two models is also

* Recall that the range of Sh is the same in cases (a) and (b).
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Figure 20. Radiated power spectra for case (b). ——, Corcos; – –, Efimtsov; - - - -, Smol’yakov and
Tkachenko; · · · · , Chase I.

clearly reflected here. These results are similar to those obtained by Borisyuk [25], whose
examples, like this test case, do not show hydrodynamic coincidence.

As with case (a), a different choice of convection velocity for the Smol’yakov and
Tkachenko and Chase I models leads to noticeable differences in the radiated sound (see
Figures 21 and 22), although here they are simply correlated with the size of the constant
Uc in comparison to Efimtsov’s value—the prediction is higher at low frequencies, and
lower at high frequencies. This holds for both models, even though the Smol’yakov and
Tkachenko wavenumber–frequency spectrum is flat at sufficiently low wavenumbers.

Again, as in case (a), the results for the trimmed plate correspond closely to those for
the bare plate, and one may thus conclude that, for situations in which the convection

Figure 21. Case (b): sensitivity of the Smol’yakov and Tkachenko radiated power prediction to the choice of
convection velocity: ——, Uc from equation (4.1); - - - -, Uc=0·8 Ua.
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Figure 22. Case (b): sensitivity of the Chase I radiated power prediction to the choice of convection velocity:
——, Uc from equation (4.1); - - - -, Uc=0·75 Ua.

velocity is significantly lower than the free wave speed in the structure, and hydrodynamic
coincidence is therefore not found, the low wavenumber levels of the wavenumber–
frequency spectrum model used are important, as equally is the choice of convection
velocity.

5. CONCLUSIONS

In this paper the effect of differing choices of wavenumber–frequency spectrum model
on the sound radiated by a boundary layer driven plate has been considered for two cases:
the first, case (a), with parameters appropriate to a high speed subsonic civil aircraft, and
the second, case (b), with a slightly stiffer structure and a significantly lower free-stream
velocity. In case (a), resonant modes are also highly excited (hydrodynamic coincidence),
while in case (b) they are driven by the low wavenumber region of the
wavenumber–frequency spectrum. However, in each case their contributions are found to
dominate the radiated power.

In case (a), then, it is the convective peak in the wavenumber–frequency spectrum which
is significant, and for frequencies low enough for this peak to be narrow in comparison
to the shape function peak, the predictions of different models coincide. However, at high
frequencies, when the convective peak is broader, details of its shape become important,
and models which are generally accepted to agree at convective wavenumbers yield
different results. In particular, empirical models with identical longitudinal and lateral
spatial correlation functions give varying predictions, depending on how the overall
correlation function is formed. The width of the convective peak also determines the
sensitivity of the results to the choice of convection velocity, with narrower peaks giving
greater sensitivity.

In case (b) the resonant modes are driven by the low wavenumber region of the
wavenumber–frequency spectrum, and it is important to achieve the correct behaviour here
if predictions are to be reliable. Equally, the convection velocity must again be accurately
specified, although it is now the slope of the low wavenumber region of the model spectrum
that determines the sensitivity to this parameter. (This kind of dependence on Uc is also
seen at frequencies above 4 kHz in case (a).)
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Which, then, is the best model for the aircraft noise problem? Since this issue is most
important for higher speed aircraft, one may assume that hydrodynamic coincidence will
occur, and therefore that the key is to have an accurate description of the convective peak.
The inability of the Corcos model to account for correlation length dependence on
boundary layer thickness rules it out as a candidate, but Efimtsov’s extension may well
be suitable—a welcome conclusion, given that it is the only model among those considered
here derived from aircraft rather than laboratory measurements. However, since the
detailed shape of the convective peak has been found to be important, it may be necessary
to abandon the multiplicative approach to forming the overall spatial correlation function
from longitudinal and lateral correlation function measurements, admitted by Efimtsov
[21] to give errors up to 30%, and turn to alternative formulations, such as that proposed
by Smol’yakov and Tkachenko [22]. Further sophistication, though, is likely to be required
only in cases which do not exhibit hydrodynamic coincidence.
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