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The forced response of a spinning disk under space-fixed couples is analyzed
analytically using the eigenfunction expansion method. A general couple on the disk
surface can be divided into two components, i.e., pitching (with moment axis in the
radial direction) and rolling (with moment axis in the circumferential direction). Both
the transient vibration and the steady state deflection of the spinning disk are
presented, with emphasis on the effects of the rotation speed and external damping.
Two types of external damping are considered; one is rotating with the disk and the
other is space-fixed. It is found that in the sub-critical speed range, both the rotating
and space-fixed dampings tend to suppress the transient response of a spinning disk
under a space-fixed pitching couple. On the other hand, in the super critical speed
range, the rotating damping tends to suppress the transient vibration while the
spaced-fixed damping tends to destabilize the system.
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1. INTRODUCTION

The spinning disk is at the heart of hard disks, floppy disks, and optical recording devices.
Excessive disk vibrations degrade the signal from the read/write head and may destroy the
disk by a ‘‘head crash’’. In the wood cutting industry, the undesirable vibration of the
circular saw blade results in unacceptable waste of raw material. The proper design of
reliable disk drives and efficient circular saws requires a thorough understanding of the
mechanical characteristics of the spinning disk. The earliest investigation on the vibration
of a spinning disk may be traced back to Lamb and Southwell [1], in which they derived
the linearized equations of transverse deflection and examined the natural frequencies and
mode shapes of the spinning disk. Prescott [2] gave a more cogent presentation of the
results of Lamb and Southwell, and extended some of the analysis to disks with different
clamping geometries and cross-sections.

Among many other research topics, the response of a spinning disk under point loads
is particularly of interest because it is a decisive factor in the performance of high density
disk drives. Mote [3] investigated the stability of a stationary annular plate subjected to
circumferentially moving loads with harmonically varying amplitude. Weisensel and
Schlack [4] extended Mote’s work to include radially moving loads. It is noted that the
problem of a stationary disk under a circumferentially moving load treated in [3] and [4]
differs from the problem of a spinning disk under a space-fixed load by the centrifugal
effect due to disk rotation. Although the differences between these two problems are not
appreciable within certain ranges of rotation speed, it seems more straightforward to adopt
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the space-fixed co-ordinate system to describe the deflection of a spinning disk under
space-fixed loads.

Benson and Bogy [5] investigated the steady state response of a spinning disk with
extremely small bending rigidity under a space-fixed point force, and discussed the
relations between the deflection pattern and the radial position of the loading point. Cole
and Benson [6] later used an eigenfunction approach to extend the analysis in [5] to a
spinning disk with mild bending rigidity. Ono and Maeno [7] calculated the response of
a spinning floppy disk under space-fixed harmonic excitation. While these extensive studies
on the steady state response and the response under harmonic excitation provide valuable
physical insight into the behavior of disk deflection, very little information has been
obtained on the vibrant transient response immediately following the excitation.

In a real-world floppy disk drive, the rotating disk is usually sandwiched by a pair of
read/write heads. In the ideal case when these two heads line up perfectly, the resultant
exerted by the heads onto the spinning disk is a single force. This is the situation
investigated in the aforementioned work. On the other hand, when there exists slight
misalignment between these two heads due to manufacturing or assembling errors, the
resultant on the spinning disk will include a couple and a force. In the present paper we
consider the response of a spinning disk under space-fixed couples. In the transient
response analysis emphasis is given to the effects of the rotation speed on the deflection
evolution immediately following the excitation of the couples. In view of the ever
increasing operating speed in the current disk drive industry, this transient response may
be crucial to the performance of the disk drives. Regarding the steady state response, we
emphasize the different configurations when the disk is spinning below and beyond the
critical speed. The effects of both the space-fixed as well as the rotating dampings on the
amplitude of the response are also investigated.

2. EQUATION OF MOTION

Consider an elastic circular disk clamped on the inner radius r= a and free on the outer
radius r= b. The disk is spinning with constant rotation speed V. The spinning disk is
initially undeformed laterally until the application of a space-fixed concentrated couple at
position r= j, u=0 at time t=0, as shown in Figure 1. The point couple can be divided
into two components; the pitching couple Mr with the axis in the radial direction and

Figure 1. A spinning disk under space-fixed couples.
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rolling couple Mu with the axis in the circumferential direction. The equation of motion
of the spinning disk, in terms of transverse displacement w, and with respect to the
stationary co-ordinate system (r, u), can be written as

Mw,tt +(G+G
 )w,t +(K+K
 )w=

[(Mu /r)d'(r− j) d(u)− (Mr /r2)d(r− j)d'(u)]( f(t)/rh), (1)

where operators M, G, G
 , K, and K
 are defined as

M0 1, G0 2V1/1u, G
 0 (c1 + c2)/rh, (2–4)
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The parameters r, h, and D are the mass density, thickness, and flexural rigidity of the
disk, respectively. Parameters c1 and c2 represent two types of homogeneous damping due
to the surrounding air film; one of them, c1, is spinning along with the disk, and the other,
c2, is space-fixed [8]. The axisymmetric in-plane stresses sr and su in equation (5) are due
to the centrifugal effect, and can be found in [8]. d( :) is the Dirac delta function, and d'( :)
is the derivative of d( :) with respect to its parameter. f(t) represents the loading history
of the point couples. The initial conditions of the spinning disk are assumed to be
w(r, u)=0 and w,t (r, u)=0 at time t=0−.

For a freely spinning disk (i.e., without point couples and external dampings) the
equation of motion (1) can be reduced to

Mw,tt +Gw,t +Kw=0. (7)

The eigenvalues of the elt time-reduced form of equation (7), together with the
associated homogeneous boundary conditions, are purely imaginary and occur
in complex conjugate pairs, i.e., lmn =2ivmn , where i=z−1 and vmn is real.
The eigenfunction corresponding to lmn is in general complex and assumes the form

wmn =Rmn (r) einu. (8)

The eigenfunction corresponding to l�mn is w̄mn , where overbar means complex conjugate.
It is noted that the eigenpairs (lmn , wmn ) and (l�mn , w̄mn ) represent exactly the same physical
mode. wmn in equation (8) with positive n and positive vmn is a backward travelling wave
with n nodal diameters and m nodal circles, which is also denoted by (m, n)b . Similarly,
wmn with negative n and positive vmn is a forward travelling wave (m, −n)f . The critical
speed Vc for the mode (m, n) is defined as the rotation speed at which vmn of the backward
travelling wave (m, n)b becomes zero. For V greater than Vc , the backward travelling mode
appears to travel forward, and is called a ‘‘reflected wave’’, denoted by (m, n)r . It is noted
that for a reflected wave, the integer n is considered as positive, while the natural frequency
vmn is considered as negative. The radial function Rmn (r) can be either solved in a power
series form [9] or can be approximated by the nodal values obtained through a finite
element procedure [8]. It is also noted that the eigenfunctions wmn are orthogonal with
respect to the operators M, G, and K [10],

g
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w̄mn Mwpq r dr du= dmp dnq , g
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0 g
b

a

w̄mn Gwpq r dr du=i2nVdmp dnq , (9, 10)

g
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a

w̄mn Kwpq r dr du=vmn (vmn +2nV)dmp dnq , (11)

where dmp is the Kronecker delta symbol.
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Figure 2. Natural frequencies of a flexible disk spinning from 0 to 1000 r.p.m.

Figure 2 shows the natural frequency loci of a spinning disk as the rotation
speed varies [7]. The parameters used in the calculations are chosen to be represen-
tative of properties of a commercially available floppy disk; they are r=1·3×103 kg/m3,
D=2·1×10−4 Nm, h=0·078 mm, a=17·5 mm and b=65 mm. The critical speeds
of the modes (0, 2)b , (0, 3)b , and (0, 4)b are 594, 589, and 708 r.p.m., respectively.

3. EIGENFUNCTION EXPANSION METHOD

The solution w(r, u, t) of equation (1) can be expressed in terms of eigenfunctions
wmn (r, u) as

w(r, u, t)= s
a

m=0

s
a

n=−a

[cmn (t)wmn (r, u)]. (12)

Both cmn (t) and wmn (r, u) in equation (12) are complex functions. However, it will be
demonstrated later that after summation the displacement w(r, u, t) in equation (12) is a
real function. After substituting equation (12) into equation (1), multiplying both sides of
equation (1) by w̄pq , integrating over the annular region and bearing in mind the orthogonal
relations (9–11), one can discretize equation (1) into a system of decoupled equations for
cmn (t),

c̈mn +02inV+
c1 + c2

rh 1 ċmn +$vmn (vmn +2nV)+
inc1 V

rh % cmn =Fmn f(t), (13)

where

Fmn =(1/rh) [−inMr (Rmn (j))/j+Mu R'mn (j)]. (14)

A superposed dot represents derivative with respect to time. The initial conditions for cmn

are cmn (0)=0 and ċmn (0)=0. Recalling that at a certain rotation speed there are in general



   631

two modes with m nodal circles and n nodal diameters. In the sub-critical speed range,
one is a forward mode and the other is a backward mode. In the super-critical speed range,
one is a forward mode and the other is a reflected mode. In any case, if vmn is the natural
frequency of one (m, n) mode, (vmn +2nV) is the natural frequency of the other (m, n)
mode, also denoted by vmn̄ . Consequently, equation (13) associated with these two modes
can be rewritten as

c̈mn +(2inV+(c1 + c2)/rh)ċmn +[vmn vmn̄ +inc1 V/rh]cmn =Fmn f(t). (15)

In other words, cmn (t) associated with these two (m, n) modes are conjugate to each other.
Since the mode shapes wmn of these two modes are also conjugate to each other, the
contribution of these two modes in equation (12), will result in a real displacement
w(r, u, t).

One first considers the case when f(t)= d(t). In this case the solution of equation (15)
can be written as

cmn (t)/Fmn =
H(t) e−ifmn

zrmn

[e(a1mn +ib1mn )t −e(a2mn +ib2mn )t], (16)

where H(t) represents the Heaviside step function, and

fmn = p/2+ 1
2 tan−1 [4nVrhc2 /(−4r2h2v̂2

mn +(c1 + c2)2)], (17)

rmn = {[−4v̂2
mn +([c1 + c2]/rh)2]2 + (4nVc2 /rh)2}1/2 (18)

v̂mn = 1
2 (vmn +vmn̄ ), a1mn =−(c1 + c2)/2rh+ 1

2 zrmn cos fmn , (19, 20)

a2mn =−(c1 + c2)/2rh− 1
2 zrmn cos fmn , (21)

b1mn =−nV+ 1
2 zrmn sin fmn , b2mn =−nV− 1

2 zrmn sin fmn . (22–23)

It is noted that v̂mn in equation (19) can be interpreted as the natural frequency of the (m, n)
mode as seen by an observer rotating with the disk.

One next considers the case when the spinning disk is subjected to a space-fixed step
couple, f(t)=H(t). By using the solution for the impulsive excitation, equation (16), and
the convolution integral, the solution cmn (t) of equation (15) under a step couple with
dampings included can be written as

cmn (t)
Fmn

=
e−ifmn

zrmn $e
(a1mn +ib1mn )t−1
a1mn +ib1mn

−
e(a2mn +ib2mn )t−1
a2mn +ib2mn %. (24)

Substituting equation (24) into equation (12) and rearranging the series, one obtains the
expression for the displacement of the spinning disk under space-fixed pitching couple
Mr H(t) as

w(r, u, t)= s
a

m=0

s
a

n=1

2nMr Rmn (j)Rmn (r)
rhj zrmn $1/(a2

1mn + b2
1mn ) (a1mn ea1mn t sin (b1mn t−f
 mn )

+a1mn sin f
 mn − b1mn ea1mnt cos (b1mn t−f
 mn )+ b1mn cos f
 mn )

+1/(a2
2mn + b2

2mn ) (−a2mn ea2mn t sin (b2mn t−f
 mn )− a2mn sin f
 mn

+b2mn ea2mn t cos (b2mn t−f
 mn )− b2mn cos f
 mn )%, (25)
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where

f
 mn =fmn − nu. (26)

In the special case when damping does not exist, equation (25) can be reduced to

w(r, u, t)= s
a

m=0

s
a

n=1

2nMr Rmn (j)Rmn (r)
jrh

×6−sin nu

vmn vmn̄
+

1
2v̂mn $sin (nu+vmn t)

vmn
+

sin (nu−vmn̄ t)
vmn̄ %7. (27)

Since n in equations (25) and (27) is restricted to being positive, vmn̄ always represents the
natural frequency of the forward travelling mode. From equation (27) one can see that
the response under a space-fixed step couple includes the contributions from all travelling
modes with respective natural frequencies, together with a term independent of time. More
importantly, the sign of this time-independent term depends on the product vmn vmn̄ , which
is positive in the subcritical speed range, and is negative in the supercritical speed range.
This term also corresponds to the steady state deformation when appropriate damping
mechanism is introduced.

For the case when the spinning disk is under a space-fixed rolling couple Mu H(t), the
displacement field can be derived as

w(r, u, t)= s
a

m=0

s
a

n=0

gn Mu R'mn (j)Rmn (r)
rh zrmn

×$ 1
a2

1mn + b2
1mn

×(−a1mn ea1mn t cos (b1mn t−f
 mn )

+a1mn cos f
 mn − b1mn ea1mn t sin (b1mn t−f
 mn )− b1mn sin f
 mn )

+
1

a2
2mn + b2

2mn
(a2mn ea2mn t cos (b2mn t−f
 mn )−a2mn cos f
 mn

+b2mn ea2mn t sin (b2mn t−f
 mn )+b2mn sin f
 mn )%, (28)

where g0 =1, and gn =2 when n$ 0.
It is well known that the classical plate theory is somewhat anomalous in transient

response analysis since it does not yield the expected wave front separating disturbed and
undisturbed regions. This phenomenon can also be observed in equations (25) and (28),
which show that the whole disk ‘‘feels’’ the excitation instantly after the excitation. This
is related to the fact that classical plate theory asserts that the wave speed of a disturbance
approaches infinity as the associated wave length approaches zero. It is noted that,
however, as time increases the displacement at any point with distance d away from the
origin of the point disturbance increases in spatial wave length. By assuming that classical
plate theory may become reliable when the wave length becomes 16 times longer than the
plate thickness, Medick [11] estimated a critical time interval in the order of 2d zE/r,
which is 0·06 ms in the present case. In other words, the transient analysis based on
classical plate theory should be reliable after this critical time interval. For more accurate



   633

response immediately after the excitation, higher order plate theory considering the effect
of rotary inertia and shear deformation should be employed.

4. TRANSIENT RESPONSE WITHOUT DAMPING

In this section the transient response of the spinning disk under space-fixed couples
without damping effect is considered. Figure 3 shows the slope–couple ratio history at the
load point as the flexible disk is under step pitching couple Mr . The number of modes used
in expansion (27) is restricted to mQ 5 and nQ 30. The loading position j/b is chosen to
be 0·54. V=360 r.p.m. is the operating speed of most floppy disk drives. It is observed
that the mean slope and the amplitude of the slope variation increase as the rotation speed
increases from 360 to 580 r.p.m. In particular, the response becomes unbounded as the
rotation speed approaches the first critical speed. It is also noted that the slope (1/r) (1w/1r)
at the load point is always in the same sense as that of the point couple when the rotation
speed is in the subcritical speed range. As the rotation speed continues to increase beyond
the critical speeds, the influences of the reflected waves (0, 2)r and (0, 3)r dominate the
transient response, and the slope at 610 r.p.m. is primarily opposite to the sense of the point
couple. As the rotation speed continues to increase the influence of another backward wave
(0, 4)b kicks in while the influences of the reflected waves diminish. Consequently, the mean
slope changes from negative to positive value as the rotation speed increases from the
critical speeds of modes (0, 2) and (0, 3) toward the critical speed of mode (0, 4), as shown
by the slope curve corresponding to 700 r.p.m. The dominant periods of these transient
responses are correspondent to the lowest natural frequencies of the disk spinning at
respective rotation speeds. For instance, the dominant periods for V=360 and 550 r.p.m.
are 0·27 and 1·69 s, respectively.

The irregular zigzags in the load-point slope curves of Figure 3 may be considered as
being due to the superposition of many modes with different natural frequencies. It may
also be considered as the result of complex continuous superposition of many waves that
reflect from the free outer rim and the clamped inner rim, and the waves travelling in both
directions circumferentially. These two views are actually equivalent, with one from the

Figure 3. Slope–couple ratio history at the load point when the spinning disk is under a step pitching couple,
c1 = c2 =0·0 Ns/m3.
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Figure 4. Deformation evolution of a disk under step pitching couple and spinning at 360 r.p.m., scale=0·02.
Times (ms): (a) 0·2; (b) 0·4; (c) 0·8.

frequency domain viewpoint and the other from the time domain viewpoint. It is
noteworthy that a similar phenomenon can also be observed in the transient response of
a transporting tape under a space-fixed point load [12].

Figure 4 shows the deformed shape at various time steps before 0·8 ms with a scale factor
0·02 for a disk spinning at 360 r.p.m. A black dot denotes the position of the space-fixed
couple. From Figure 4 one can observe the wave propagation phenomenon in detail. It
is noted that the deformation pattern is almost anti-symmetric with respect to the loading
point while the disk is rotating in the counterclockwise sense. Calculations at 0 and
610 r.p.m. also show similar anti-symmetric deformation pattern with different amplitudes
at the early state of the loading. In other words, rotation does not have significant effect
in the deformation pattern at the very early stage of the excitation as the rotation speed
is up to the range of the first critical speed.

It is expected that the anti-symmetric pattern of the deformation would be destroyed
when the convective velocity of the rotating media is significant compared to the phase
speed of the propagating wave. The authors estimate roughly the rotation speed at which
the convective velocity bV of the disk is comparable to the phase velocity of a wave with
wave length equal to 1/15 of the outer circumference of the disk as

V=(15/b2)zD/rh, (29)

which is about 9950 r.p.m. in the current case. Therefore, the convective velocity of the
media for the disk rotating at 360 r.p.m. is about 1

36 of the phase velocity of the plate. In
Figure 5 the rotation speed is raised up 5100 r.p.m. and the deformation evolution before
0·8 ms is recorded. Obvious asymmetry can be observed in the deformation pattern. In
particular, waves tend to accumulate in the upstream region.

Benson and Bogy [5] defined a dimensionless parameter a=8D/[rV2b4(3+ n)] to
characterize the bending stiffness of the spinning disk. A small a means that the effect of
the fourth order bending operator in equation (5) is relatively small compared to the
contribution from the membrane effect due to the centrifugal stress. For the disk rotating
at 360 and 5100 r.p.m., the parameter a is 0·2 and 0·001, respectively. Therefore, the
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Figure 5. Deformation evolution of a disk under step pitching couple and spinning at 5100 r.p.m., scale=0·02.
Times (ms): (a) 0·2; (b) 0·4; (c) 0·8.

deformation pattern in Figure 5 is characteristic of a ‘‘membrane-like’’ disk in the
sense that the membrane effect becomes dominant compared to the bending effect of the
disk.

Figures 6 and 7 show the deformation evolution before 0·8 ms when the disk is subjected
to the step rolling couple Mu H(t), and when it rotates at 360 and 5100 r.p.m., respectively.

5. DAMPING EFFECTS AND STEADY STATES

It is in general difficult to estimate the damping values of the surrounding air on the
spinning disk. In the following calculations one assumes that the values of rotating
damping c1 and space-fixed damping c2 are 0·1 and 0·5 Ns/m3, respectively [8]. Figure 8
shows the slope history at the loading point when the disk is subjected to pitching couple

Figure 6. Deformation evolution of a disk under step rolling couple and spinning at 360 r.p.m., scale=0·02.
Times (ms): (a) 0·2; (b) 0·4; (c) 0·8.
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Figure 7. Deformation evolution of a disk under step rolling couple and spinning at 5100 r.p.m., scale=0·03.
Times (ms): (a) 0·2; (b) 0·4; (c) 0·8.

and only c1 is included in the calculation. It is observed that the tiny zigzags in the slope
curves are smoothed out, and the maximum overshoot decreases significantly compared
to the undamped case in Figure 3. The deformations appear to reach their steady states
within 8 s in both the sub- and supercritical speed range. The steady state deformation
patterns at speeds 580 and 610 r.p.m., one below and the other above the critical speed,
are shown in Figure 9 with the scale factor being 0·0001. The dominant components in
these two steady state deformations are both the (0, 2) mode.

Figure 10 shows the slope history at the load point when the disk is under pitching
couple and only c2 is included. For the sub-critical speeds, 360 and 580 r.p.m., the
amplitudes of the slope curves tend to settle to the steady state values as time goes by.
For the supercritical speeds, 610 and 700 r.p.m., however, the amplitudes tend to grow
unboundedly. It is particularly obvious for the slope curve corresponding to 700 r.p.m.
These calculations suggest that in the subcritical speed range, both the rotating and
space-fixed damping tend to suppress the transient response of a spinning disk under a
space-fixed pitching couple. On the other hand, in the supercritical speed range, the

Figure 8. Slope–couple ratio history at the load point when the disk is under pitching couple and rotating
damping c1 =0·1 Ns/m3 is included. c2 =0·0 Ns/m3.
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Figure 9. Steady state of the spinning disk at scale=0·0001 under pitching couple and spinning at (a) 580
and (b) 610 r.p.m.

rotating damping tends to suppress the transient vibration while the space-fixed damping
tends to destabilize the system.

In order for the displacement to settle to a steady state value, it is necessary for the
exponents in equations (25) and (28) to be negative, i.e., a1mn Q 0 and a2mn Q 0. These two
conditions can lead to the relation.

zrmn =cos fmn =Q(c1 + c2)/rh (30)

Further simplification reduces equation (30) to

(nVc2 /[c1 + c2])2 Q v̂2
mn (31)

In the case when c1 q 0 and c2 =0, equation (31) reduces to

0Q v̂2
mn (32)

Therefore, transient vibration is always suppressed by the rotating damping in both the
sub- and supercritical speed ranges. In the other case when c1 =0 and c2 q 0, equation (31)
reduces to

0Qvmn vmn̄ (33)

Figure 10. Slope–couple ratio history at the load point when the disk is under pitching couple and space-fixed
damping c2 =0·5 Ns/m3 is included. c1 =0·0 Ns/m3.
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In the sub-critical speed range, the product vmn vmn̄ is positive and the deflection of the
spinning disk will eventually settle to a steady state. On the other hand, this product is
negative in the supercritical speed range. The exponents in equations (25) and (28) are
consequently positive and the deflection of the spinning disk tends to grow unboundedly.

6. CONCLUSIONS

In this paper the closed form solution for the forced response of a spinning disk under
space-fixed couples has been derived. Both pitching and rolling couples are considered. In
the case when the convective speed of the rotating media is negligible compared to the
phase speed of the propagating wave, the deformation pattern in the early stage of
excitation under pitching couples appears anti-symmetric with respect to the radius passing
through the load point. When the disk rotates at high speed such that the convective
velocity is comparable to the wave speed, this anti-symmetric pattern is destroyed.

The effects of external damping are also investigated. It is found that the rotating
damping always suppresses the transient response of the spinning disk. On the other hand,
the space-fixed damping stabilizes the transient response only when the disk rotates in the
subcritical speed range. When the disk rotates in the supercritical speed range, the
space-fixed damping always destabilizes the system.
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