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The writers found the study by Pavlović and Mbakogu [1] quite interesting from the point
of view of developing an approximate determination of the fundamental frequency of
clamped and simply supported circular plates with a central support. This approach will
undoubtedly be of great value in the case of plates of non-uniform thickness.

It is important to point out that similar polynomial expressions to the ones used in
reference [1] were employed in reference [2] when dealing with circular plates elastically
restrained against rotation and subjected to in-plane hydrostatic loading. Actually the
eigenvalues presented in Table 1 of reference [1] practically coincide with those shown in
Table 1 of reference [2] where the Galerkin method was used which for the problem under
consideration is equivalent to the Rayleigh–Ritz approach.

The polynomial approximation has been used extensively in the case of circular plates
of non-uniform thickness, orthotropic and aeolotropic plates [3–8]. Use of an
undetermined exponent in the co-ordinate functions, following Rayleigh’s suggestion, has
allowed for optimization of the results [9].

It is also interesting to point out that the polynomial approach has also been used in
the case of circular plates with a central support [10].

In the case of a simply supported plate and for Poisson’s ratio equal to 0·3 one obtains
zrh/Dv1 a2 =14·82 and when the plate is clamped the methodology yields 22·78 which
compares admirably well with the exact results: 14·80 and 22·78, respectively [11].
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We are grateful to the writers for the interest shown in our recent note on fundamental
frequency estimates of circular plates with central support [1]. In particular, drawing
attention to the two earlier works of Laura et al. [2, 3] in similar areas was useful as we
were unaware of them despite a copious survey of works on the vibration of circular plates.
This is not surprising in view of the vast—and still rapidly increasing—data on the natural
vibration response of solids, and one often finds closely related articles (and results) by
different authors working independently as, for instance, the approximate analytical
approach for a vibrating beam partially embedded in Winkler-type foundations [4] which
was obviously developed without knowing about the existence of the exact solution to this
problem published earlier [5, 6].

Having now studied references [2] and [3], we still find several important features in
which these works differ from our own, especially as regards the original aim and the
approach adopted. Although some of these features should be self-evident, it is, in the
present circumstances, clearly necessary to list them below.

First, the writers mention the use of the Galerkin method and the so-called
Rayleigh–Ritz (strictly speaking, Ritz) technique. Now, both these approaches are based
on approximations of deflected shapes in the form of series and, hence, lead to a system
of simultaneous equations, the size of which depends on the number of terms retained in
the (truncated) series. On the other hand, our article was based on the much simpler
quotient of Rayleigh, obviating the need to solve simultaneous equations.

Secondly, unlike the writers’ more involved techniques (which, of course, can also cater
for higher modes), our simple closed-form expressions were consistent with the aim to
provide basic formulae that would be of use to structural engineers for quick fundamental
frequency estimates at the preliminary design stage. This was prompted by predominantly
civil engineering needs in flat slabs with optional intermediate support and, possibly, the
need to consider also orthotropic materials such as timber. (The latter case was not
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mentioned in our paper, which served as a preliminary test case for the more complex
orthotropic problem studied subsequently and which is to be reported elsewhere [7].)

Thirdly, instead of the approximating polynomials adopted by the writers, only (static)
deflection shapes—readily available (or derivable) and satisfying all boundary
conditions—were used in our work. Admittedly, the results listed in reference [2] for the
case of isotropic circular plates either simply-supported or clamped at their boundaries
coincide in accuracy with our own because the one-term approximation chosen in
Galerkin’s method consists of a fourth order polynomial which, when the orthogonality
requirement is imposed [2], leads essentially to the expressions for the relevant deflected
shapes of the slabs under static loading [1]. On the other hand, the more involved problem
of (additional) central support does not lend itself to a similarly straightforward
equivalence; instead, the more rigorous static deflection used in our article can only be
mimicked by the one-term polynomial solution after additional calculations aimed at
optimizing the polynomial’s form through a minimization process with respect to its
power(s). It is only then that accuracy similar to that of reference [1] can be attained
judging by the two isolated cases considered in reference [3], as the latter work is concerned
primarily with vibrating membranes (rather than plates) and with two- (as well as one-)
term approximations which further increases the complexity of the polynomial
formulation.

Though limited in scope, our approach has—besides its inherent simplicity—the signal
advantage of being amenable to almost trivial, but quite general, parametric studies. In
the case of isotropy, this is evident in the closed-form expressions that are explicitly
functions of Poisson’s ratio n. This advantage becomes even more evident in the instance
of material orthotropy, especially for some apparently singular problems in which such
singularities are eliminated in the final expression for the non-dimensionalized natural
frequency through the use of symbolic computation [7]. In contrast, the approach espoused
in reference [3] requires that, even for isotropy, a problem be solved anew for each value
of n; this is certainly true when more than a single term is used for the approximations,
but it also seems to be the case when only one term is retained because of the need to
proceed with the minimization process mentioned above (unless it can be shown formally
that the functional relation V1 (g) for the one-term approximation is always minimized
around g=2·40, as for the two problems considered in reference [3]).

The importance of quick and relatively economic parametric studies for preliminary
design purposes is obvious. In addition, they sometimes lead to the detection of unexpected
phenomena or, at least, regimes of behaviour, which, though apparently trivial, are, in fact,
quite complex. An example of this is the (incorrect) statement in reference [4] that one is
dealing with a ‘‘rather basic structural system’’ (p. 143), whereas the earlier parametric
studies of that very system [5, 6] had exposed some startling characteristics in its natural
response.
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