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This paper provides a systematic approach to solve in-plane free vibrations of arches with
variable curvature. The proposed approach basically introduces the concept of dynamic
stiffness matrix into a series solution for in-plane vibrations of arches with variable
curvature. An arch is decomposed into as many elements as needed for accuracy of
solution. In each element, a series solution is formulated in terms of polynomials, the
coefficients of which are related to each other through recurrence formulas. As a result,
in order to have an accurate solution, one does not need a lot of terms in series solution
and in Taylor expansion series for the variable coefficients of the governing equations due
to the consideration of variable curvature. Finally, a dynamic stiffness matrix is formed
such that it can be applied to solve more complicated systems such as multiple-span arches.
In the whole analysis, the effects of rotary inertia and shear deformation have been taken
into account.
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1. INTRODUCTION

Arches are basic structural elements in many practical applications such as bridges, roof
structures and aerospace structure. Their importance results in a vast literature published
on the dynamic behavior of planar curved structural elements. The review articles [1–3]
have summarized much research on this subject. Of this vast literature, some of it deals
with the derivation of equations of motion (cf., [4–11]), but most of it principally analyzes
free and undamped vibrations. More than 300 articles studying free vibrations of arches
are cited in reference [3].

For arches with variable curvature, the Rayleigh–Ritz method has been frequently
applied to find the lowest natural frequency of in-plane vibration [12–16]. By following
the numerical technique developed by Veletsos et al. for a circular arch [9], Lee and Wilson
[17] obtained the first three natural frequencies and mode shapes for parabolic, sinusoidal
and elliptic arches. Suzuki and his co-workers proposed a series solution in terms of
polynomials for the vibration of arches with variable curvature [18–20]. In their solution,
the arch is considered as a unit and the formulation of a solution for symmetric modes
is separated from that for antisymmetric modes, so that only the problems with symmetry
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are studied. There are two main shortcomings in this solution. One is that a convergent
solution may not be reached if the convergence radius of the series solution does not
cover the whole domain of the arch under consideration. The other is that, in order
to obtain accurate results, a lot of terms in Taylor expansion series are needed for
those geometric functions related to variable curvature, arc length and their first
derivatives. It takes sustained efforts to obtain those Taylor expansion series in formulating
the solution.

The main purpose of the present paper is to propose a series solution for vibrations of
arches with variable curvature, which improves the solution given by Suzuki and
Takahashi [20] by introducing the concept of the dynamic stiffness method. The arch
under consideration is decomposed into serveral subdomains (or elements). In each
subdomain, a series solution in terms of polynomials is formulated, in which the symmetric
solution is not separated from the antisymmetric solution. The series solution satisfies
the governing equations, including the effects of shear deformation, axial deformation
and rotary inertia. Recursive relations between the coefficients of polynomials are
explicitly given. Then, at the ends of the subdomain, the stress resultants (axial force,
shear force and moment) are expressed in terms of the displacement components
(tangential displacement, normal displacement and rotation due to pure bending) by a
so-called local dynamic stiffness matrix. After assembling these local dynamic stiffness
matrices for each subdomain through the continuity conditions between subdomains,
a global dynamic stiffness matrix can be established, which relates the displacement
variables at the nodal points of each element to the external loading. Finally, one can
solve for the natural frequencies by substituting the boundary conditions into the
relations between the nodal displacements and external loading. A similar philosophy was
applied by Leung and Zhou [21] to solve for vibrations of non-uniform Timoshenko
beams.

To demonstrate the validity of the proposed solution as well as to investigate the
characteristics of the proposed method, a convergence study is carried out for the vibration
of a circular arch. Finally, the proposed method is applied to obtain the first six natural
frequencies of parabolic and elliptic arches having uniform rectangular cross-sections with
various boundary conditions and geometry parameters. The geometry parameters
considered here are the ratio of rise to span length, h/l, and the ratio of span length to
radius of gyration of cross-section area, l/g, for parabolic arches; opening angle, u0, the
ratio of long-axis length to short-axis length, a/b, and the ratio of twice long-axis length
to radius of gyration of cross-section area, 2a/g, for elliptic arches. Numerical results are
presented for h/l=0·2, 0·4, 0·6 and 0·8, and l/g=10 and 100 for parabolic arches. In the
cases for elliptic arches, u0 is set equal to 60°, 120° and 180°; a/b is set equal to 0·2, 0·5
and 0·8; and 2a/g is set equal to 10 and 100.

Figure 1. The defining sketch for an arch.
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2. GOVERNING EQUATIONS

Shown in Figure 1 is an arch of thickness H with radius R of the centroidal axis that
is a function of S, the arc length of centroidal axis measured from the left support. The
tangential and radial displacements of the centroidal axis are denoted by v and w,
respectively, while c represents the rotation of the centroidal axis due to bending only.
The sign convention for positive displacements, moment (M), shear force (Q) and axial
force (N) is also given in Figure 1. The equations of motion obtained from dynamic
equilibrium if there is no external loading are (cf., Chidamparam and Leissa [3])

1N
1S

+
Q
R

= rAv̈,
1Q
1S

−
N
R

= rAẅ,
1M
1S

+Q= rIc� , (1)

where r is the mass per unit volume, A is the area of the cross-section, I is the second
moment of the area of cross-section, and the derivative with respect to time is denoted
by a dot. Assuming a linearly elastic material, the relations between the displacement and
rotation components and the stress resultants are (cf., Chidamparam and Leissa [3])

N=EA01v
1S

+
w
R1, Q= kAG01w

1S
−

v
R

−c1, M=EI
1c

1S
, (2a–c)

where k is the shear coefficient of the cross-section. In equations (1) and (2), it is noted
that the effects of axial deformation, shear deformation and rotary inertia are considered.

Then, substituting equations (2) into equations (1) and assuming a uniform cross-section
and constant material properties through the arch yields

EA
12v
1S2 −

kGA
R2 v−

kGA
R

c+
A(E+ kG)

R
1w
1S

+EAw
1

1S 01
R1= rAv̈, (3a)

kAG
12w
1S2 −

EA
R2 w− kGA

1c

1S
−

A(E+ kG)
R

1v
1S

− kGAv
1

1S 01
R1= rAẅ, (3b)

EI
12c

1S2 − kGAc−
kAG
R

v+ kGA
1w
1S

= rIc� , (3c)

where the dots denote time derivatives. Equations (3) are the governing equations for
in-plane free vibrations of arches with variable curvature.

It should be noted that it is usually complicated to express the curvature as a function
of S. For a typical arch geometry such as a parabola, it is simple to express the curvature
as a function of the Cartesian co-ordinate, x (see Figure 1). Therefore, in the following
formulation of solution, we transform the co-ordinates S to x. Furthermore, it is
convenient to introduce a representative length of the arch under consideration, L, such
that one can define the following dimensionless quantities:

x̄= x/L, ȳ= y/L, w̄=w/L, v̄= v/L, S� =S/L, R�=R/L. (4)

Then, equations (3) can be expressed as follows, after some arrangement:

..
v̄0+ v̄'

j'
j

−
l2

j2R�2 v̄−
l2

j2R� c+
1+ l2

jR� w̄'−
R�'
jR�2 w̄=

rL2

Ej2 v�, (5a)
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w̄0+
j'
j

w̄'−
1

l2j2R�2 w̄ −
1
j

c'−
1+ l2

l2jR� v̄'+
R�'
jR�2 v̄=

rL2

Ej2

1
l2 w� , (5b)

c0+
j'
j

c'−
l2

j2ḡ2 c+
l2

jḡ2 w̄'−
l2

j2ḡ2R� v̄=
rL2

Ej2 c� , (5c)

where the primes denote derivatives with respect to x̄, and j=dx/dS=dx̄/dS�, l2 = kG/E
and ḡ2 = I/(L2A).

3. METHOD OF SOLUTION

To solve free vibration problems, one can assume that the solution form for equations
(5) can be expressed as follows:

v̄(x̄, t)=V�(x̄) eivt, w̄(x̄, t)=W�(x̄) eivt, c(x̄, t)=C(x̄) eivt. (6)

Accordingly, the solutions for the stress resultants are given in the following form:

N(x̄, t)=N�(x̄) eivt, Q(x̄, t)=Q�(x̄) eivt, M(x̄, t)=M�(x̄) eivt. (7)

Substitution of equations (6) into equations (5) and careful rearrangement result in

V�0+V�'
j'
j

−
l2

j2R�2 V�−
l2

j2R� C+
1+ l2

jR� W�'−
R�'
jR�2 W� =−

rL2

Ej2 v2V�, (8a)

W�0+
j'
j

W�'−
1

l2j2R�2 W� −
1
j

C'−
1+ l2

l2jR� V�'+
R�'
jR�2 V�=−

rL2

Ej2

v2

l2 W�, (8b)

C0+
j'
j

C'−
l2

j2ḡ2 C+
l2

jḡ2 W�'−
l2

j2ḡ2R� V�=−
rL2

Ej2 v2C. (8c)

Equations (8) are a set of second order ordinary differential equations for V�, W� and C

with coefficients that are functions of one independent variable, x̄, only.
The Frobenius method [22] can be applied to solve equations (8). At first, for

convenience, we express the following functions by their Taylor expansion series about a
point on the arch under consideration with the non-dimensional position co-ordinates, h:

j'
j

= s
K

k=0

ak (x̄− h)k,
1
j2 = s

K

k=0

bk (x̄− h)k,
1

j2R�= s
K

k=0

ck (x̄− h)k,

R�'
jR�2 = s

K

k=0

dk (x̄− h)k,
1
j

= s
K

k=0

ek (x̄− h)k,
1

j2R�2 = s
K

k=0

fk (x̄− h)k,

1
jR�= s

K

k=0

gk (x̄− h)k. (9)

It is worth mentioning that some of the expressions in equations (9) are correlated with
each other. For example, bJ =aJ

k=0 eJ− k ek . However, to make the formulation of the
solution simple and clear, as given in the following, it would be better to leave the
expressions in equations (9) the way they are. The coefficients, ak , bk, . . . , gk can be
determined if the geometry of the arch of interests is defined. Consequently, it is reasonable
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and straightforward to express the solution of equations (8) in terms of polynomials such
as

V�= s
J

j=0

Aj (x̄− h)j, W� = s
J

j=0

Bj (x̄− h)j, C= s
J

j=0

Dj (x̄− h)j. (10)

Theoretically, J should approach infinity. However, it only needs a finite number of terms
in equations (10) to obtain accurate results.

Substituting equations (9) and (10) into equations (8) with very careful rearrangement
yields

s
J

j=0 6( j+2) ( j+1)Aj+2 + s
j

k=0 $(k+1)aj− k Ak+1 + (1+ l2) (k+1)gj− k Bk+1

+0rE v2L2bj− k − l2fj− k 1Ak − dj− k Bk − l2cj− k Dk %7(x̄− h)j =0, (11a)

s
J

j=0 6( j+2) ( j+1)Bj+2 + s
j

k=0 $−(k+1)
1+ l2

l2 gj− k Ak+1 + (k+1)aj− k Bk+1

− (k+1)ej− k Dk+1 + dj− k Ak +0rE v2L2

l2 bj− k −
1
l2 fj− k 1Bk %7(x̄− h)j =0, (11b)

s
J

j=0 6( j+2) ( j+1)Dj+2 + s
j

k=0 $(k+1)
l2

ḡ2 ej− k Bk+1 + (k+1)aj− k Dk+1

−
l2

ḡ2 cj− k Ak +0rE v2L2 −
l2

ḡ21bj− kDk %7(x̄− h)j =0. (11c)

To satisfy equations (11) for all x̄ yields that the coefficients of each order of polynomials
have to be zero. Consequently, one obtains the following recursive equations for the
coefficients of polynomials in equations (10):

Aj+2 =
−1

( j+1) ( j+2) 6 s
j

k=0 $(k+1)aj− k Ak+1 + (1+ l2) (k+1)gj− k Bk+1

+0rE v2L2bj− k − l2fj− k 1Ak − dj− k Bk − l2cj− k Dk %7, (12a)
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Figure 2. Positive displacements, forces and moments for the nth element, with the common factor eivt omitted.

Bj+2 =
−1

( j+1) ( j+2) 6 s
j

k=0 $−(k+1)
1+ l2

l2 gj− k Ak+1 + (k+1)aj− k Bk+1

− (k+1)ej− k Dk+1 + dj− k Ak +0rE v2L2

l2 bj− k −
1
l2 fj− k 1Bk %7, (12b)

Dj+2 =−
1

( j+1) ( j+2) 6 s
j

k=0 $(k+1)
l2

ḡ2 ej− k Bk+1 + (k+1)aj− k Dk+1

−
l2

ḡ2 cj− k Ak +0rE v2L2 −
l2

ḡ21bj− kDk%7, (12c)

where j=0, 1, 2, . . . . From equations (12), Aj+2, Bj+2 and Dj+2 can be determined if A0,
A1, B0, B1, D0 and D1 are known. As a result, the solution of equations (8) can be simply
represented as

V�(x̄)=A0 v̄0 (x̄)+A1 v̄1 (x̄)+B0 v̄2 (x̄)+B1 v̄3 (x̄)+D0 v̄4 (x̄)+D1 v̄5 (x̄), (13a)

W�(x̄)=A0 w̄0 (x̄)+A1 w̄1 (x̄)+B0 w̄2 (x̄)+B1 w̄3 (x̄)+D0 w̄4 (x̄)+D1 w̄5 (x̄), (13b)

C(x̄)=A0 c0 (x̄)+A1 c1 (x̄)+B0 c2 (x̄)+B1 c3 (x̄)+D0 c4 (x̄)+D1 c5 (x̄), (13c)

where v̄j , w̄j and cj ( j=0, 1, 2, . . . , 5) are polynomials the coefficients of which are
determined from equations (12).

Up to this point, one can determine the coefficients A0, A1, B0, B1, D0, and D1 from the
boundary conditions of the problem of interest. However, by doing this, one can expect
that sufficiently large K and J in equations (9) and (10), respectively, are required to result
in accurate solutions. It is the most troublesome part in the above solution procedure in
finding the coefficients in equations (9), even though one can accomplish this task through
the aid of commercial symbolic logic computer packages such as MathematicaTM or
MACSYMATM. Besides, one may face the convergence problem of the solution given in
equation (10) if the convergence radius could not cover the whole range of x̄ under
consideration.

To overcome these difficulties, the concept of dynamic stiffness method is introduced
into the series solution. The arch under consideration is decomposed into several elements
(or subdomains). For each element (see Figure 2), one can construct the following relation
from equations (13):
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V�0F J
G GW�0

G GC0g h
V�1G G
W�1G G

f jC1 n

v̄0 (x̄n ) v̄1 (x̄n ) v̄2 (x̄n ) v̄3 (x̄n ) v̄4 (x̄n ) v̄5 (x̄n ) A0K L F J
G G G Gw̄0 (x̄n ) w̄1 (x̄n ) w̄2 (x̄n ) w̄3 (x̄n ) w̄4 (x̄n ) w̄5 (x̄n ) A1

G G G Gc0 (x̄n ) c1 (x̄n ) c2 (x̄n ) c3 (x̄n ) c4 (x̄n ) c5 (x̄n ) B0G G g h=
v̄0 (x̄n+1) v̄1 (x̄n+1) v̄2 (x̄n+1) v̄3 (x̄n+1) v̄4 (x̄n+1) v̄5 (x̄n+1) B1G G G G
w̄0 (x̄n+1) w̄1 (x̄n+1) w̄2 (x̄n+1) w̄3 (x̄n+1) w̄4 (x̄n+1) w̄5 (x̄n+1) D0G G G G

k l f jc0 (x̄n+1) c1 (x̄n+1) c2 (x̄n+1) c3 (x̄n+1) c4 (x̄n+1) c5 (x̄n+1) n D1 n

A0F J
G GA1

G GB0g h=[b]n
B1

, (14)
G G

D0G G
f jD1 n

where the subscript n for vectors and the matrix represents the results for the nth element.
The components of the vector on the left side of equation (14) are the amplitudes of the
nodal displacements and bending rotation of the nth element. For the nth element, h

implicit in equation (14) is set equal to (x̄n + x̄n+1)/2.
From the displacement–force relationships given in equations (2) after transforming the

independent variable S to x and using equations (4) and (14), one can obtain the following
expression for the magnitude of stress resultants of the nodal points for the nth element
of an arch under vibration in terms of the unknown coefficients (see Figure 2):

N�0 A0F J F J
Q�0 A1G G G G

G G G GM�0 B0

g h g h
N�1

= (EA)n ([a1]n +[a2]n +[a3]n ) B1
, (15)

G G G G
Q�1 D0G G G G
M�1 n D1 nf j f j

where

−j(x̄n ) 0 0 0 0 0K L
G G0 −l2j(x̄n ) 0 0 0 0
G G0 0 −ḡ2Lj(x̄n ) 0 0 0
G G[a1]n = 0 0 0 j(x̄n+1) 0 0G G

0 0 0 0 l2j(x̄n+1) 0G G
k l0 0 0 0 0 ḡ2Lj(x̄n+1)
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v̄'0 (x̄n ) v̄'1 (x̄n ) v̄'2 (x̄n ) v̄'3 (x̄n ) v̄'4 (x̄n ) v̄'5 (x̄n )K L
G Gw̄'0 (x̄n ) w̄'1 (x̄n ) w̄'2 (x̄n ) w̄'3 (x̄n ) w̄'4 (x̄n ) w̄'5 (x̄n )
G G

c'0 (x̄n ) c'1 (x̄n ) c'2 (x̄n ) c'3 (x̄n ) c'4 (x̄n ) c'5 (x̄n )G G×
v̄'0 (x̄n+1) v̄'1 (x̄n+1) v̄'2 (x̄n+1) v̄'3 (x̄n+1) v̄'4 (x̄n+1) v̄'5 (x̄n+1)

,
G G

w̄'0 (x̄n+1) w̄'1 (x̄n+1) w̄'2 (x̄n+1) w̄'3 (x̄n+1) w̄'4 (x̄n+1) w̄'5 (x̄n+1)G G
k lc'0 (x̄n+1) c'1 (x̄n+1) c'2 (x̄n+1) c'3 (x̄n+1) c'4 (x̄n+1) c'5 (x̄n+1)

(16a)

K L−
1

R�(x̄n )
0 0 0 0 0

G G
G G

0
l2

R�(x̄n )
0 0 0 0G G

G G0 0 0 0 0 0G G
G G[a2]n = 0 0 0

1
R�(x̄n+1)

0 0
G G
G G0 0 0 0 −

l2

R�(x̄n+1)
0G G

k l0 0 0 0 0 0

w̄0 (x̄n ) w̄1 (x̄n ) w̄2 (x̄n ) w̄3 (x̄n ) w̄4 (x̄n ) w̄5 (x̄n )K L
G Gv̄0 (x̄n ) v̄1 (x̄n ) v̄2 (x̄n ) v̄3 (x̄n ) v̄4 (x̄n ) v̄5 (x̄n )
G G0 0 0 0 0 0G G×

w̄0 (x̄n+1) w̄1 (x̄n+1) w̄2 (x̄n+1) w̄3 (x̄n+1) w̄4 (x̄n+1) w̄5 (x̄n+1)
,

G G
v̄0 (x̄n+1) v̄1 (x̄n+1) v̄2 (x̄n+1) v̄3 (x̄n+1) v̄4 (x̄n+1) v̄5 (x̄n+1)G G

k l0 0 0 0 0 0
(16b)

0 0 0 0 0 0K L
G Gc0 (x̄n ) c1 (x̄n ) c2 (x̄n ) c3 (x̄n ) c4 (x̄n ) c5 (x̄n )
G G0 0 0 0 0 0G G

[a3]n = l2

0 0 0 0 0 0

.

G G
−c0 (x̄n+1) −c1 (x̄n+1) −c2 (x̄n+1) −c3 (x̄n+1) −c4 (x̄n+1) −c5 (x̄n+1)G G

k l0 0 0 0 0 0

(16c)

From equations (14) and (15), one can find that

N�0 V�0F J F J
G G G GQ�0 W�0

G G G GM�0 C0g h g h
N�1

= [K	 ]n V�1 ,
(17)

G G G G
Q�1 W�1G G G G

f j f jM�1 n C1 n

where the local dynamic stiffness matrix for the nth element is

[K	 ]n =(EA)n ([a1]n +[a2]n +[a3]n ) [b]−1
n . (18)
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From the continuity conditions between adjacent elements, one can assemble the local
dynamic stiffness matrices for each element and obtain the global dynamic stiffness matrix,
[K	 ], such that

[K	 ]{U}= {F}, (19)

where {U} is the vector for the magnitude of nodal displacements of an arch under
vibration, while {F} is the vector for the magnitude of loading applied at the nodal points.

To compute the natural frequencies of an arch, one has to substitute the geometry
boundary conditions into equation (19) and leave out the rows and columns of [K	 ]
associated with the geometry boundary conditions. Let the resultant dynamic stiffness
matrix be denoted by [K	 ]sub . Accordingly, one has

[K	 ]sub {U}sub = {0}, (20)

where {U}sub is the unknown nodal displacement vector which is a subvector of {U} by
leaving out the nodal displacements (including bending rotation component) described in
the boundary conditions. The natural frequencies are the roots making the determinant
of [K	 ]sub equal to zero.

Subroutine ‘‘DZREAL’’ in the IMSL (International Mathematical and Statistical
Library), which uses Müller’s method [23], was applied to find the natural frequencies. The
subroutine locates a real value of v resulting in the determinant of [K	 ]sub equal to zero
through an iteration process, starting with an initial guess. An initial guess can be chosen
from a roughly determined interval in which the determinant changes sign.

To find the mode shapes, one can compute the eigenvectors corresponding to each
natural frequencies from equation (20). Then, one can calculate the functions describing
the corresponding mode shapes in each element from equations (13) and (14).

4. CONVERGENCE STUDY

The accuracy of the solution given in the previous section is dependent on K in equation
(8), J in equation (9) and the number of elements. (K+1) in equation (8) denotes the
number of expansion terms for describing the geometry properties of the arch under
consideration in each element, while J in equation (9) denotes the highest order of
polynomial used in the solution for each element. To show the validity of the proposed
approach and the effects of K, J and the number of elements on the solution, a convergence
study was carried out for a uniform circular fixed–fixed arch with h/R=0·01 and an
opening angle equal to 100°. There is an analytical exact solution for this problem. It
should be mentioned that the Poisson ratio is equal to 0·3 for all the numerical results
shown in the paper.

In Tables 1–3 are listed the first six non-dimensional natural frequencies, vR2zrA/EI,
by using four, eight and 16 elements with different combinations of J and K, respectively.
In these tables, two sets of exact solutions are given. The set denoted by Huang was
obtained by the second author following the procedure given by Wang and Guilbert [24].
These two sets of exact solutions differ slightly and the reason is that results given by
Chidamparam and Leissa [25] were obtained from the governing equations without shear
deformation. The results for (K+1)=25 and (J+1)=80 in Table 1 are very close to
the exact solutions, while the results given in Tables 2 and 3 show that one can obtain
improved solutions, as expected, by increasing the number of elements and using smaller
values for K and J. A comparison of the results obtained from the proposed approach
with the exact solution reveals that there are two ways to judge whether the results
converge to the solutions with required accuracy. For the fixed number of elements,
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convergent solutions are obtained if the results do not change by increasing K and J at
the same time. For example, the solutions for K=9 and J=19 in Table 3 are the desired
convergent results. On the other hand, for the fixed K and J, convergent solutions are
obtained if the results do not change by increasing the number of elements. For example,
the results for K=14 and J=19 in Table 2 are convergent to six significant figures. It
is not necessarily true that the results for the first mode obtained from the proposed
approach will converge faster to the exact one than those for other modes as in most of
the approximation methods, e.g. the Ritz method and the finite element method.

It is interesting to observe from Tables 1–3 that if the value for K is not large enough,
one will obtain results that are convergent to a wrong answer by increasing J only. These
convergent results are the solutions for the arch having a slightly different geometry from
that under consideration because the series expressions given in equation (9) do not
precisely and uniformly converge to the real geometry functions.

As regards this point, there is no doubt that the proposed method can provide very
accurate solutions. However, one may wonder how much computational effort is required.
By comparing the computational time with a commercial finite element package (SAP90)
in solving the same problem, we found that whether or not the proposed approach is
superior to a finite element solution depends on the required accuracy of the numerical
results. For example, to reach convergent results with six significant figures for the first
six modes, SAP90 took 69·04 s for the results with 2048 beam elements, while the present
method only needed 40·04 s to obtain the solutions with K=14 and J=19 for each of
eight elements shown in Table 3 through six iterations in the subroutine ‘‘DZREAL’’ for

T 1

Convergence of frequency parameters vR2zrA/EI for a fixed–fixed circular arch by using
four elements

(K+1) (J+1) in equations (9) Exact
in ZXXXXXXXCXXXXXXXV ZXXXXCXXXXV

Modes equations (8) 20 40 80 C&L* Huang

1 10 18·2423 17·9134 17·9134 17·9249 17·9156
15 17·9699 17·9155 17·9155
25 17·9136 17·9158 17·9158

2 10 34·8724 34·6048 34·6049 34·6752 34·6428
15 34·6453 34·6432 34·6432
25 34·6404 34·6428 34·6428

3 10 62·7783 62·6581 62·6582 62·8782 62·7886
15 62·7777 62·7902 62·7902
25 62·7869 62·7887 62·7887

4 10 92·2484 92·5468 92·5468 92·8664 92·6767
15 92·7778 92·6781 92·6781
25 92·6889 92·6767 92·6767

5 10 133·569 133·591 133·591 / 133·613
15 133·704 133·613 133·613
25 133·631 133·613 133·613

6 10 175·795 175·594 175·594 / 175·602
15 175·757 175·602 175·602
25 175·641 175·602 175·602

*Data from Chidamparam and Leissa [25].
‘‘/’’ indicates that no data is available.
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T 2

Convergence of frequency parameters vR2zrA/EI for a fixed–fixed circular arch by using
eight elements

(K+1) (J+1) in equations (9) Exact
in ZXXXXXXXCXXXXXXXV ZXXXXCXXXXV

Modes equations (8) 10 20 40 C&L* Huang

1 10 17·8599 17·9154 17·9154 17·9249 17·9156
15 17·8599 17·9156 17·9156
25 17·8599 17·9156 17·9156

2 10 34·5268 34·6427 34·6427 34·6752 34·6428
15 34·5268 34·6428 34·6428
25 34·5268 34·6428 34·6428

3 10 62·5443 62·7886 62·7886 62·8782 62·7886
15 62·5443 62·7886 62·7886
25 62·5443 62·7886 62·7886

4 10 92·2676 92·6767 92·6767 92·8664 92·6767
15 92·2676 92·6767 92·6767
25 92·2676 92·6767 92·6767

5 10 133·958 133·613 133·613 / 133·613
15 133·958 133·613 133·613
25 133·958 133·613 133·613

6 10 174·890 175·602 175·602 / 175·602
15 174·890 175·602 175·602
25 174·890 175·602 175·602

*Data from Chidamparam and Leissa [25].
‘‘/’’ indicates that no data is available.

each mode. However, if the desired accuracy was reduced to four significant figures, it only
took SAP90 11·15 s to obtain the results by using 128 beam elements, while the present
method needed 21·53 s to obtain the solutions with K=10 and J=14 for each of the eight
elements through five iterations for each mode. It should be mentioned that all the
computation was performed in the PC Pentium DOS environment. For this comparison,
one may expect that the present method with some modification [26] can be superior to
a finite element solution in the sense of accuracy and computational effort in solving
transient problems by using Laplace transform technique because no iteration is involved
in the solving process of the proposed method.

5. FREQUENCIES FOR PARABOLIC ARCHES AND ELLIPTIC ARCHES

Having developed a method of analysis with a careful convergence study in the previous
sections, an extensive amount of non-dimensional frequency data is presented in this
section. The method is demonstrated on parabolic and elliptic arches having uniform
rectangular cross-sections with various types of boundary conditions; namely, fixed–fixed,
fixed–hinged and hinged–hinged. For parabolic arches, two geometric parameters are
varied, which are the ratio of rise, h, to span length, l, and the ratio, m= l/g (see
Figure 3(a)). For elliptic arches, three geometric parameters are varied, namely, b/a,
m=2a/g and the opening angle, u0, where a and b represent the lengths of long axis and
short axis, respectively (see Figure 3(b)). The representative length of an arch, L, in the
solution is set equal to l and 2a for parabolic arches and elliptic arches, respectively.
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T 3

Convergence of frequency parameters vR2zrA/EI for a fixed–fixed circular arch by using
16 elements

(K+1) (J+1) in equations (9) Exact
in ZXXXXXXXCXXXXXXXV ZXXXXCXXXXV

Modes equations (8) 10 20 40 C&L* Huang

1 5 17·9299 17·9188 17·9188 17·9249 17·9156
10 17·9154 17·9156 17·9156
15 17·9154 17·9156 17·9156

2 5 34·6604 34·6457 34·6457 34·6752 34·6428
10 34·6424 34·6428 34·6428
15 34·6424 34·6428 34·6428

3 5 62·8145 62·7924 62·7924 62·8782 62·7886
10 62·7877 62·7886 62·7886
15 62·7877 62·7886 62·7886

4 5 92·7056 92·6801 92·6801 92·8664 92·6767
10 92·6746 92·6767 92·6767
15 92·6746 92·6767 92·6767

5 5 133·640 133·616 133·616 / 133·613
10 133·609 133·613 133·613
15 133·609 133·613 133·613

6 5 175·629 175·605 175·605 / 175·602
10 175·596 175·602 175·602
15 175·596 175·602 175·602

*Data from Chidamparam and Leiss [25].
‘‘/’’ indicates that no data is available.

The general equation for a parabolic arch of span length, l, and rise, h, shown in
Figure 3(a), is

y=(−4h/l2)x(x− l). (21)

From the definition of radius of curvature and length of curve, one can find that

1
R

=−
d2y
dx2 $1+0dy

dx1
2

%
−3/2

(22a)

and

j=dx/dS=(z1+ (dy/dx)2)−1. (22b)

The general equation for an elliptic arch is

x2/a2 + y2/b2 =1. (23)

Figure 3. Arch forms: (a) parabolic; (b) elliptic.
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T 4

Frequency parameters vL2zrA/EI for fixed–fixed parabolic arches

Mode
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

m h/l 1 2 3 4 5 6

100 0·2 46·0762 87·2729 126·280 155·294 232·386 296·359
0·4 27·4931 61·3285 104·450 149·958 170·096 215·344
0·6 16·7617 39·0367 68·0152 101·572 143·181 162·183
0·8 10·9359 25·7958 45·7441 68·7613 97·6573 131·706

10 0·2 16·2960 21·6086 32·2292 39·4785 55·4119 58·8347
0·4 14·5769 17·5944 27·6166 29·2302 42·5544 51·3153
0·6 10·0120 16·4407 21·3980 22·1393 32·3978 41·6115
0·8 7·12940 14·5055 16·0531 17·6354 25·4230 32·6005

T 5

Frequency parameters vL2zrA/EI for fixed–hinged parabolic arches

Mode
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

m h/l 1 2 3 4 5 6

100 0·2 36·6037 78·1589 123·363 140·155 213·421 289·484
0·4 21·3721 52·4916 93·2011 140·363 166·517 201·226
0·6 12·8717 33·0188 60·2653 92·7515 132·805 162·163
0·8 8·34340 21·7199 40·3514 62·5514 90·3211 123·100

10 0·2 14·5577 20·3267 32·0483 38·2834 55·3202 58·0459
0·4 12·6860 17·3261 27·0204 28·1282 41·9086 51·2479
0·6 8·50400 16·2720 19·7129 22·0438 31·5855 41·2985
0·8 5·92400 13·9875 14·9246 17·4059 24·6224 31·9943

T 6

Frequency parameters vL2zrA/EI for hinged–hinged parabolic arches

Mode
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

m h/l 1 2 3 4 5 6

100 0·2 28·7644 68·3075 123·246 124·637 195·015 273·990
0·4 16·5440 44·3372 82·4977 128·846 165·543 186·739
0·6 9·88910 27·5004 52·9960 84·0035 122·823 162·033
0·8 6·38010 17·9707 35·3749 56·3911 83·2737 114·840

10 0·2 13·5699 18·3298 31·9313 36·0778 55·1046 57·7393
0·4 11·2690 16·6375 26·2117 27·2360 41·1625 51·1814
0·6 7·18350 15·8479 18·5615 21·4894 30·7286 40·9379
0·8 4·84950 12·8112 14·7628 16·6995 23·8732 31·3177

It is found that it is very difficult to find the higher order terms in equation (9) even by
using MathematicaTM. Therefore, polar co-ordinates are used in the formulation instead.
Then, by definition,

R=(1/ab) [a2 cos2 u+ b2 sin2 u]3/2 (24a)

and

du/dS=[a2 cos2 u+ b2 sin2 u]−1/2. (24b)
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To use the formulation of solution given in the earlier section, one needs to set L=2a
and h= un , where un is the position angle of nodal point n, and replace x and x̄ by u. In
addition, one has to define j�=L du/dS to replace j.

To supplement the available database on parabolic and elliptic arches in the published
literature, in Tables 4–9 are listed the non-dimensional frequencies for the first six modes
obtained from the present method. The results were obtained by using 16 elements with
J=29, and K=15 and K=13 for parabolic arches and elliptic arches, respectively. These
results are accurate to six significant figures (from convergence studies not shown here).
As one might expect, the natural frequencies increase as the constraints of the boundary
conditions increase, from hinged–hinged to hinged–fixed to fixed–fixed if the geometry
parameters remain constant. The non-dimensional frequency for each mode decreases as
the ratio, m, decreases, because the ratio, L/g, is involved in the non-dimensional frequency.
Otherwise, from the physical senses, an arch should become more flexible as the ratio, m,
increases, so that the natural frequencies should decrease.

From the results for parabolic arches given in Tables 4–6, the non-dimensional
frequencies increase as the ratio of h to l increases, with some exceptions, such as the results
for the fourth mode of the hinged–hinged and fixed–hinged arches with m=100. For a
comprehensive study on the trend of frequency versus h/l for the first three modes of
parabolic arches, one should refer to the paper by Lee and Wilson [17].

The results for elliptic arches listed in Tables 7–9 show the decrease of non-dimensional
frequency for each mode with the increase of opening angle, u0, if other geometry
parameters remain constant. This phenomenon makes sense because an arch with a large
opening angle is more flexible than one with a small opening angle. The trend for the
non-dimensional frequency versus b/a is not clear, and depends on which opening angle,
mode, or m is under consideration. Suzuki and Takahashi [20] gave a comprehensive study

T 7

Frequency parameters vL2zrA/EI for fixed–fixed elliptic arches

Mode
u0 ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

m b/a (degrees) 1 2 3 4 5 6

100 0·2 60 93·1679 228·641 428·962 625·621 674·906 949·693
120 49·0833 77·8741 154·973 241·783 357·489 363·472
180 43·9775 53·8656 122·959 162·311 262·880 272·963

0·5 60 120·446 221·794 421·938 613·104 673·786 932·173
120 67·5534 84·2185 160·647 212·414 327·516 358·960
180 35·9884 50·5204 110·291 136·020 223·450 230·171

0·8 60 155·586 210·235 409·609 593·964 667·176 902·109
120 54·4974 92·2983 173·668 181·387 286·121 338·904
180 22·8741 43·5458 83·1160 121·062 179·076 198·628

10 0·2 60 33·3320 60·9326 64·2812 89·8196 100·394 125·501
120 17·2305 32·0771 37·5111 53·5737 67·9692 71·8998
180 14·1519 24·2982 31·6841 43·8130 57·2407 60·6488

0·5 60 33·8384 57·7223 65·8188 89·7197 98·5407 124·644
120 18·3746 27·3985 38·4844 49·7225 65·9588 69·0161
180 14·9332 17·2183 30·1474 36·4781 49·8160 52·6507

0·8 60 34·6318 54·2016 66·4456 89·4715 95·4355 123·144
120 19·4572 23·0279 37·4793 44·5055 61·4449 65·0541
180 12·5152 15·1817 27·0431 29·3985 42·1760 44·3708
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T 8

Frequency parameters vL2zrA/EI for fixed–hinged elliptic arches

Mode
u0 ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

m b/a (degrees) 1 2 3 4 5 6

100 0·2 60 70·5699 189·095 379·686 611·629 634·650 892·968
120 47·9755 63·3659 136·505 218·250 330·331 363·399
180 38·5975 49·3955 121·096 141·943 241·799 266·071

0·5 60 107·198 183·223 373·301 590·498 643·236 877·087
120 54·1738 81·7583 150·869 191·949 302·359 357·014
180 27·3890 45·5332 97·1136 132·596 208·689 229·826

0·8 60 147·351 174·642 362·174 565·877 644·833 848·108
120 42·9955 83·7741 161·672 173·890 263·957 332·063
180 17·1453 37·9061 74·0436 113·418 167·661 198·436

10 0·2 60 28·8521 60·9305 63·4209 69·3300 100·297 114·572
120 14·2898 30·9687 37·3644 52·7003 60·8759 71·7809
180 12·0806 22·8489 31·5688 42·6558 56·2778 59·7551

0·5 60 29·5129 57·5175 63·5849 71·0279 98·4999 113·164
120 16·1081 26·1029 38·3942 48·5721 60·6651 68·2841
180 13·8307 15·8040 30·1458 34·8214 48·9731 52·5012

0·8 60 30·5501 53·6147 62·2054 72·5597 95·4317 111·022
120 17·6533 21·7756 37·4263 43·0812 59·9548 62·3981
180 10·5571 15·1751 27·0204 27·7961 41·3968 43·9261

T 9

Frequency parameters vL2zrA/EI for hinged–hinged elliptic arches

Mode
u0 ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV

m b/a (degrees) 1 2 3 4 5 6

100 0·2 60 54·9307 152·053 331·532 561·055 629·857 836·245
120 47·6857 50·1204 119·854 195·334 303·709 362·503
180 33·5267 39·5233 121·078 121·465 238·969 244·137

0·5 60 101·751 146·652 325·821 545·863 634·727 820·923
120 42·0451 76·0361 146·575 171·293 277·860 350·955
180 19·9020 38·5404 84·7922 126·747 199·284 227·417

0·8 60 137·706 148·891 316·002 522·752 636·749 792·914
120 32·7867 73·8734 146·255 172·843 242·752 319·191
180 12·0598 32·1018 65·5254 105·119 157·147 197·882

10 0·2 60 25·6337 56·9378 60·9375 65·4179 88·5351 100·977
120 11·5480 29·3817 37·2397 52·2535 57·2717 68·9501
180 10·4167 20·9519 31·4877 41·5555 56·1837 56·8498

0·5 60 26·4744 54·8903 58·8126 68·2068 87·9155 98·8597
120 14·3964 24·2109 38·3173 47·6956 57·6862 65·7733
180 13·1908 14·0529 30·1451 32·0610 48·5648 52·0328

0·8 60 27·8071 51·0292 58·2157 70·2103 86·7567 95·4857
120 17·0490 19·3719 37·3934 41·7598 57·1597 62·2501
180 8·67590 15·1569 26·0371 27·0289 40·6919 43·2958
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on the relation of frequency parameter to the opening angle for the first two symmetric
and antisymmetric modes of elliptic arches.

It is interesting to compare the results for the parabolic arch with h/l=0·4 with the
results for the elliptic arch with b/a=0·8 and u0 =180° because they have the same span
length, rise, and m but have different shapes. Generally speaking, the results for parabolic
arches are larger than those for elliptic arches, with several exceptions for higher modes,
and the differences become small for small values of m.

6. CONCLUDING REMARKS

In this paper, a systematic procedure to obtain a series solution for the free vibration
of a uniform arch with variable curvature is presented. The concept of the dynamic stiffness
method is introduced into the series solution so that the arch under consideration is
decomposed into several subdomains (or elements). In each subdomain, the solutions for
displacement components and stress resultants are expressed in the form of polynomials,
the coefficients of which are related to each other through recursive equations. As a result,
one does not need to expend a lot of effort to find the higher order terms in Taylor
expansion series for those geometry functions related to curvature, arc length and their
first derivatives (given in equations (9)). In addition, one is always able to obtain
convergent results with the required accuracy by increasing the number of elements or the
number of polynomial terms in the solution. These have been successfully demonstrated
by conducting a convergence study for a uniform circular arch.

The numerical results shown in the paper are the first six modes for parabolic and elliptic
arches with various boundary conditions and with different geometry parameters to
supplement the available database in the published literature. These data are accurate to
six significant figures.

It is because the solution is formulated through a dynamic stiffness matrix that this
solution can be easily combined with the dynamic stiffness matrix for straight beam,
circular arches or others to solve a more complicated system which includes different types
of structural elements. The present procedure can be extended without any difficulty to
solve other problems such as in-plane or out-plane vibrations of arches with variable
curvature and cross-section. In addition, by introducing the Laplace transform technique
into the present solution procedure with some simple modification, one is able to analyze
the transient responses of arches with variable curvature and cross-section [26]. To make
the proposed procedure more efficient from the point of view of computation, one may
want to introduce adaptive refinement techniques available in finite element methods
effectively to decompose an arch into elements.
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