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This paper is the first of two companion papers concerning the active control of
structural vibration in an isolator system. A preparatory study is reported of the passive
vibration transmission, which is evaluated in terms of power, considering a multi-mount
and multi-degree-of-freedom isolator system with passive mounts. The modelling of the
system is based on a matrix method which uses mobility or impedance representations of
three separate elements: the source of vibration, the receiver and the mounting system
which connects the source to the receiver. A detailed description of the mobility or
impedance formulae is given for a rigid mass oscillating in a plane (the source), for a beam
on which flexural and longitudinal waves propagate (the mounts) and for an infinite or
finite plate in which in-plane shear and longitudinal and out-of-plane flexural waves
propagate (the receiver).

It is shown that at low frequencies any ‘‘rigid body mode’’ (axial-mode, transverse-mode,
pitching-mode) is capable of transmitting considerable power to the receiving system, while
the transmission of vibration at higher frequencies is mostly related to the dynamics of the
distributed mounts or receiver.
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1. INTRODUCTION

The active isolation of vibration generated by a source and transmitted to a receiver
through active mounts has received much attention in recent years [1] and a great deal of
progress has been achieved, particularly with actuator technology [2] and digital control
systems [3]. These systems can sometimes achieve larger vibration reduction than
traditional passive mounts, although the best isolation is generally obtained when an active
system is used in combination with a passive mount. However, both the theoretical
investigation and technology development of active isolation systems are still far from
complete.

The theoretical aspects of the research are currently focused mainly in two areas: first,
the study of the passive vibration transmission mechanism with no active control action;
and, second, the investigation of the efficacy of different control strategies. The research
carried out by the authors has been organized in exactly this way and, in this paper, a
preparatory study regarding the mechanism of structural vibration transmission in an
isolator is introduced, while in a companion paper [4] a systematic study concerning
the effectiveness of different control strategies is presented. The contribution of this
paper can be divided into two parts: first the formulation of the mathematical model
of the isolator system; and, second, the use of the method to investigate the mechanism
of structural vibration transmission. The mathematical model and the method of
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representing the vibration transmission adopted here allow some details of the vibration
transmission to be described which have been found to be very significant for
understanding the phenomenon that occurs when the isolator is provided with active
mounts.

1.1.   

An active isolator system is generally composed of a source, free to vibrate in various
ways, connected to a flexible receiver by several distributed active mounts. Examples of
sources of vibration that could be isolated by using active mounts are car, ship and
aeroplane engines or electric motors mounted into domestic machines (e.g., washing
machines or refrigerators) or, finally, fans for air conditioning systems. These sources are
usually mounted onto flexible cases or frames through soft suspensions which are capable
of supporting the weight of the machine. A broad understanding of the dynamics of such
complete isolator systems can be obtained by considering three frequency ranges [1]: the
low, the intermediate and the high frequency ranges. The low frequency range is
characterized by a few ‘‘rigid body’’ modes due to the source oscillations on the
suspensions, while the intermediate frequency range is characterized by a higher number
of modes, since the distributed mounts and the distributed receiver resonate. Usually, the
source is a very stiff system that resonates only at higher frequencies. In these two
frequency ranges the vibration of the system is usually described in terms of the global
characteristics of the system by using a modal approach. Finally, in the high frequency
range, the vibration of the receiver and mounts are dominated by the wave propagation
phenomenon and the structural vibration of the system becomes more like the acoustic
vibration which is usually described in terms of the scattering properties of the elements
forming the system. von Flotow [5] has called the frequency limit at which the dynamics
of the system move from a modal to a wave propagating behaviour the ‘‘acoustic
limit’’.

It is not easy to find a model that is able to describe all of the phenomena occurring
in the system over the whole of this frequency range. Single-degree-of-freedom models are
not satisfactory and even models considering the presence of multiple mounts but
modelling these as a lumped system are incomplete. Swanson et al. [6] have shown the
limitations of modelling a complete isolator having several suspensions connecting a
flexible distributed source and receiver with single-degree-of-freedom mounts. Sanderson
et al. [7] and Petersson and Gibbs [8] have discussed the need to consider both the
multi-mount and the multi-directional vibration transmission between a source and a
receiver; in particular they emphasized the need to include both linear and rotational
vibration transmission in the analysis.

In this paper a matrix model of the system has been developed, and particular attention
has been devoted to the effects of multiple mounts and multi-degree-of-freedom vibration
transmission. Point and transfer mobilities for the source and the receiver were used, while
the dynamics of the mounts were specified by point and transfer impedances.

In particular, the case in which the source is a rigid mass which is free to move in a
plane and is connected to an infinite or finite plate by a pair of active mounts has been
studied in detail. Three wave types can propagate into the plate: in-plane longitudinal and
shear waves and out-of-plane flexural waves. The mounts were modelled as a distributed
one-dimensional system inclined at an arbitrary angle. Each mount was considered as a
ring of rubber that reacts to axial and transverse displacements and to cross-sectional
rotations. The control action was modelled as a pair of axial reactive forces acting at the
top and bottom points of the mounts.
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The matrix model presented in this paper can be used for a large variety of distributed
mechanical, acoustical or coupled mechanical–acoustical systems characterized by a source
transmitting vibration to a receiver through a number of paths. The ‘‘core’’ of the model
is formed by the mobility or impedance matrices that are specific for each subsystem. In
this paper the description of the matrix model has been developed by using a detailed
formulation of the point and transfer mobility terms for a rigid mass (the source) and for
a thin infinite or finite plate on which in-plane longitudinal and shear waves and
out-of-plane flexural waves propagate (the receiver). Also reported is the formulation for
the impedance terms of a beam in which flexural and longitudinal waves propagate (the
mounts).

1.2.     

When a multi-directional vibration transmission model is considered, a particular
problem becomes apparent, since the structural vibration transmitted to the receiver is
characterized by a large number of parameters that in some cases cannot be directly
compared. Goyder and White [9–11] have used a novel approach to describe the vibration
transmission in a complete isolator system. They represented the structural vibration
transmitted to the receiver by using structural power, since this quantity can be used to
quantify and compare all the components of the vibration. The first examples of
quantifying structural vibration by using power were presented by Noiseux [12], Pavic [13],
Verheij [14] and Williams et al. [15]. Other authors have also used this approach;
for example, Pinnington and White [16] and Pinnington [17] have investigated the
power transmission to a flexible receiver assuming simplified one-degree-of-freedom
models of the mounts. Petersson [18, 19] and Koh and White [20–22] have emphasized
the importance of both force and moment excitations in the power transmission to
beam or plate-like structures. Rook and Singh [23] and Fastard and Singh [24] have
studied power transmission in systems having several lumped members with multiple
joints.

In this paper, the vibration transmitted to the flexible receiver through a number of
distributed mounts is quantified by using structural power. The ability to compare the
importance of different mechanisms in the vibration transmission to the receiver by using
a power approach and the use of coupled multi-degree-of-freedom model give the
possibility of producing a novel and detailed account of the dynamics of an isolator which
simplified models cannot produce.

Power has also been used as a parameter to quantify the structural vibration
transmission for two other reasons. First, in many cases the purpose of vibration isolation
is to control the noise radiated by the receiver [25, 26]. The characterization of vibration
transmission using power represents a good way to estimate the noise emitted by the
receiver of a complete isolating system, since this quantity represents the energy available
for causing radiated sound [27]. Second, one proposed strategy for active vibration control
is the minimization of power transmission to the receiver [28]. This is an alternative to the
conventional strategy of cancelling the velocities or forces at the junctions between the
mounts and the receiver or minimizing the vibrational response of the receiver measured
at several points. An investigation of the power transmission in a passive isolator system
is thus required to understand the behaviour of a system in which power transmission is
actively minimized.

The accuracy of the matrix model used here, and the method adopted to describe the
vibrations, have allowed a detailed study of the vibration transmission in a complete
isolating system. First of all, the analysis carried out shows the importance of considering
a multi-mount and multi-degree-of-freedom model at low frequencies, since it has been
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demonstrated that any ‘‘rigid body mode’’ resonance (axial mode, transverse mode or,
pitching mode) is capable of transmitting a large quantity of vibration. Moreover, having
modelled the mounts and the receiver as distributed systems has shown the trend of the
vibration transmission in the mid-frequency range. In particular, the results show that for
a finite plate, the first modes of the receiver greatly influence the transmission of vibration,
which can be greater than in the case of a source rigidly fixed to the receiver. Finally, by
using power it has been possible to evaluate and compare the contribution from each
degree of freedom to the vibration transmission. The simulations have shown that at low
frequency the power is mainly transmitted through axial vibration, but as the frequency
rises the transmission of power tends to be equally distributed between axial and angular
vibration.

2. GENERAL MODEL FOR MULTIPLE ACTIVE SUSPENSIONS

Many of the studies for complete isolators are concerned with systems having a single
mount vibrating only in one direction [29, 30]. A more detailed study of the system is
needed for a system with many mounts (usually three or four) and composed of distributed
flexible members [31–33]. The finite element method can be used to study this problem,
but the isolation model can be complicated and physical insight limited. Good results have
been obtained by using an approach in which the system is divided into individual
components (for a complete isolating system we consider three components: the source,
the mounting system and the receiver) and each component is studied in terms of point
and transfer mobilities or impedances [34, 35]. In reference [34] a matrix model is
introduced in which the dynamics of the source and the receiver are expressed in terms
of point mobility matrices and the dynamics of the mounting system connecting these two
members is given in terms of the transfer mobility matrix. This formulation is valid for
linear systems and can describe the dissipative effects of all three members, but was limited
to axial motion only. In the following section this approach will be generalized for
multi-axis vibration [36].

The complete isolating system is divided into three flexible parts as shown in Figure 1:
the source, the mounting system, composed of n suspensions, and the receiver. These parts
are connected at a finite number of junctions. At each junction, the motion and the forces
transmitted are characterized by six parameters. These velocity and force parameters are
grouped into a velocity junction vector and a force junction vector, which for the jth
junction and at a single frequency can be written as

Figure 1. The scheme of a general complete isolating system.
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where u̇j , v̇j and ẇj are the complex linear velocities, respectively, along the x, y and z
directions, u� xj , u� yj and u� zj are the angular complex velocities referred, respectively, to the
x-, y- and z-axes, and Nxj , Nyj and Nzj are the complex forces in the x, y and z directions
and, finally, Mxj , Myj and Mzj are the complex moments referred, respectively, to the uxj ,
uyj and uzj rotations. With reference to the notation shown in Figure 1, combinations of
these junction vectors are then grouped together to form three combined pairs of vectors:
the source velocity vector (vs ) and force vector (fs ), the receiver velocity vector (vr ) and force
vector (fr ) and the mounting system velocity vector (vm ) and force vector (fm ). The source
and receiver velocity vector and force vector are given by:
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where vsj and fsj represent the velocity junction vector and the force junction vector at the
source junction for the jth mount, while vrj and frj represent the velocity junction vector
and the force junction vector at the receiver junction for the jth mount. The mounting
system velocity vector and force vector are given by
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where vm1j and fm1j represent the velocity junction vector and the force junction vector at
the source junction for the jth mount and vm2j and fm2j represent the velocity junction vector
and the force junction vector at the receiver junction for the jth mount.
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The dynamics of the source and the receiver are studied by using a mobility matrix
approach, so that their velocity and force vectors can be written in the forms

vs =Ms1fs +Ms2qp , vr =Mr1fr +Mr2qf , (9, 10)

where Ms1, Ms2 and Mr1, Mr2 are the mobility matrices, respectively, of the source and the
receiver (see Appendices A and C), and qp , qf are, respectively, the primary and flanking
excitation vectors. The forces exciting the receiver could be due to a subsystem connected
with it or to a flanking path connecting the source with the receiver. The dynamics of the
mounting system are expressed using an impedance matrix approach,

fm =Zm1vm +Zm2qs , (11)

where Zm1 and Zm2 are the impedance matrices of the mounting system (see Appendix B)
and qs is the control excitation vector. The source and receiver equations, (9) and (10), can
be grouped together in one equation,

vsr =Msr1fsr +Msr2qpf , (12)

where the two mobility matrices and the excitation vector have the forms:

Msr1 =$Ms1

0
0

Mr1%, Msr2 =$Ms2

0
0

Mr2%, qpf =6qp

qf7, (13–15)

and the junction velocity and force vectors are given by:

vsr 06vs

vr7, fsr 06fs

fr7, (16, 17)

where vsr and fsr are called, respectively, the source-receiver velocity vector and
source-receiver force vector. The source receiver vectors are related to the analogous
mounting system vectors by a transformation matrix T in such a way as to satisfy the
continuity principle (for the velocity vectors) and the equilibrium principle (for the force
vectors) at each junction:

fm =−Tfsr , vm =Tvsr . (18, 19)

These matrices are equal to unity for vertically arranged mounts but assume a more
complicated form for inclined mounts (see Appendix D). By using these two relations,
equations (11) and (12) can be related in such a way as to find the source–receiver velocity
vector or the source-receiver force vector as a function of the primary and control sources:

vsr =Qpvqpf +Qsvqs , fsr =Qpfqpf +Qsfqs , (20, 21)

where

Qpv =(I+Msr1T−1Zm1T)−1Msr2, Qsv =−(I+Msr1T−1Zm1T)−1Msr1T−1Zm2,

(22, 23)

Qpf =−T−1Zm1T(I+Msr1T−1Zm1T)−1Msr2, (24)

Qsf =T−1Zm1T(I+Msr1T−1Zm1T)−1Msr1T−1Zm2 −T−1Zm2. (25)

The vibration transmission to the receiver will be quantified by using power and for the
specific model investigated five types of power parameters can be defined: the power input
by the primary excitation on the source structure qp , {Pp}; the power input by the flanking
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excitation on the receiver structure qf , {Pf}; the power input by the control excitation qs , {Ps},
the power transmitted to the receiver through the mounting system due to both the primary
and control excitations, {Pt}; and the total power input into the receiver, {Pr}.

The power input by the primary force on the source structure into the complete isolating
system is given by:

Pp = 1
2Re (qH

p vsp ), (26)

where vsp is a vector containing the velocity parameters at the source points at which the
primary excitations act, and it can be expressed as

vsp =Msp1qp +Msp2fs , (27)

where Msp1 and Msp2 represent mobility matrices evaluated in a similar way as described
in Appendix A. The power input into the complete isolating system by the flanking
excitation is given by

Pf = 1
2Re (qH

f vrf ), (28)

where vrf is a vector containing the velocity parameters at the receiver points at which the
flanking excitations act, and it can be expressed as

vrf =Mrf1qf +Mrf2 fr , (29)

where Mrf1 and Mrf2 are mobility matrices evaluated in a similar way as described in
Appendix C. The power input into the complete isolating system due to the control source
is given by

Ps = 1
2Re (qH

s v̄m ), (30)

where v̄m is a vector containing only the axial velocity at the junctions of the mounts. The
power transmitted to the receiver by the primary and control excitations is given by

Pt = 1
2Re (fH

r vr ). (31)

In the following sections the analysis of the power transmitted to the receiver will
consider three components: the power associated with axial or out-of-plane displacements,
the power associated with transverse or in-plane displacements and the power associated
with rotations. The following convention will be used to define these power quantities. The
power associated with axial displacement of the source junctions (ws ) or out-of-plane
displacement of the receiver junctions (wr ) will be called the ‘‘axial component of power’’;
the power associated with transverse displacement of the source junctions (vs ) or in-plane
displacement of the receiver junctions (vr ) will be called the ‘‘transverse component of
power’’ and finally the power associated with rotation of the source junctions (us) or
receiver junctions (ur ) will be called the ‘‘angular component of power’’. Finally, the total
power input to the receiver is obtained by summing the power transmitted to the receiver
by the source and the power input to the receiver by the flanking excitation

Pr =Pt +Pf = 1
2Re (fH

r vr + qH
f vrf ). (32)

The power transmitted to the receiver by the primary and the control excitations (Pt ) or
the power input into the receiver by the flanking excitation (Pf ) could assume negative
values, indicating an energy flow through the receiver directed to the source if Pt is negative
or directed to the flanking source, that behaves as an absorber, if Pf is negative.
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Figure 2. The complete isolating system.

3. MULTI-DEGREE-OF-FREEDOM COMPLETE ISOLATING SYSTEM WITH TWO
ACTIVE MOUNTS

In this paper, we consider the vibration isolation of a source connected to a simply
supported finite plate or to an infinite plate by a pair of active mounts. The active mounts
have an arbitrary inclination b and can generate only axial control forces. This paper
explores the passive dynamics of the system without considering the effects of the active
control. In Figure 2 is shown the geometry of the system, while the dimensions and physical
characteristics of the three members are summarized in Table 1.

The source is a rigid mass that is free to vibrate in the y–z plane. Its oscillations induce
longitudinal and flexural waves into the distributed mounts which then cause in-plane
longitudinal and shear waves and out-of-plane flexural waves in the distributed receiver
plate.

T 1

Main characteristics of the system

Model component Parameter Value

Source Dimensions l1 × l2 × l3 =0·52×0·3×0·25 m
(aluminium) Density r=2700 kg/m3

Mass m=105·3 kg
Moment of inertia IG =3·16 kg m2

Passive External diameter fe =6 cm
mounts Internal diameter fi =3 cm

(soft rubber) Height h=10 cm
Moment of inertia Ix =5·96×10−7 m4

Density r=1000 kg/m3

Young’s modulus of elasticity E=1×107 N/m2

Poisson ratio n=0·33
Loss factor h=0·1

Receiver Finite plate dimensions lx × ly =1×1·5 m
(aluminium) Thickness s=0·5 cm

Density r=2700 kg/m3

Young’s modulus of elasticity E=7·1×1010 N/m2

Shear modulus of elasticity G=2·4×1010 N/m2

Poisson ratio n=0·33
Loss factor h=0·02
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The block mass is assumed to be excited by an axial (Fzp) and a transverse (Fyp ) force
and by a torque (Txp ). These three components are sufficient to reproduce a general source
of vibration acting on the block mass. The receiver plate is excited by the two sets of
forces–moments at the junctions (Nyr1, Nzr1, Mxr1 and Nyr2, Nzr2, Mxr2) and by the flanking
excitation (Fyf , Fzf , Mxf ). The junctions connecting the two mounts to the receiver and the
flanking excitation are all assumed to be along a line parallel to the y-axis at x= lx/2. The
receiver plate is assumed to be either infinite, or finite with simply supported boundary
conditions. The mounts are assumed to be cylinders with internal control forces (Fs1, Fs2)
acting at either end. The details of the actuators that generate these forces are not
modelled. All excitations acting on the complete isolator system are considered harmonic
with time dependence exp(jvt).

The study of the passive isolation of this system can give some preliminary indications
of the main problems for the simultaneous control of different types of vibration induced
by a source into a flexible receiver.

3.1.   

The individual expressions required as the elements in the matrix model are derived in
Appendixes A, B, C and D. The source mobilities Ms1, and Ms2 are given by equations
(A15) and (A16). The source is considered as a rigid body; in fact, the fundamental
resonances of such a block for both longitudinal and flexural waves are out of the
frequency range chosen for the simulations [36]. Equations (C4) and (C5) give the mobility
matrices Mr1 and Mr2 for an infinite or a simply supported finite receiver plate. Two
external types of excitation act on the complete isolator system: the primary excitation qp

given by equation (A12) and the flanking excitation qf given by equation (C3). The
mounting system impedance matrices Zm1 and Zm2 are those of equations (B3) and (B14)
and the vector grouping the two control forces qs is given by equation (B15).

The junction velocities and force parameters can be derived by using equations (20) and
(21) of section 2. In these two equations one makes use of the four matrices given in
equations (22)–(25) and the transformation matrix T given in Appendix D by equation
(D2).

4. DYNAMICS OF THE SOURCE/ISOLATOR SYSTEM

In this section the main characteristics of the dynamics for the complete isolating system
are introduced. Only the case of an infinite receiver plate is considered at this stage to
simplify the discussion. All the simulations in this paper will be carried out in the frequency
domain for excitation frequencies between 0 and 1000 Hz.

The power input and power transmitted to the receiver by a ‘‘combined primary
excitation’’ is considered. The combined primary excitation consists of harmonic axial (Fzp )
and transverse (Fyp ) unit forces and harmonic unit torque (Txp ) acting on the rigid mass.
The dimensions and physical characteristics of the system are given in Table 1.

The power transmission to the receiver for four different thickness of the receiver plate
is shown in Figure 3. In the case in which the receiver is very thick (100 mm), the presence
of three resonances around 10 Hz and another resonance at 500 Hz is shown in Figure 3(a).
The first three resonances correspond to the modes related to the oscillations of the source
when the mounts behave as simple springs reacting to axial and transverse forces and to
the bending moment. These three modes will be called ‘‘rigid body modes’’. Because the
receiver is very thick, the dynamics of the system for these modes is quite similar to those
of a system with a fixed receiver. It is thus possible to compare the resonances obtained
with the simulations by using simple formulae for one-degree-of-freedom systems [29, 30].
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Figure 3. The power input to the source (.......) and to the receiver (——) considering a combined primary
excitation (i.e., axial Fzp and transverse Fyp unit forces and unitary torque Txp ) acting at the source. (a)
s=100 mm; (b) s=50 mm; (c) s=10 mm; (d) s=5 mm.

These three natural frequencies correspond to a transverse mode, an axial mode, and
a pitch mode. As shown in Figure 4, the transverse mode is characterized by two types
of motion: the main transverse oscillation and a smaller pitching induced by the bending
stress of the mount. The axial mode is given by a pure axial oscillation while the pitch
mode is composed of the dominating pitching and a smaller transverse oscillation due, also
in this case, to the bending stress induced on the mount. The fundamental natural
frequencies of these modes can be estimated by considering the mounts as simple lumped
springs and the receiver junctions as fixed points. The transverse mode can be considered
as that of a mass connected with two springs reacting to the transverse force induced by
the oscillation of the mass. The transverse stiffness of the mounts kt was derived by
assuming the mounts to be rods having a ring cross sectional area. Therefore, kt =12EIx /h3

[30]. So the natural frequency of the transverse mode is given by

ft =(1/2p)z2kt /m=5·9 Hz. (33)

Figure 4. The rigid modes of the complete isolating system for a blocked receiver.
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T 2

Natural frequencies of the longitudinal (fl ) and flexural (ff ) modes considering two boundary
conditions: both ends clamped (c–c) and one end clamped and the other free (c–f)

n fl (c–c) (Hz) ff (c–c) (Hz) ff (c–f) (Hz)

1 500 569·9 93·3
2 1000 1644·0 586·8
3 1500 3222·4 1644·0
4 2000 5326·8 3222·4

The axial normal mode is equivalent to that of a mass connected with two equal springs
in parallel reacting to the axial force of the mass. Therefore, upon considering the axial
stiffness ka of a rod having a ring cross sectional area, ka =EA/h [30], the natural frequency
is given by

fa =(1/2p)z2ka /m=10·1 Hz (34)

The pitch mode can be considered in a first approximation as a mass swinging on two
springs reacting with their axial stiffness ka . Such axial reaction of the two mounts
produces two forces acting in opposition on the rigid mass. This pair of forces has an
amplitude of F=1/2kar sin u, where r is the distance between the two mounts and u is
the angle representing the amplitude of the pitching oscillation of the mass. For small
oscillations it can be assumed that sin u= u, and therefore this pair of forces produces a
moment M=1/2ka r2u acting on the rigid mass. Thus the rotational stiffness associated
with the pitching oscillation is given by kp =M/u=1/2kar2 and then the natural frequency
is given by

fp =(1/2p)zkp /IG =13·4 Hz (35)

where IG is the moment of inertia with reference to the centre of gravity of the mass and
the x-axis. For the system being modelled, the natural frequency of the axial mode will
be exactly equal to that in equation (34), while the natural frequency of the transverse and
the pitching modes will be given only approximately by equations (33) and (35) since these
equations do not take into account the stiffness reacting to the pitching, for the transverse
mode, and the stiffness reacting to the transverse oscillations of the mass, for the pitching
mode. The effect of the receiver has also been neglected in the above formulation because
the plate is so thick.

The resonance at about 500 Hz in Figure 3 is due to the distributed nature of the mounts,
in which internal resonances can occur. The mounts of the complete isolating system
studied here are excited in such a way that both longitudinal and flexural waves are
propagated. The end of the mount connected to the source can be modelled as a clamped
end for both longitudinal and flexural waves. The end of the mount connected to the
receiver can be considered as clamped for both types of waves when the receiver plate is
very thick while when the plate becomes thin the boundary condition for flexural waves
changes towards a free end. For such boundary conditions, the natural frequencies of
longitudinal and flexural waves are given respectively by the equations [37, 38]

fml (n)= (n/2h)zE/r, fmf (n)= [(bnh)2/2ph2]zEIx /rA, (36, 37)

where n represents the nth natural frequency and bnh is a coefficient that depends on the
boundary condition which has been derived from reference [37]. In Table 2 the values of
the first four longitudinal and flexural natural frequencies are shown for the mount
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dimensions and physical characteristics given in Table 1. These modes will be called
‘‘isolator modes’’.

The first natural frequency of the longitudinal wave in the isolator at 500 Hz is shown
clearly in Figure 3(a). At around 600 Hz a second peak is also just visible and this is due
to the first resonance of a standing flexural wave when the terminations of the mount are
clamped (see column 2 of Table 2). Since the thick receiver plate blocks the transverse
displacements and the rotations at the mount end this resonance has little effect. The
flexural waves are also more heavily damped than longitudinal waves.

From Figures 3(a) it is also possible to estimate the power dissipation of the isolator,
by comparing the power input and the power transmitted to the receiver by the primary
excitation. The power dissipation clearly increases with the frequency increase.

In Figures 3(b), 3(c) and 3(d) are shown the results for a thinner receiver plate. In this
case the receiver plate begins to show the dynamics. At low frequencies both the mounts
and the receiver can be modelled as a pair of lumped elements. The receiver effect is purely
dissipative for the axial mode, since the input mobility for out-of-plane velocities and
forces in a plate is real (see equation C7). On the other hand, for the transverse and pitching
modes the behaviour of the receiver is both reactive and dissipative, since the input
mobilities for the in-plane velocities and forces, or for rotations and moments, are complex
with positive imaginary parts as shown respectively by equations (C6) and (C8). Thus, in
principle, both the receiver properties affect the natural frequency of the transverse and
the pitching modes and this shows up when the receiver plate becomes thinner (see
Figures 3(b), 3(c) and 3(d)). As the plate thickness is reduced, the three rigid body mode
resonances become less apparent, until a single flat peak at around 7 Hz is observed for
a 5 mm receiver plate, as shown in Figure 3(d). The axial mode is the most affected by
the thickness of the receiver plate since it appears as a damper, the resistance of which
becomes higher as the plate gets thinner. Two isolator resonances due to flexural waves
propagating in the mounts are present, the first is very damped and occurs at around 93
Hz while the second is around 590 Hz. These two resonances agree with the values found
by using equation (37) when the mount is assumed to have one end clamped and the other
end free (see column 3 of Table 2). The reduction of the plate thickness produces a
reduction of the in-plane and angular stiffness of the plate; consequently, the bottom end
of the mount is no longer clamped by the reaction of the plate but it behaves more like
a free end.

4.1.       

In this section, the details of the system vibration are examined for an infinite plate which
is 5 mm thick. The frequency response when a single axial harmonic force (Fzp ) excites the
source is considered. This excitation is symmetric with reference to the geometry of the
isolator system and the source vibrates only in the axial direction. So, as shown in Figure 5,
the source junctions are characterized by axial displacements (ws1, ws2) while the transverse
displacements and rotations at the source are zero (vs1 = vs2 =0, uxs1 = uxs2 =0). Although
the source moves only in the axial direction, the mounts and the receiver plate are
characterized by both longitudinal (longitudinal and shear motion in the plate) and flexural
waves. This is because the propagation of axial waves in the mounts generates flexural
vibration on the plate when scattered at the receiver junctions and as a consequence of
the propagation of these flexural waves from one junction to the other, the receiver
junctions vibrate with both out-of-plane displacements (wr1, wr2) and rotations (uxr1, uxr2)
as shown in Figures 5 and 7. The rotations at the two receiver junctions have the same
amplitude but vibrate out of phase. The flexural vibration of the receiver plate generates
flexural waves in the mounts. These flexural waves are then scattered at the receiver
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Figure 5. The source axial and receiver out-of-plane displacements when an axial force excites the source and
an infinite receiver plate 5 mm thick is considered. (a) Source mount no. 1; (b) source mount no. 2; (c) receiver
mount no. 1; (d) receiver mount no. 2.

junctions, inducing in-plane longitudinal and shear waves into the plate. Thus, the receiver
junctions also vibrate in the transverse directions, as shown in Figure 6. However, these
transverse vibrations have relatively small amplitude when compared to the axial vibration,
and this is because the longitudinal and shear waves are characterized by a higher specific
impedance than the flexural waves.

Figure 6. The receiver in-plane displacements when an axial force excites the source and an infinite receiver
plate 5 mm thick is considered. (a) Receiver mount no. 1; (b) receiver mount no. 2.

Figure 7. The receiver rotation when an axial force excites the source and an infinite receiver plate 5 mm thick
is considered. (a) Receiver mount no. 1; (b) receiver mount no. 2.
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The frequency responses of Figure 5 show the isolator resonance due to longitudinal
waves in the mounts at 500 Hz, while in Figures 6 and 7 is shown the resonance at 586·8 Hz
due to standing flexural waves in the mounts. The first resonance due to standing flexural
waves and the natural frequency of the rigid body mode are not visible. The transverse
and the pitch rigid body modes are not excited by the primary axial force (Fzp ) and neither
the axial rigid body mode not the first isolator mode are visible because of the high
damping effect produced by the infinite receiver plate.

5. POWER TRANSMISSION TO THE RECEIVER

In this section the power transmission to an infinite or a finite plate receiver is
investigated. The system studied has the dimensions and the physical characteristics of
Table 1 and a 5 mm thick plate is considered. Two different types of excitation are
examined: first, a single harmonic axial unit force (Fzp ); and second, a combined primary
excitation composed of harmonic axial (Fzp ) and transverse (Fyp ) unit forces and harmonic
unit torque (Txp ).

5.1.     

In Figure 8 is shown the power input into an infinite 5 mm receiver plate and the input
power from the primary excitation when an axial force excites the system. The shape of
the frequency distribution of power transmission is similar to the frequency response of
out-of-plane displacements at the receiver junctions shown in Figure 5. The isolator
resonance at 500 Hz due to longitudinal waves is visible, while the axial rigid body mode
resonance is very damped and is not visible. The fact that the power spectrum is similar
to the frequency response of out-of-plane displacement suggests that the power
transmission to the receiver is due mainly to the out-of-plane velocities and forces in this
case.

In Figure 9 is shown the power transmission to the receiver and the contribution of each
degree of freedom to the power transmission, this confirms that the out-of-plane
displacement is by far the most important component in this case, as expected. The axial
power is almost equal to the total power transmitted to the receiver in this case (in Figure 9
the thick line, representing total power, hides the thin line representing the axial component

Figure 8. The power input into the source (.......) and transmitted to an infinite plate ( ) by an axial
primary force.
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Figure 9. The power transmitted to an infinite plate by an axial primary force. , Total power; ——, axial
power (coincident with ); ........, angular power; – · – · –, transverse power.

of power). The angular component of power is much lower than the axial power
component transmitted to the receiver but becomes more important as the frequency
increases. This agrees with other research [18–22] into the power transmitted to a structure
by a force or by a moment. Finally, the transverse component of power transmitted to
the receiver is very small compared with the two other components in this case.

The second example considered is for a combined primary excitation acting on the same
structure. In Figure 10 is shown the total power input and transmitted to the receiver by
the primary source and in Figure 11 is shown the power transmission to the receiver
associated with the three degrees of freedom of the system. The three resonances of the
rigid body modes are hidden by a single flat peak at around 7 Hz. In Figure 11 it is shown
that the total power transmission to the receiver is to a great extent still due to the axial
component. The angular component of power is more important in this case than in the
previous one, but is still about 20 dB lower than the axial power component. The
transverse component of power transmitted to the receiver is still very small at low
frequencies, even in this case in which the source is excited by a transverse force. At higher

Figure 10. The power input into the source (.......) and transmitted to an infinite plate ( ) by a combined
primary excitation.
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Figure 11. The power transmitted to an infinite plate by a combined primary excitation. , Total power;
——, axial power (coincident with ); ......., angular power; – · – · –, transverse power.

frequencies, however, the transverse component of power does have a similar magnitude
to the angular power component, and the flexural isolator resonance at about 600 Hz
appears to excite the in-plane motion particularly effectively.

5.2.     

The study of power transmission by an isolator to a finite receiver has been investigated
by modelling the receiver structure as a simply supported plate. A 5 mm thick aluminium
rectangular plate of dimensions 1 m×1·5 m has been considered. The natural frequencies
of the first 126 flexural modes of this plate are listed in Table 3, and all of them have been
taken into account in the modal summation for the response. The first modes of in-plane
longitudinal or shear waves occur at a frequency higher than 1000 Hz; in the frequency
range examined in this paper, the plate thus acts as a spring when excited by in-plane
forces. The flexural modes of the finite plate will be called ‘‘receiver modes’’ and will refer

y
T 3

Natural frequencies of the flexural modes of plate 5 mm thick (Hz)

n:m 1 2 3 4 5 6 7 8 9

1 17·8 54·7 116·3 202·5 313·4 448·9 609·0 793·7 1003·1
2 34·2 71·2 132·7 219·0 329·8 465·3 625·4 810·1 1019·5
3 61·6 98·5 160·1 246·3 357·2 492·7 652·8 837·5 1046·9
4 99·9 136·8 198·4 284·6 395·5 531·0 691·1 875·8 1085·2
5 149·2 186·1 247·7 333·9 444·8 580·2 740·4 925·1 1134·5
6 209·4 246·3 307·9 394·1 505·0 640·5 800·6 985·3 1194·7
7 280·5 317·5 379·1 465·3 576·1 711·6 871·7 1065·5 1265·9
8 362·6 399·6 461·2 547·4 658·2 793·7 953·8 1138·6 1348·0
9 455·7 492·7 554·2 640·5 751·3 886·8 1046·9 1231·6 1441·0

10 559·7 596·7 658·2 744·5 855·3 990·8 1150·9 1335·6 1545·0
11 674·7 711·6 773·2 859·4 970·3 1105·7 1265·9 1450·6 1660·0
12 800·6 837·5 899·1 985·3 1096·2 1231·6 1391·8 1576·5 1785·9
13 937·4 974·4 1035·9 1122·2 1233·0 1368·5 1528·6 1713·3 1922·7
14 1085·2 1122·2 1183·7 1270·0 1380·8 1516·3 1676·4 1861·1 2070·5
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Figure 12. The power input into the source (.......) and transmitted to a finite plate (——) by an axial
primary force.

only to flexural vibration of the plate. The simulations refer to a lightly damped plate since
the loss factor was assumed to be h=0·02.

The response of the system to an axial force exciting the source is considered first. In
Figure 12 is shown the power input into the system and the power transmitted to the
receiver by the primary source. A Comparison of this plot with Figure 8 shows the main
differences between a finite receiver and an infinite receiver.

The resonance of the axial rigid body mode is now characterized by a sharp peak at
about 4 Hz since the damping effect of the receiving structure is now less effective than
in an infinite plate. The shift in frequency (from 6 Hz on an infinite plate) is due to the
finite plate receiver reacting elastically to out-of-plane displacements† and so the axial
normal mode is now due to the mount stiffness kam in series with the receiver stiffness kar .
Since the mount stiffness of the isolator considered here is the same as those considered
before, the total stiffness of the mounts and the receiver connected in series
(ka = kamkar /kam + kar ) is smaller than the stiffness of the mounts alone and then the natural
frequency of the axial rigid body mode becomes smaller. At frequencies above the rigid
body resonances a large number of peaks characterize the frequency distribution of the
power transmitted and the three isolator resonances are now mixed with the resonances
of the receiver plate.

Upon comparing Figures 8 and 12 at frequencies above the band of the resonances of
the isolator rigid body modes, it is interesting to note that the frequency distribution of
the power transmitted to an infinite plate can be considered as the mean value of the power
transmitted to a finite plate. The results shown by Pinnington and White in reference [16]
can thus be extended to a multi-mount and a multi-directional vibration transmission.

In Figure 13 is shown the power transmission to the receiver through each degree of
freedom. The axial power is again almost equal to the total power transmitted to the
receiver. In this case, however, the in-plane and angular components of the power are
almost equal at low frequencies, although the angular component again becomes more
important as the frequency rises.

† The input mobility for out-of-plane velocity and force on a finite plate (equation (C30)) is a complex number
with a positive imaginary part indicating a stiffness reaction, whereas the input mobility for out-of-plane velocity
and force on an infinite plate (equation (C7)) is a real number indicating only a dissipative effect.
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Figure 13. The power transmitted to a finite plate by an axial primary force. , Total power; ——, axial
power (coincident with ); ......., angular power, – · – · –, transverse power.

The second case considered is shown in Figures 14 and 15 and is for the example of
a combined primary excitation on the source. In this case all three resonances of the rigid
body modes are present. The resonance frequencies of the transverse and pitching rigid
body modes are also slightly different from those obtained with the infinite receiver plate.
The reason for this is again related to the stiffness reaction of the plate. In Figure 15 is
shown the power transmission to the receiver through each degree of freedom. In this case
the in-plane component of power is even less significant than for axial forcing. The angular
power component is particularly significant now, being only about 20 dB lower than the
axial power component at higher frequencies.

The plots presented in this and previous sections give a detailed ‘‘picture’’ of the main
phenomena in the power transmission to a finite or infinite receiver, respectively. The
overall outcome of such results can be summarized by considering the ‘‘efficiency ratio’’
of power transmission. This parameter was used by Pan et al. [28] and Jenkins et al. [39]
to describe the vibration of an isolating system similar to the one considered here. The
efficiency ratio can be defined as the ratio of the power transmitted to the receiver by an

Figure 14. The power input into the source (.......) and transmitted to a finite plate (——) by a combined
primary excitation.
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Figure 15. The power transmitted to a finite plate by a combined primary excitation. , Total power; ——,
axial power (coincident with ); ......., angular power; – · – · –, transverse power.

isolator with rigid mounts and the power transmitted to the receiver by an isolator with
a flexible mounts:

E=Pt (rigid mounts)/Pt (flexible mounts). (38)

When the efficiency ratio is lower than one, the isolation system performs poorly and a
larger quantity of power is transmitted to the receiver than in the case of a rigid link of
the source to the receiver.

In Figure 16 is shown the frequency distribution of the efficiency ratio considering the
isolator with an infinite or a finite receiver plate. This plot clearly shows that the modal
behaviour of the finite receiver plate greatly affects the isolation performance which can
be poor at receiver resonance frequencies below 200 Hz, while in the case of an infinite
plate the isolation system gives an efficiency ratio greater than one for all frequencies above
20 Hz.

Figure 16. The efficiency of power transmission when an infinite plate ( ) or a finite plate (——) is
considered and the combined primary excitation acts on the source.
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7. CONCLUSIONS

This study is part of an investigation of the effectiveness of active mounts. In this paper
a preparatory study has been presented of the mechanism of structural vibration
transmission of only a passive isolator.

The system considered comprised a source, free to vibrate in various ways, connected
to a flexible receiver by several distributed active mounts. Particular attention was devoted
to the study of the multi-mount and multi-directional vibration transmission to a flexible
body through distributed passive mounts.

The system was modelled by using a matrix approach with three components: the source,
the mounting system and the receiver. The dynamics of each component have been
described by using input and transfer mobility terms. The source was modelled as a block
mass. The active mounts were modelled as a ring of rubber reacting to axial and transverse
displacements and to rotations, and had two opposite axial control forces acting at the
mounts ends. Finally, a thin plate receiver in which in-plane longitudinal and shear waves
and out-of-plane flexural waves can propagate was considered. The receiver plate was
considered to be either infinite, or finite with simply supported boundary conditions at the
edges.

A detailed formulation for the mobility or impedance terms for the source, for the
mounts and for the receiver is reported in the Appendices. Particular attention has been
devoted to the notation used, since even though many of the required terms were derived
some time ago, it is still difficult to find references in which a complete and consistent set
of mobility or impedance terms is given.

The vibration transmission to the receiver has been quantified by using structural
power since this single parameter can be used to describe the dynamics of the
system in a consistent manner. The power transmitted to the receiver does not only
give a measure of the vibration in the receiving structure but also gives the estimate
of noise radiation that in many applications is the real target of the vibration
isolation.

The simulations showed that when considering an infinite or a finite receiver plate the
frequency distribution of the power transmission is characterized by three peaks at low
frequencies related to the natural frequencies of the transverse, axial and pitch rigid body
modes of the isolator, all of which are capable of transmitting a large quantity of power
to the receiver. At higher frequencies, peaks due to the resonances of the distributed
mounts occur, but these peaks are mixed up with many others when a finite receiver is
considered since the normal modes of the receiver also strongly affect the power
transmission.

It has been shown that power transmission occurs mainly through the axial velocities
and force components and the power transmitted through angular velocities and moments
increases as the frequency rises. On the other hand, the power transmitted through
transverse, in-plane, displacements is very small and could be neglected for a purely passive
isolator. We shall see, however, that the in-plane displacements become more important
when active control is considered [4].

Comparing the results obtained for the infinite and the finite plate receiver
shows that the total power transmitted to the infinite plate can be considered as
the mean value of the total power transmitted to a finite receiver plate. This
result agrees with the statement of similarity between infinite and finite
structures in the vibration isolation presented by other authors [40] and
shows that it can be extended to multi-mount and to multi-degree-of-freedom
isolators.
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APPENDIX A: SOURCE DYNAMICS

Practical applications of complete isolating systems often involve systems having a
source of vibration that can be modelled as a rigid mass on which act external forces and
moments that represent the source excitation. When more than one mount is attached to
the source then the mobility matrices of such subsystems become quite involved. In this
Appendix, the matrix formulation is derived for a source modelled as a rigid mass free
to vibrate in the y–z plane and excited by forces and a moment acting in the same plane.
Two mounts, reacting to axial (z-direction), and transverse (y-direction) displacements and
to rotation (ux -direction), are connected to the source. As shown in Figure A1, the primary
excitation is divided into three components acting on the centre of gravity of the mass
(NyG , NzG , MxG ); Figure A1 also shows the displacement and force parameters for the two
junctions where the source is connected to the mounts.

With reference to the source vectors notation introduced in section 2 for this particular
case, the source velocity and force vectors are given by the following set of parameters:

v̇s1 Nys1

ẇs1 Nzs1

u� xs1 Mxs1g
G

G

G

G
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h
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G
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G
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h
G

G

G
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J

j

vs = v̇s2
fs = Nys2

. (A1, A2)

ẇs2 Nzs2

u� xs2 Mxs2

To describe the block mass dynamics with a matrix approach it is convenient to use two
new vectors giving the linear–angular velocities and the force–moment parameters at the
block mass centre of gravity position, as shown in Figure A1:

vG = 8 v̇G

ẇG

u� xG9, fG = 8NyG

NzG

MxG9. (A3, A4)

Figure A1. The scheme with the junction parameters of the complete isolating system.
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With the block mass considered as a rigid body, for small oscillations these two vectors are
related to the source vectors by

vs =VsvG , fG =Fs fs , (A5, A6)

where

1 0 0

0 1 (l1 −fe )/2

0 0 1
G
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G
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G
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k

G
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G
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l

Vs = 1 0 0
, (A7)

0 1 −(l1 −fe )/2

0 0 1

Fs = & 1
0

l2/2

0
1

(l1 −fe )/2

0
0
1

1
0

l2/2

0
1

−(l1 −fe )/2

0
0
1', (A8)

in which l1 and l2 are the dimensions of the block mass and fe is the diameter of the
suspension cross-section. With reference to the centre of gravity parameters and for a
motion with time dependence of the form exp(jvt), the dynamic equilibrium principle
[29, 30] can be used to obtain the equations

NyG +Fyp =mv̈G =jvmv̇G , NzG +Fzp =mẅG =jvmẇG ,

MxG +Txp = IGu� xG =jvIGu� xG , (A9)

where Fzp , Fyp and Txp are the three components of the primary source of vibration, and
m and IG represent respectively the source mass and the source moment of inertia with
respect to the x-axis. These three equations can be summarized in matrix form as

fG =LGqp +HGvG , (A10)

so that

vG =H−1
G fG −H−1

G LGqp , (A11)

where
qp = 8Fyp

Fzp

Txp9 (A12)

is the primary excitation vector and the two matrices LG and HG have the forms

LG = &−1
0
0

0
−1
0

0
0

−1', HG = &jvm
0
0

0
jvm
0

0
0

jvIG'. (A13, A14)

Then, by using equations (A5) and (A6), it is possible to express the dynamics of the system
in terms of the junction parameters and the primary excitation vector as shown by equation
(9) where, in this case, Ms1 and Ms2 are given by

Ms1 =VsH−1
G Fs , Ms2 =−VsH−1

G LG . (A15, A16)
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This result can be extended to a rigid mass free to oscillate into the space and connected
with several mounts by using the same approach.

APPENDIX B: MOUNTING SYSTEM DYNAMICS

The mounts of an isolator system can be studied as one dimensional systems composed
of several elements. An active mount is composed of two principal parts: a spring for the
passive isolation and the actuator to supply the secondary force. Usually the spring is made
up of a ring of rubber while the actuator is a more complicated device that could be
designed in several ways [2]. These two components could be connected in parallel or series
in such a way to give a soft or hard mount [1, 39].

A general multi-degree-of-freedom mount reacts to normal and transverse (in two
cross-directions) forces and also reacts to bending moments (in two cross-directions) and
to a torsional moment. This paper is concerned with a system that can vibrate in a plane
and then excite the mounts with normal and transverse forces and a bending moment; these
excitations produce longitudinal and flexural waves propagating in the one-dimensional
mount.

In this Appendix the impedance matrices of a pair of mounts reacting to an axial force
"Nzm ), to a transverse force (Nym ) and to a bending moment (Mxm ) are given. The mounts
have an actuator which is able to act only in the axial direction. The mounts are considered
as a flexible continuous system, having a passive behaviour given by a ring of rubber. The
control actuator action is modelled as a pair of opposite forces (Fs ) applied to the ends
of the mounts, and all the passive effects of the actuating device are neglected.

With reference to the matrix formulation introduced in section 2, the dynamics of the
mounting system are given by equation (11). In terms of the notation of Figure A1, the
velocity and force vectors of the mounts are given by

vm11 fm11

vm12 fm12

vm =g
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F

f
vm21

h
G

G

J

j

, fs =g
G

G
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f
fm21

h
G

G

J

j

, (B1, B2)

vm22 fm22

where, for example, vm11 = {v̇m11 ẇm11 u� xm11}T and fm11 = {Nym11 Nzm11 Mxm11}T. With the two
mounts assumed to be identical, the impedance matrix Zml of equation (11) is given by

Z11 0 Z12 0
0 Z11 0 Z12

Zm1 =G
G

G

K

k
Z21 0 Z22 0

G
G

G

L

l

, (B3)

0 Z21 0 Z22

where [37, 38, 41]
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in which E is the Young’s modulus of elasticity, A and Ix are, respectively, the area and
the moment of inertia for the cross-section of the mount (with reference to the x-axis),
and kl and kf are, respectively, the wavenumbers of the quasi-longitudinal and flexural
waves in a beam. The damping effect can be introduced by considering a complex
wavenumber [38]. The other terms are given by the following expressions [41]:

l1 = cos kl h, l2 = sin kl h, (B8, B9)

81 = 1
2 [cosh kf h+cos kf h], 83 = 1

2 [cosh kf h−cos kf h], (B10, B11)

82 = 1
2 [sinh kf h+sin kf h], 84 = 1

2 [sinh kf h−sin kf h], (B12, B13)

in which h is the height of the actuator for a single mount. The impedance matrix Zm2 and
the control excitation vector in equation (11) have the forms
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G
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G
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where

T1 = &1 0
0 0
0 0', T2 = &0 1

0 0
0 0'. (B16, B17)
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The procedure for determining the impedance matrices, presented above, can be extended
to a system having several mounts; moreover, the expression for the impedance matrix Zml

can be enlarged to the remaining degrees of freedom (u, uy , uz ) in such a way as to include
the flexural vibration in the x–z plane and the torsional vibration. The expressions for the
point and transfer mobilities for the flexural vibration in the x–z plane are the same as
those found in equations (B4)–(B7) for the flexural vibration in the y–z plane, except that
the moment of inertia must refer to the y-axis (Iy ). Also, the point and transfer impedance
terms for the torsional vibration have the same forms as those found for the longitudinal
wave but must refer to the torsional stiffness of the beam [41].

APPENDIX C: RECEIVER DYNAMICS

The receiving structure, on which the source of vibration is mounted via a mounting
system, can be a general type of continuous flexible structure. For example, the receiving
structure of isolators for the engines of cars, ships or aeroplanes is generally a stiffened
plate or a stiffened shell, while the structure for isolators for electric motors installed on
domestic machines is usually a case.

In this Appendix a simple receiver system is considered. The dynamics of a flat infinite
or finite plate are studied, when excited by out-of-plane and in-plane forces and by bending
moments. The in-plane forces are assumed to act in the middle of the plate cross-section
and thus generate only in-plane longitudinal waves and in-plane shear (transverse) waves,
while the out-of-plane force and the flexural moment generate only out-of-plane flexural
waves. Longitudinal and shear (transverse) waves are characterized by in-plane
displacements u(x, y) and v(x, y), while the flexural wave is characterized by out-of-plane
displacements w(x, y) and plate cross-section rotations ux (x, y) and uy (x, y). The
formulation reported in this Appendix does not include consideration of the action of a
torsional moment which generates shear (transverse) waves. The dynamics of the receiver
system is given by equation (10). As shown in Figure 2, the complete isolating system
studied in this paper is characterized by a rigid mass connected to the receiver plate
through two mounts. The junctions connecting the mounts of the plate and the flanking
excitation forces and moment are placed along a line parallel to the y-axis at x= lx /2. As
shown in Figure A1, the two mounts excite the plate with a pair of out-of-plane forces
Nzrl and Nzr2, with a pair of in-plane forces Nyrl and Nyr2 and with a pair of moments Mxrl

and Mxr2. The flanking excitation consists of an out-of-plane force Fzf , an in-plane force
Fyf and a torque in the y–z plane, Txf . Therefore, the formulation of the two mobility
matrices is simplified since only some of the degrees of freedom at a fixed position of the
receiver plate are considered. In fact, with reference to the notation of Figure A1, the
receiver velocity, force vector and flanking excitation vector used in equation (10) are
given, respectively, by
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(C1–C3)

ẇr2 Nzr2
Txf

u� xr2 Mxr2

Because only the in-plane force (Nyr ) produces in-plane vibration (vr ) while only the
out-of-plane force (Nzr ) and the moment (Mxr ) produce out-of-plane (wr ) and angular (uxr )
vibration, the two mobility matrices Mr1 and Mr2 of equation (10) are given by
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0 m2p
wNz

m2p
wMx

0 m2p
uxNz

m2p
uxMx

where mjj indicates a point mobility term at the jth junction while the term mjk indicates
a transfer mobility term between junction j (where the velocity is evaluated) and junction
k (where the excitation is acting). It should be said that equation (C4) refers to any type
of plate and when the infinite plate case is considered the point mobility terms mjj

uxNz
and

mjj
wMx

are zero.
The next two sections give general mobility equations for either an infinite or a finite

plate. With these formulae it is then possible to derive the mobilities of the two matrices
Mr1 and Mr2.

One of the peculiarities of the formulation reported in the two following sections is the
notation used, which has been carefully planned with reference to the matrix model
discussed in section 2. In this way the equations presented could be used in any model
having plate elements. In Figure C1 is shown the notation used for the in-plane
displacements (u and v) and the in-plane forces (Nx and Ny ) at two generic points of a plate,
while in Figure C2 is shown the notation at two generic points of a plate used for the
out-of-plane displacement (w), for the rotation in a general direction in the x–y plane (ud ),
for the out-of-plane force (Nz ) and for the moment in a general direction in the x–y plane
(Md ). At each of these two points, a local system of reference composed of a right-handed
triple of vectors (x, y, z) is defined. The formulation of the transfer mobility terms in an

Figure C1. The notation used for the in-plane forces and for the in-plane displacements for two generic points
of the receiver plate.
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Figure C2. The notation used for the out-of-plane force and moment and for the out-of-plane displacements
and rotations for two generic points of the receiver plate.

infinite plate requires knowledge of the angle a, which is defined as the angle between the
x-axis and the segment r joining the two points examined. This angle is defined as positive
with reference to the right-handed screw rule. For the mobilities involving angular
velocities or flexural moments of a second angle b is used and this is defined as the angle
between the x-axis and the segment d, as shown in Figure C2.

C1.  

In the formulation below, the point mobility for in-plane or out-of-plane forces, and
for the moments, contains the local indenter effect, which is the cause of the imaginary
parts in the mobility; when the transfer mobilities are considered, however, these local
effects can be ignored, and the imaginary parts of the mobilities are due only to the wave
propagating effects. The input mobility terms mjj are considered first with reference to
position 1. The in-plane velocities u̇1 and v̇1 are related respectively to the in-plane forces
Nxl and Nyl by two mobility terms, one for the longitudinal wave and for the shear
(transverse) wave [42, 43]

m11
uNx =

u̇r1

Nxr1
=m11

vNy =
v̇r1

Nyr1
=

v

8D $1+
j
p

ln 0vl

v1
2

%+
v

8S $1+
j
p

ln 0vs

v1
2

%, (C6)

where D= sE/1− n2 and S= sG are, respectively, the longitudinal and shear stiffness, s
is the plate thickness, E is the Young’s modulus of elasticity, G is the shear modulus of
elasticity and n is the Poisson ratio. vl = pzD/4rsf2

e , vs = pzS/4rsf2
e , r is the density

and fe is the diameter of the indenter. The out-of-plane force Nzl generates a flexural wave
that at position 1 is characterized only by transverse ẇ1 velocity. Therefore, the point
mobility associated with this excitation is [38]

m11
wNz = ẇ1/Nz1 =v/8Bk2

f , (C7)

where B=Es3/12(1− n2) is the flexural stiffness for the plate and kf is the wavenumber
of flexural waves in the plate. Also, the torques Mxl and Myl generate a flexural wave that
at position 1 is characterized only by plate angular velocities that are, respectively, u� x1 and
u� y1. The two mobilities are then given by [44, 45]

m11
uxMx =

u� x1

Mx1
=m11

uyMy =
u� y1

My1
=

v

8B(1+L) $1+ j
4
p

ln kf fe −
j8L

p(1− n) 0 s
pfe1

2

%, (C8)
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where L is a parameter which tends to unity for large fe /s [9]. The transfer mobilities are
now examined for the particular case on which the velocities are evaluated at position 2
while the forces or moments are applied at position 1. With reference to the notation
introduced in Figure C1, the in-plane forces Nx2 or Ny2 produce axial and shear waves that
propagate with a typical dipole velocity distribution. The transfer mobilities in polar
co-ordinates (r, t) for the in-plane Ny2 excitation are given by [46]:

M21
rNy =

ṙ2

Ny1
=

v

4D $H(2)
0 (kl r)−

1
kl r

H(2)
1 (kl r)% sin a+

v

4S $ 1
kt r

H(2)
1 (kt r)% sin a, (C9)

M21
tNy =

t� 2
Ny1

=
v

4D $ 1
kl r

H(2)
1 (kl r)% cos a+

v

4S $H(2)
0 (kt r)+

1
kt r

H(2)
1 (kt r)% cos a, (C10)

where kl and kt are, respectively, the wavenumbers of quasi-longitudinal waves and shear
waves in the plate. H(2)

i is the second kind of Hankel function of the ith order. With these
two equations it is then possible to derive the two mobility terms m21

uNy and m21
vNy relating

the Nyl in-plane force to the in-plane u̇2 and v̇2 velocities. A similar procedure can be used
to derive the two mobility terms m21

uNx and m21
vNx relating the Nxl in-plane force to the in-plane

u̇2 and v̇2 velocities respectively. If a bending moment Mdl and an angular velocity u� d2 with
general orientation, defined respectively by the angles b1 and b2, are considered, the
following four transfer mobility terms can be derived [11, 47, 48]:

M21
wNz =

ẇ2

Nzl
=

v

8Bk2
f $H(2)

0 (kf r)− j
2
p

K0(kf r)%, (C11)

M21
wMd =

ẇ2

Md1
=

v

8Bkf $H(2)
1 (kf r)− j

2
p

K1(kf r)% cos o1, (C12)

M21
udNd =

u� d2

Nz1
=

v

8Bkf $H(2)
1 (kf r)− j

2
p

K1(kf r)% cos o2, (C13)

M21
udMd =

u� d2

Md1
=

v

8B 6$H(2)
0 (kf r)−

1
kf r

H(2)
1 (kf r)+ j

2
p 0K0(kf r)+

1
kr

K1(kf r)1%
×cos (o1 − d2) cos o1 −

1
kf r $H(2)

1 (kf r)− j
2
p

K1(kf r)% sin (o1 − d2) sin o17. (C14)

Here d1 = b2 − b1, d2 = b1 − b2, o1 = a1 − b1, o2 = a2 − b2, H(2)
i is the second kind of Hankel

function of the ith order and Ki is the second kind of modified Bessel function of the ith
order. If the moment and the angular velocity parameters are aligned, then b1 = a1 or
b1 = a1 + p and b2 = a2 or b2 = a2 + p. Therefore equation (C14) assumes the following
simplified form [48]:

Y21
udMd =

u� d2

Md1
=

v

8B $H(2)
0 (kf r)−

1
kf r

H(2)
1 (kf r)+ j

2
p 0K0(kf r)+

1
Kf r

K1(kf r)1%. (C15)
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By using equation (C12) it is possible to derive the expressions for the mobility terms
m21

wMx
and m21

wMy
, while from equation (C13) the mobility terms m21

uxNz and m21
uyNz can be derived.

Finally, by using equation (C14) the four mobility terms m21
uxMx , m21

uyMx , m21
uxMy and m21

uyMy can
be evaluated.

C.2.  

The notation used is the same as shown in Figures C1 and C2, and a main system of
reference is considered at the left bottom corner of the plate, as shown in Figure 2. The
simply supported boundary condition imposes the following restraints at the edges of the
plate:

x=0 and x= lx , v=w=0, 12v/1x2 = 12w/1x2 =0, 1u/1x=0,

y=0 and y= ly , u=w=0, 12u/1x2 = 12w/1x2 =0, 1v/1x=0.

When a finite structure is considered, the formulae for the point and transfer mobilities
have the same form. Therefore, the following equations are given for transfer mobilities
but can equally be applied for point mobilities. The in-plane velocities u̇2 and v̇2 relate,
respectively, to the in-plane forces Nxl and Nyl via two mobility terms, one for the
longitudinal wave and one for the shear (transverse) wave [49]:

m21
uNx =

u̇2

Nx1
= jv s

a

m=0

s
a

n=0

l(x)
m,n (x2, y2)l(x)

m,n (x1, y1)
L[v2

lm,n (1+ jh)−v2]
+ jv s

a

m=0

s
a

n=0

l(x)
m,n (x2, y2)L(x)

m,n (x1, y1)
L[v2

sm,n (1+ jh)−v2]
,

(C16)

m21
uNy =

u� 2
Ny1

= jv s
a

m=0

s
a

n=0

l(x)
m,n (x2, y2)l(y)

m,n (x1, y1)
L[v2

lm,n (1+ jh)−v2]
+ jv s

a

m=0

s
a

n=0

l(x)
m,n (x2, y2)l(y)

m,n (x1, y1)
L[v2

sm,n (1+ jh)−v2]
,

(C17)

m21
vNx =

v̇2

Nx1
= jv s

a

m=0

s
a

n=0

l(y)
m,n (x2, y2)l(x)

m,n (x1, y1)
L[v2

lm,n (1+ jh)−v2]
+ jv s

a

m=0

s
a

n=0

l(y)
m,n (x2, y2)l(x)

m,n (x1, y1)
L[v2

sm,n (1+ jh)−v2]
,

(C18)

m21
vNy =

v̇2

Ny1
= jv s

a

m=1

s
a

n=1

l(y)
m,n (x2, y2)l(y)

l,m (x1, y1)
L[v2

lm,n (1+ jh)−v2]
+ jv s

a

m=0

s
a

n=0

l(y)
m,n (x2, y2)l(y)

l,m (x1, y1)
L[v2

sm,n (1+ jh)−v2]
.

(C19)

Here L= rslxly /2 is the modal mass, vlm,n and vsm,n are the m,nth natural frequencies
associated, respectively, with the longitudinal and shear waves propagating on the plate,
h is the loss factor and l(x)

m,n , l(y)
m,n are the m,nth eigenfunctions [50]:

vlm,n =X E
r(1− n2) $0mp

lx 1
2

+0np

ly 1
2

%, vsm,n =XG
r $0mp

lx 1
2

+0np

ly 1
2

%, (C20, C21)

l(x)
m,n (x, y)= cos (mpx/lx ) sin (npy/ly ), l(y)

m,n (x, y)= sin (mpx/lx ) cos (npy/ly ),

(C22, C23)

with m=0, 1, 2, . . . and n=0, 1, 2, . . . . The out-of-plane force Nzl and the flexural
moments Mxl and Myl at position 1 generate flexural waves that at position 2 are
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characterized by both transverse ẇ2 velocity and angular u� x2 and u� y2 velocities. Therefore,
the point mobility associated with this excitation are [20, 38, 49]

m21
wMx =

ẇ2

Mx1
= jv s

a

m=1

s
a

n=1

8m,n (x2, y2)c(x)
m,n (x1, y1)

L[v2
fm,n (1+ jh)−v2]

, (C24)

m21
wMy =

ẇ2

My1
= jv s

a

m=1

s
a

n=1

8m,n (x2, y2)c(y)
m,n (x1, y1)

L[v2
fm,n (1+ jh)−v2 , (C25)

m21
uxMx =

u� x2

Mx1
= jv s

a

m=1

s
a

n=1

c(x)
m,n (x2, y2)c(x)

m,n (x1, y1)
L[v2

fm,n (1+ jh)−v2]
, (C26)

m21
uxMy =

u� x2

My1
= jv s

a

m=1

s
a

n=1

c(x)
m,n (x2, y2)c(y)

m,n (x1, y1)
L[v2

fm,n (1+ jh)−v2]
, (C27)

m21
uyMy =

u� y2

My1
= jv s

a

m=1

s
a

n=1

c(y)
m,n (x2, y2)c(y)

m,n (x1, y1)
L[v2

fm,n (1+ jh)−v2]
, (C28)

m21
uyMx =

u� y2

Mx1
= jv s

a

m=1

s
a

n=1

c(y)
m,n (x2, y2)c(x)

m,n (x1, y1)
L[v2

fm,n (1+ jh)−v2]
, (C29)

m21
uxNz =

u� x2

Nz1
= jv s

a

m=1

s
a

n=1

c(x)
m,n (x2, y2)8m,n (x1, y1)

L[v2
fm,n (1+ jh)−v2]

, (C30)

m21
uyNz =

u� y2

Nz1
= jv s

a

m=1

s
a

n=1

c(y)
m,n (x2, y2)8m,n (x1, y1)

L[v2
fm,n (1+ jh)−v2]

, (C31)

m21
wNz =

ẇ2

Nz1
= jv s

a

m=1

s
a

n=1

8m,n (x2, y2)8m,n (x1, y1)
L[v2

fm,n (1+ jh)−v2]
, (C32)

where L= rslxly /4 is the modal mass, vfm,n is the m,nth natural frequency due to the
flexural wave propagating on the plate, h is the loss factor, and 8m,n , c(x)

m,n and c(y)
m,n are the

m,nth eigenfunctions [38]:

vfm,n =X Es2

12r(1− n2) $0mp

lx 1
2

+0np

ly 1
2

%, 8m,n (x, y)= sin
mpx
lx

sin
npy
ly

, (C33, C39)

c(x)
m,n (x, y)=

np

ly
sin

mpx
lx

cos
npy
ly

, c(y)
m,n (x, y)=−

mp

lx
cos

mpx
lx

sin
npy
ly

. (C35, C36)

APPENDIX D: TRANSFORMATION MATRIX

In the model presented in section 2 two sets of vector parameters are considered: the
source–receiver velocity or force vectors (vsr fsr ) defined by equations (16) and (17) and the
mounting system velocity or force vectors (vm fm ) defined by equations (7) and (8). These
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two sets of vectors are related to each other by the two following equations ensuring the
equilibrium and continuity principles at the system junctions:

vm =Tvsr , fm =−Tfsr , (D1)

The matrix T, called the transformation matrix, gives the relations between
the source–receiver parameters and the mounting system parameters. Depending on
the characteristics of the three members of the system, this matrix assumes a different
form.

In this Appendix the transformation matrix T is presented for the system studied in this
paper. As shown in Figure A1, when the mounts are not vertically oriented the mounting
system vector parameters are rotated with reference to the source–receiver vector
parameters, then the transformation matrix T has to relate all the ‘‘linear parameters’’†
of the mounting system vectors associated to a particular junction j with each ‘‘linear
parameter’’ of the source receiver vectors of the same junction j. Another condition
that the transformation matrix has to consider is the fact that the in-plane junction
forces (Nyj ) acting on the receiver plate act on the surface of the plate and then
generate a moment acting on the receiver plate given by Nyjs/2. Therefore, the
transformation matrix has to relate the projection on the y-axes of the mounting system
vectors ‘‘linear parameters’’ associated with a particular receiver junction jr to the angular
parameter (rotation or moment) associated with the same junction jr of the source receiver
vector.

Upon considering these two types of conditions the transformation matrix is found to
be given by

Tls 0 0 0

0 Trs 0 0
T=G

G

G

K

k
0 0 Tlr 0

G
G

G

L

l

, (D2)

0 0 0 Trr

where

Tls = & cos b

−sin b

0

sin b

cos b

0

0
0
1', Trs = &cos b

sin b

0

−sin b

cos b

0

0
0
1', (D3, D4)

Tlr = & cos b

−sin b

−(s/2) cos b

sin b

cos b

−(s/2) sin b

0
0
1', Trr = & cos b

sin b

−(s/2) cos b

−sin b

cos b

(s/2) sin b

0
0
1',

(D5, D6)

where b is the mount inclination, s is the thickness of the plate and 0 is the 3×3 zero
matrix.

‡ The linear parameters are considered to be the junction displacements wj and vj and the junction forces Nj

and Qj .


