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STABILITY ANALYSES OF A TIMOSHENKO SHAFT
WITH DISSIMILAR LATERAL MOMENTS OF
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The stability of a rotating shaft with dissimilar stiffnesses is studied and the influences of
the stiffness ratio and axial compressive loads are discussed. A finite element model of a
Timoshenko beam is adopted to approximate the shaft, and the effects of rotatory inertia,
shear deformations, gyroscopic moments and torsional rigidities are taken into account.
In studying the whirl properties of such shafts, it is convenient to use rotating co-ordinates
to formulate the equations of motion. The results show that with the existence of the
dissimilar stiffnesses, unstable zones will occur. The critical speeds will decrease and the
instability regions will enlarge if the stiffness ratio is increased. The increase of the stiffness
ratio consequently makes the rotating shaft more unstable. When the axial compressive
loads increase, the critical speeds decrease and the zones of instability enlarge.
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1. INTRODUCTION

Rapid and accurate prediction of the dynamic characteristics of rotating shafts is an
important task for engineers who deal with modern rotating machinery. Many studies have
been reported for the dynamic analyses of rotating circular shafts possessing equal stiffness
in all directions. A comprehensive review can be found in the publications of Dimentberg
[1], Rieger and Crofoot [2], Rao [3], Vance [4] and Goodwin [5]; moreover, other authors,
such as Nelson and McVaush [6], Nelson [7] and Chen and Ku [8], have also made many
efforts in their studies on the dynamics of circular shafts.

A shaft with dissimilar stiffness properties is occasionally encountered in two-pole
generator rotors, drills, end-mills and satellite booms. Laurenson [9] used a model analysis
technique to study the free vibration analysis of a rotating rectangular beam. Bauer [10]
provided results for the natural frequencies of an Euler beam rotating about its
longitudinal axis. The work presented by Filipch et al. [11], an extension of that of Bauer
[10], assumed that the cross-section of the uniform spinning beam possessed only one axis
of symmetry. Leung and Fung [12], using the finite element method, analyzed the vibration
of spinning Euler beams with arbitrary orientations to a rotating frame. Numerical results
for these works were confined to finding the critical speeds.

In the stability analyses, Dimenberg [1], Rieger and Crofoot [2] and Rao [3] have
proposed the influences of stiffness asymmetry on the stability of rotors. If a shaft has
dissimilar stiffness properties in the two principal directions of the cross-section, the
bending natural frequencies corresponding to each stiffness are obtained. For such a shaft,
an instability region can be found between the first two transverse vibration frequencies
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Figure 1. The shaft subjected to an axial load.

of a rotating shaft with dissimilar stiffnesses. The same phenomenon was also pointed
out in the study of a cracked shaft presented by Dimarogonas and Papodopoulos [13].
Chen and Chen [14] discussed the stability problems of a cracked shaft subjected to
end loads. Kammer and Schlack [15] studied an Euler beam with non-constant spin
rates. The non-constant angular velocities were expressed as the sum of steady state
terms. Lee [16] completed the work of Bauer [10] and displayed the instability regions
of a spinning beam with distinct end conditions.

In general, although the Euler beam model is simple and neglects the transverse shear
effects, it has been applied in the analyses of dynamic stability for a shaft or beam
with dissimilar stiffnesses. Recently, Jei and Lee [17] used a Rayleigh beam model,
including the effects of rotary inertia and gyroscopic moment, for modal analysis of
an asymmetrical rotor–bearing system. The whirl speeds and mode shapes of the
uniform asymmetrical shaft were investigated. Collins et al. [18] proposed a technique
for detecting cracks in a rotating Timoshenko shaft. The time histories and frequency
spectra were compared for shafts with no crack and with a crack. For a cracked shaft,
Papadopoulos and Dimarogonas [19, 20] discussed the coupling effects between the
longitudinal, torsional and bending vibrations. Their method was good at detection of
small cracks. As described by Lee et al. [21, 22], the Timoshenko shaft were used in
modelling an asymmetric rotor system. From their investigation, both transient and
steady state analyses were illustrated.

In this paper, the Timoshenko beam model including torsional rigidity will be
applied to predict the instability regions of a rotating shaft with dissimilar stiffnesses
in its two principal directions of the cross-section. To study the whirl properties of
such shafts, it is convenient to formulate the equations of motion in rotating
co-ordinates. This is because the shaft stiffness varies in the fixed co-ordinates at twice
per revolution frequency. In addition, a finite element model is used to obtain the
matrix equations of motion for a rotating shaft, and the effects of axial compressive
loads on the stability of a rotating shaft are also studied.

Figure 2. The reference frames of the rotating shaft.
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Figure 3. Three successive rotations from the rotating to the moving frame.

2. EQUATIONS OF MOTION

The dynamic stabilities of a straight rotating shaft with dissimilar lateral
principal moments of inertia and subjected to axial compressive loads are
investigated in the present study. Timoshenko beam theory, including rotatory inertia,
shear deformations, gyroscopic moments and torsional rigidity, is applied in the
formulation. The shaft with a rotating speed V and subjected to axial
compressive loads is depicted in Figure 1. The reference frames used in the
section are displayed in Figure 2. The rotating frame (oxyz), with unit basis
vectors i� , j� and k� , is obtained from the fixed frame (OXYZ) by a rotation of angle
Vt about the X-axis. The moving frame (ot1 t2 t3), of unit basis vectors t� 1, t� 2 and t� 3,
is attached to shaft at the centroid of a cross-section. The orientation of the
moving frame (ot1 t2 t3) with respect to the rotating frame (oxyz), using three
Eulerian angles, is depicted in Figure 3. The frame (ox1 y1 z1) is rotated about the
y-axis by an angle a with respect to the rotating frame. Next, the ox2 y2 z2 frame is
rotated about the z1 -axis through an angle b with respect to ox1 y1 z1. Finally, the
frame (ot1 t2 t3) is rotated about the x2 -axis by an angle f with respect to ox2 y2 z2.
Hence, the orientation of the moving frame with respect to the rotating frame is

Figure 4. The translations of the centerline of the shaft.
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Figure 5. (a) Variation of the whirl speed parameters 1F and 1B versus the spin speed parameter; F, forward;
B, backward. (b) Variation of the exponential increment parameter 1F versus the spin speed parameter.
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2.1.  

Since the stiffness of the rotating shaft is dissimilar, the kinetic energy is described in
the rotating frame. The kinetic energy can be written as the sum of the translational kinetic
energy of the centroidal line and the rotational kinetic energy of the cross-sections [23].
Let r� be the position vector of a point on the deformed centroidal line:

r� = xi� + vj� +wk� . (2)

The translational kinetic energy of the centroidal line of the shaft is

Tt = 1
2 gV

r�� ·r�� dV. (3)

Here,

r�� =(v̇−Vw)j� +(ẇ +Vv)k� . (4)
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Substituting equation (4) into equation (3) yields

Tt = 1
2 g

L

0

rA{(v̇−Vw)2 + (ẇ +Vv)2} dx. (5)

The angular velocity of the shaft is

v� =Vi� + ȧj� + b� z� 1 +f� t� 1

=vx t� 1 +vy t� 2 +vz t� 3, (6)

where

vx =V cos a cos b+ ȧ sin b+f� ,

vy =V sin a sin f−V cos a sin b cos f+ ȧ cos b cos f+ b� sin f,

vz =V cos a sin b sin f+V sin a cos f− ȧ cos b sin f+ b� cos f.

Accordingly, the rotational kinetic energy is

Tr = 1
2 g

L

0

r {Iy v2
y + Iz v2

z + Jp v2
x} dx. (7)

Figure 6.(a) Variation of the whirl speed parameters 2F and 2B versus the spin speed parameter. (b) Variation
of the exponential increment parameter 2F versus the spin speed parameter.
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Figure 7.(a) Variation of the whirl speed parameters 1F and 1B versus the spin speed parameter. (b) Variation
of the exponential increment parameter 1F versus the spin speed parameter.

Assuming small deformations, the kinetic energy can be linearized and then given by

K.E.=Tt +Tr =
1
2 g

L

0

{rA(v̇−Vw)2 + rA(ẇ+Vv)2 + rIy (ȧ−Vb)2

+ rIz (b� +Va)2 + rJp (f� 2 +2Vȧb+V2)} dx (8)

2.2.  

From observation of Figure 4, v and w are the translations of the centerline of the shaft
in the y and z directions, and (h, z) is the position described by the moving frame. Thus
the displacement field can be linearized as

ux = hb+ za, uy = v− zf, uz =w+ hf. (9)

The strain energy U can then be found as

U= 1
2 gV

(sxx oxx +2txy oxy +2txz oxz ) dV

= 1
2 g

L

0

{E(Iy a'2 + Iz b'2)+GJp f'2 + kGA[(v'− b)2 + (w'+ a)2]} dx. (10)
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2.3.       

The stability problems of the rotating shaft subjected to a compressive axial load P are
studied here. The work of this load, arising from the deformation of the shaft, is

W= 1
2 P g

L

0

(v'2 +w'2) dx. (11)

2.4.   

In the present finite element model, the generalized co-ordinate at node i has two
translations (vi , wi ), three rotations (ai , bi , fi ) and their derivative terms
(v'i , w'i , a'i , b'i , f'i ). Then the displacement field of the element can be approximated as

v vi v'i vi+1 v'i+1 N1 (j)
w wi w'i wi+1 w'i+1 N2 (j)

g
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h
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l
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h
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j

a = ai a'i ai+1 a'i+1 N3 (j)
. (12)

b bi b'i bi+1 b'i+1 N4 (j)
f fi f'i fi+1 f'i+1

Where Ni (j), i=1, 2, 3, 4, is the one-dimensional local cubic Hermite polynomial shape
function, and their detailed forms are listed in Appendix A. Equation (12) is substituted

Figure 8.(a) Variation of the whirl speed parameters 2F and 2B versus the spin speed parameter. (b) Variation
of the exponential increment parameter 2F versus the spin speed parameter.
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T 1

The critical speed parameters of the shaft

Boundary conditions d L/r v̄1 v̄2 v̄3 v̄4

Simply–simply 1·0 250 9·867 9·867 39·464 39·464
supported 25 9·568 9·568 35·322 35·322

0·4 250 6·242 9·867 24·981 39·464
25 6·163 9·568 23·789 35·322

Clamped–clamped 1·0 250 22·350 22·350 61·624 61·624
25 19·910 19·910 48·759 48·759

0·4 250 14·157 22·350 39·066 61·624
25 13·458 19·910 35·000 48·759

Clamped–free 1·0 250 3·516 3·516 22·017 22·017
25 3·464 3·464 20·021 20·021

0·4 250 2·225 3·516 13·935 22·017
25 2·210 3·464 13·380 20·021

into equations (8), (10) and (11), and then Hamilton’s principle is applied to obtain the
governing equations of the complete system:

[M]{q̈}+V[Gy ]{q̇}+([K]−V2[KR ]−P[KG ]){q}=0, (13)

where {q}= {v1, v'1 , w1, w'1 , . . . , aN , a'N , bN , b'N , fN , f'N}T is the global nodal co-ordinates
vector. In order to evaluate the whirl speed of the rotor system, equation (13) is written
in the first order state vector form as

[A]{h� }+[B]{h}= {0}, (14)

where

{h}=6{q̇}
{q}7, [A]=$ [0]

[M]
[M]

V[Gy ]%, [B]=$−[M]
[0]

[0]
[K]−V2[KR ]−P[KG ]%. (15)

Figure 9. Critical spin speeds versus stiffness ratio.
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Figure 10. Critical spin speeds versus axial load parameter.

The associated eigenvalue problem of equation (15) is sought from an assumed solution
form as

{h}= {h0} elt, (16)

where l=D+iu, D being the real part and u the natural whirl speed in the rotating frame.
The natural whirl speed in fixed frame can be expressed as

v= u2V, (17)

where ‘‘+’’ is for the forward whirl speed and ‘‘−’’ is for the backward one. When the
real part of the eigenvalue l is greater than zero, the system is unstable.

3. NUMERICAL RESULTS AND DISCUSSION

In this section, the stability of a shaft with dissimilar lateral moments of inertia is
studied. To obtain numerical results, the following shaft non-dimensional parameters are
adopted throughout: d=EIz /EIy (stiffness ratio), v̄=v(rAL4/EIy )1/2 (whirl speed
parameter), V� =V(rAL4/EIy )1/2 (spin speed parameter), D� =D(rAL4/EIy )1/2 ( exponential
increment parameter), P�=P(L2/EIy ) (axial force parameter).

The frequencies of backward whirling are generally lower than those of forward whirling
of the shaft; however, a different phenomenon is observed in this rotor system with
dissimilar stiffnesses at low spin speeds. The dependencies of the whirl speeds on the spin
speed were calculated for simply supported ends and different slender ratios
(L/r, r=(Iy /A)1/2). Figures 5 and 6 are for the cases of slenderness ratio=250 and
d=0·5. If the spin speed is zero, the two natural frequencies v̄1 and v̄2 are different for
the dissimilar stiffnesses in the two principal directions of the shaft, as shown in
Figure 5(a). With the spin speed increasing, the backward whirling speeds decrease and
the forward ones firstly increase and then decrease suddenly. The first forward whirling
speed (1F) is equal to the value zero when the spin speed is equal to 6·987 (v̄1); then an
instability region of divergent type occurs until the spin speed is larger than 9·867 (v̄2).
The associated exponential increment parameters, illustrated in Figure 5(b), become
positive. Very similar results are obtained for the second mode illustrated in Figure 6. The
instability zone is the interval between the spin speeds 27·925 (v̄3) and 39·464 (v̄4).
Obviously, the first instability region is found to be the zone between the spin speeds
v̄1 and v̄2, and the second instability region between the speeds v̄3 and v̄4.
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Here the spin speeds v̄1, v̄2, v̄3 and v̄4 are the natural frequencies of the non-rotating shaft
indicated in Figures 5(a) and 6(a). Figures 7 and 8 are the whiling speeds for the case of
a shaft with slenderness ratio=25 and d=0·5. The results show that the first instability
zone is between the spin speeds v̄1 and v̄2, and the second is between the speeds v̄3 and
v̄4. Accordingly, these speeds can be called the critical speeds of the rotating shaft.
Therefore, for a long or a short shaft, the task of obtaining the regions of instability lies
in calculating the speeds v̄1, v̄2, v̄3 and v̄4. Predicting the stability of the rotating shaft
consequently becomes simple and time-saving.

The critical speed parameters of a spinning shaft with three cases of distinct end
conditions are calculated and shown in Table 1. For the first case (d=1·0, L/r=250,
simply–simply supported ends), the critical speeds v̄1 = v̄2 =9·867 and v̄3 = v̄4 =39·464
are very close to the natural frequencies of the Euler beam (9·87 and 39·5). The boundary
conditions for the other two cases are clamped–clamped and clamped–free ends. The
critical speeds of these cases are also very near to those natural frequencies of a Euler beam
(the first two natural frequencies are 22·4 and 61·7 for a clamped–clamped supported
beam, and 3·52 and 22·0 for clamped–free ends). The critical speed parameters v̄2 and v̄4

are invariable with a decreasing stiffness ratio. Because these two parameters are the first
two bending natural frequencies corresponding to the moment of inertia Iy , and the same
Iy is used here, the critical speed parameter of a shorter shaft is lower than a longer one
due to the non-dimensional speed being used.

As shown in the study by Rao [3], the Euler beam model was used and its results
illustrated that the system is unstable when the whirl speed v̄ is in the region expressed
as:

v̄1 Q v̄Q v̄2, where v̄1 =zdv̄2.

According to this analysis, we obtain v̄1 =6·242 and v̄2 =9·870 for d=0·4 at simply
supported end conditions. These results are very close to those of the present model for
the case of L/r=250 in Table 1. However, they are very different between the Euler beam
and Timoshenko beam models for L/r=25. This is because the shear deformation greatly
affects the dynamic behavior of a short shaft.

The influences of the stiffness ratio are investigated on the critical speeds of a rotating
shaft with clamped–clamped end conditions and L/r=250. As indicated in Figure 9,
decreasing the stiffness ratio is accompanied by reducing the critical speeds and enlarging
the unstable regions of the system. It can be seen that the instability region for a higher
mode is larger than a lower one for the same case; these results show that the shaft becomes
more unstable at high spin speeds. The influences of axial compressive loads on the simply
supported shaft for L/r=250 are shown in Figure 10. If the axial compressive loads
increase, the critical speeds decrease and the instability regions enlarge; consequently, when
the axial compressive loads increase, the rotating shaft becomes more unstable.

4. CONCLUSIONS

The Timoshenko beam theory is used in this study to predict the stability of a rotating
shaft with dissimilar lateral moments of inertia. The natural frequencies of the non-rotating
shaft in its two principal directions are not equal. As the spin speed increases, the forward
whirling speeds of the shaft will diverge. The instability regions are found to be between
the two frequencies corresponding to the same mode of the non-rotating shaft. As the
difference between the two lateral stiffnesses of the shaft is increased, the instability regions
expand. A decrease in the stiffness ratio consequently makes the shaft more unstable. It
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is also observed that the width of a higher mode instability region is larger than that of
a lower mode one; therefore, the shaft system is more unstable with an increase in the
rotating speeds. Increasing the axial compressive loads will decrease the critical speeds and
enlarge the zones of instability.
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APPENDIX A

The cubic Hermite polynomial shape functions:

N1 (j)= (2−3j+ j3)/4,

N2 (j)= (1− j− j2 + j3)/4,

N3 (j )= (2+3j− j3)/4,

N4 (j)= (−1− j+ j2 + j3)/4.

APPENDIX B

The element matrices in equation (13) are:

[Aij ] 0 0 0 0

0 [Aij ] 0 0 0

[M]=G
G

G

G

G

K

k

0 0 [Bij ] 0 0 G
G

G

G

G

L

l

,

0 0 0 [Cij ] 0

0 0 0 0 [Dij] 20×20

0 −2[Aij ] 0 0 0

2[Aij ] 0 0 0 0 ,

[GY ]=G
G

G

G

G

K

k

0 0 0 0 0 G
G

G

G

G

L

l
0 0 0 0 0

0 0 0 0 0 20×20

[Eij ] 0 0 [Jij ] 0

0 [Eij ] [Hij ] 0 0

[K]=G
G

G

G

G

K

k

0 [Iij ] [Fij ] 0 0 G
G

G

G

G

L

l

,

[Kij ] 0 0 [ Gij ] 0

0 0 0 0 [Lij ] 20×20

[Aij] 0 0 0 0

0 [Aij ] 0 0 0

[KR ]=G
G

G

G

G

K

k

0 0 [Cij ] 0 0 G
G

G

G

G

L

l

,

0 0 0 [Bij ] 0

0 0 0 0 0 20×20

[Lij ] 0 0 0 0

0 [Lij ] 0 0 0

[KG ]=G
G

G

G

G

K

k

0 0 0 0 0 G
G

G

G

G

L

l

,

0 0 0 0 0

0 0 0 0 0 20×20
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[Aij ]=g rANi Nj dx, [Bij ]=g rIy Ni Nj dx, [Cij ]=g rIz Ni Nj dx,

[Dij ]=g rJp Ni Nj dx, [Eij ]=g kGAN'i N'j dx, [Fij ]

=g [EIy N'i N'j + kGANi Nj ] dx,

[Gij ]=g [EIz N'i N'j + kGANi Nj ] dx,

[Hij ]=g kGAN'i Nj dx, [Iij ]=g kGANi N'j dx,

[Jij ]=g−kGAN'i Nj dx,

[Kij ]=g−kGANi N'j dx, [Lij ]=g GJp N'i N'j dx,

[Mij ]=g N'i N'j dx, i, j=1, 2, 3, 4.

APPENDIX C: NOMENCLATURE

A cross-sectional area of shaft section
E, G Young’s and shear modules of the shaft
[GY ] Gyroscopic matrix
i� , j� , k� unit vector of oxyz frame
Iy , Iz moments of inertia of the shaft for t2 and t3 directions
[K], [KG ] stiffness and geometric matrices
[KR ] stiffness due to the kinetic energy
L length of the shaft
[M] assembled mass matrix
n number of independent co-ordinates
N number of nodes
Ni (j) one-dimensional local cubic Hermite polynomial shape function
P axial compressive load
P� axial load parameter
{q} global displacements vector described in the spin frame (x −y −z)
t1, t2, t3 moving reference frame
Tr rotational kinetic energy
Tt translational kinetic energy
ux , uy , uz displacements of the shaft in the x, y and z directions.
U strain energy
v, w translations in the y and z directions
x, y, z rotating reference frame
X, Y, Z fixed reference frame
W work done by axial load
a, b, f rotations about y-, z- and x-axes, respectively
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d stiffness ratio
oxx normal strain component
oxy , oxz shear strain component
k shear correction factor
j local co-ordinate of the element
r mass density of the shaft material
sxx normal stress component
txy , txz shearing stress component
V spin speed
v whirl speed
v̄ critical speed parameter

Superscripts

T transpose
· differentiation with respect to time t
' differentiation with respect to x


