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1. 

Boundary Element Methods (BEMs) have been extensively applied to various structural
dynamics problems [1, 2] and many approaches are available in the literature. Starting
from the classical direct formulation for elastodynamics, introduced by Cruse and Rizzo
[3], the problem has been addressed by developing many methods in which computational
advantages are recovered with respect to the classical direct BEM involving dynamic
fundamental solutions [4–6]. Among the methods proposed for the analysis of the dynamic
elastic response those employing static fundamental solutions [7] have received particular
attention because they lead to a standard linear resolving system. However in this case the
inertial term gives rise to a domain integral which invalidates the boundary-only character
of the model [8–10]. This drawback has been overcome by employing the dual reciprocity
technique proposed by Nardini and Brebbia [11] and then used by other researchers
[12–14]. Actually the BEM models proposed for elastodynamics are characterized by the
loss of two fundamental properties of the continuum: that is, symmetry and definiteness
of the structural operators. More recently, to get over this deficiency, some variational
formulations of BEM have been proposed [15–18]. In this paper a variational formulation
of BEM for 2-D elastostatics and free vibration analysis, previously presented by the
authors [17, 18], is extended to the analysis of forced vibrations. The dynamic model,
obtained from the stationarity conditions of a modified hybrid functional, is expressed in
terms of boundary displacements only. The structural operators, namely the stiffness
matrix and the mass matrix, preserve the symmetry and definiteness properties of the
continuum and are calculated performing boundary integrations of regular kernels. The
resolving system exhibits the same nature of the more popular finite element models and
therefore the standard procedures can be applied for the numerical solution. The
formulation is here validated presenting two solutions of forced vibration problems which
are in excellent agreement with the results found in the literature.

2. 

In this section the fundamentals of the formulation are briefly presented, with reference
to references [17] and [18] for a more detailed discussion.

Consider an homogeneous, isotropic, linear elastic body, occupying a region V bounded
by the boundary G=G1 *G2. Let the body be constrained on the boundary G1 and let it
be subjected to the tractions t� on the free boundary G2 and to the body forces f in the
domain V. Denoting by u, ũ and t	 the displacements in the domain V and the displacements
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and tractions on the boundary G respectively, the dynamic model can be obtained by the
stationarity of the hybrid modified functional [18]

P=gV

[1
2o

TEo− uT(f− rü)] dV−gG

(u− ũ)T t	 dG−gG2

ũT t�dG, (1)

where the displacement and traction functions u, ũ and t	 are supposed as independent one
of the other. In equation (1) o indicates the strain field, E is the elasticity matrix, r is the
mass density and the overdots denote time derivatives. The stationarity conditions of P

with respect to u, ũ and t	 provide the relations between the boundary and domain variables
and the equilibrium equations [18]. To obtain the discrete model for the dynamic problem
consider the body boundary discretized by boundary elements. On the boundary G the
displacements and tractions are expressed by means of their nodal values d and p through
shape functions

ũ=Nd=[N1 N2]$d1

d2%, t	 =Cp, (2, 3)

where the subscripts 1 and 2 refer to the constrained and free boundary nodal
displacements respectively. The domain displacement field is approximated by a linear
combination of regular, static fundamental solutions u*i :

u= s
m

i=1

u*i si , (4)

or in matrix notation

u=U*s, (5)

where s is the vector of the time dependent unknown coefficients si and U* is the matrix
of the fundamental solutions u*i whose source point is located outside the domain. With
these assumptions the stationarity of the functional P yields [18]

gG

U*TP* dGs−gG

U*TC dGp−gV

U*Tf dV+ r gV

U*TU* dVs̈= 0, (6)

gG

NT
2 C dGp−gG2

NT
2 t�dG= 0, gG

CTU* dGs−gG

CTN dGd= 0. (7, 8)

From equation (8) one has for any choice of C

U*s=Nd, (9)

and then, if the number of fundamental solutions m is equal to the number of nodal
displacements and these fundamental solutions are linearly independent, by collocating
equation (9) at the nodes one obtains

s=U�*−1d=Fd=[F1 F2]$d1

d2%. (10)
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It is worth noting that from equations (9) and (10) one deduces the following expression
for N in terms of fundamental solutions:

N=U*U�*−1 =U*F=U*[F1 F2]= [N1 N2]. (11)

Pre-multiplying equation (6) by FT
2 , by using equations (7) and (10), the BEM model is

obtained and it can be written as

Md� 2 +Kd2 =gG2

NT
2 t�dG−FT

2 BF1d� 1 −FT
2 AF1d1, (12)

where the body force term has been dropped. The stiffness matrix K and the mass matrix
M are given by

K=FT
2 gG

U*TP* dGF2 =FT
2 AF2 (13)

M= r gV

NT
2 N2 dV= rFT

2 gV

U*TU* dVF2 = rFT
2 BF2, (14)

where P* is the matrix of the tractions p*i associated to the fundamental solutions u*i . The
domain integral that appears in the definition of the mass matrix M requires a domain
discretization of the body. To obtain a dynamic model of the body discretized by boundary
elements only, a transformation of this domain integral into an equivalent boundary
integral needs to be performed [18]. Consider the body loaded by a fictitious system of
body forces u*j , where u*j is the jth fundamental solution. Let vj be a displacement field
due to the fictitious forces u*j and let again qj be the associated boundary tractions. By
using the reciprocity theorem and recalling that the fundamental solutions are regular in
V one obtains

gV

u*T
i u*j dV=gG

[p*T
i vj − u*T

i qj ] dG. (15)

Equation (15) allows one to express the mass matrix in terms of boundary integrals.
Actually, by applying equation (15) to all the fundamental solutions used, one has

B=gV

U*TU* dV=gG

[P*TV−U*TQ] dG, (16)

where V satisfies the equilibrium equation

DTEDV+U*= 0 in V and Q=DnEDV on G. (17, 18)

In the previous expressions D and Dn denote the strain and boundary traction operators
defined as

DT = &1/1x1

0
0

0
1/1x2

0

0
0

1/1x3

1/1x2

1/1x1

0

1/1x3

0
1/1x1

0
1/1x3

1/1x2', (19)
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Dn = &a1

0
0

0
a2

0

0
0
a3

a2

a1

0

a3

0
a1

0
a3

a2', (20)

where a1, a2 and a3 are the direction cosines of the boundary outer normal. The
transformation of the domain integral into a boundary integral overcomes the limitation
of the domain discretization and allows one to obtain a pure BEM model for structural
dynamics. The structural operators K and M can thus be calculated by performing
boundary integrations of regular kernels. Notice that the matrices K and M are frequency
independent, symmetric and positive definite. Therefore, in the approach proposed, these
two fundamental properties of the continuum, i.e. symmetry and definiteness of the
structural operators, are preserved. Moreover the dynamic model is constituted by a set
of linear differential equations that exhibits the same nature of the more common finite
element resolving systems.

3.    

Solutions of some problems are presented here in order to show the accuracy and the
efficacy of the proposed method. In the applications the structural operators are computed
through Gaussian quadrature, performing boundary integrations only in accordance with
the expressions given in equations (13), (14) and (16). The regular kernels employed have
been obtained by locating the fundamental solution source point outside the domain along
the outward directed normal at the nodal point. The solutions presented are relative to
a ratio between the distance of the source point from the nodal point and the element
length equal to 1. However studies have been carried out proving the solution is stable with
respect to the variation of this ratio in the range 0·5–2. Due to the structure of the resolving
system the Houbolt recurrent scheme has been used to integrate the equations of motion
and then obtain the transient response. The ith fundamental solution employed is the
classical plain strain fundamental solution [11],

u*k,2i+ j−2 =
1

4G(1− n) $(4n−3)dkj ln r+
1r
1xk

1r
1xj%, k, j=1, 2, (21)

p*k,2i+ j−2 =
1

2(1− n)r 61r
1n $(1−2n)dkj +2

1r
1xk

1r
1xj%+(1−2n) $ 1r

1xk
aj −

1r
1xj

ak%7, (22)

where r is the distance between the ith source point and the observed point, G and n are
the shear modulus and the Poisson’s ratio, and dkj is the Kronecker symbol. The auxiliary
solutions v, employed for the transformation of the domain integrals associated with the
inertial term into boundary integrals, were obtained by integrating analytically the
equilibrium equations (17). They are given by

vk,2i+ j−2 =
1

G( j+1)
1

1xj 6 1
2G(1−2n)(1− n)

1

1xk $ r4

64 0ln r−
3
21%+

−
r3

4(1−2n)
(ln r−1)

1r
1xk7−

r2

4G2 (ln r−1)dkj , (23)
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qk,2i+ j−2 =
r

4G(1− n) $ 1r
1xj

ak ln r−2(1− n)(ln r− 1
2) 01r

1n
dkj −

1r
1xk

aj +
1r
1xj

ak1%. (24)

The first solution presented refers to the forced transient response of a rectangular plate
subjected to a flexural load with a triangular time variation. The geometry of the plate
together with the time variation of the load and the BEM discretization used in the analysis
are shown in Figures 1(a) and 1(b), respectively. The material properties are taken as
E=105, r=1 and n=0·25. The horizontal displacement at the centre of the top end of
the plate is plotted in Figure 1(c) where the present results are compared with those
obtained by Gallego and Dominguez [5] and with those obtained by performing a finite
element analysis with 440 degrees of freedom. Figure 2(a) shows the geometry of a dam-like
structure. The dynamic behaviour of this structure is investigated when a sinusoidal
excitation is applied to the base. The forcing frequency is chosen to be 16 Hz and the
material properties are the same as in the previous example. Figure 2(b) shows the
discretization used and the horizontal displacement at the top end versus time is plotted
in Figure 2(c). A good agreement between the results obtained using the present method
and the existing ones is registered in all the considered examples.

4. 

A BEM formulation for 2-D elastodynamics in the time domain has been presented. The
formulation gives a resolving system that involves boundary displacements only. The
stiffness and mass matrices of the boundary discretized body are frequency independent,
symmetric and positive definite. They are evaluated by performing boundary integrations
only and further, due to the employment of regular, static fundamental solutions,
integrations of singular kernels are not required. For the forced vibration analysis a linear
system of ordinary differential equations with constant coefficients is obtained allowing the

Figure 1. Beam under time-varying flexural load. (a) Geometry and load characteristics; (b) BEM
discretization; (c) horizontal displacement at the top end; w, reference [5]; (, FEM (440 d.o.f.); —, present BEM.
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Figure 2. Dam under sinusoidal support excitation. (a) Geometry; (b) BEM discretization; (c) horizontal
displacement at the centre of the top end; w, reference [12]; (, FEM (420 d.o.f.); —, present BEM.

application of the standard procedures of recurrent schemes to solve time dependent
problems. The good results obtained suggest the possible application of the method to the
solution of many dynamic problems with meaningful computational advantages with
respect to the more common field methods.
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