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1. 

It is well known [1], that at a free side, e.g., x=0, of a rectangular plate 0E xE a,
0E yE b, −h/2E zE h/2, the bending moment Mxc , the twisting moment
Hc(Hc =−Mxy in the notation of reference [1]) and the shear force Qxc of a classic plate
theory solution cannot satisfy the three Poisson conditions, Mxc =0, Hc =0 and Qxc =0,
but instead of them the two Kirchhoff conditions

Mxc =0, Vx =Qxc + 1Hc/1y=0, (1a, b)

where Vx is the Kirchhoff shear force, are used at the edge. The condition (1b) was
originally obtained from the variational equation; later it was confirmed by the Kelvin-Tait
transformation [2] and, recently, on the basis of the reciprocity theorem [3]. The
transformation of Hc and Qxc into Vx is formally accompanied by the appearance of
shearing forces of magnitudes of Hc concentrated at the corner points x=0, y=0 and
x=0, y= b. A recent discussion of the classic theory of thin plates, reviewed in reference
[4], showed the lack of a generally accepted opinion as to whether the concentrated shear
forces are real or imaginary.

To clarify this question, an asymptotic analysis of the exact shear edge effect solution
near a free side of a rectangular isotropic linear elastic plate is carried out in what follows.
One thus obtains an explicit asymptotic distribution of the shear stresses in the edge effect
zone and, in particular, a rapid increase of the distributed shear forces acting on the areas
perpendicular to the free side; when an adjacent side is simply supported these show
themselves as the real shear forces concentrated at the corner points.

2.         

The displacements u, v and w in the X-, Y- and Z-directions and the stresses of the exact
shear edge effect solution for the plate are presented in the forms [5]

Gu= s
a

m=0

Zm1cm/1y, Gv=− s
a

m=0

Zm1cm/1x, w=0,

sx =−sy =2 s
a

m=0

Zm1
2cm /1x1y, sz =0,

txy = s
a

m=0

Zm(12cm/1y2 − 12cm/1x2), txz = s
a

m=0

Z'm1cm/1y,
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tyz = − s
a

m=0

Z'm1cm=1x, (2)

where G is the shear modulus, ( )'= 1( )/1z,

Zm =sin (amz), am = p(1+2m)/h, m=0, 1, 2, . . . ,

and the functions cm(x, y) are solutions of the equations

Dcm − a2
mcm =0, (3)

where D is the Laplace operator.
It is assumed that the edge effect near the free side x=0 holds only in the X-direction;

then equation (3) may be written in the following asymptotic form:

12cm/1x2 − a2
mcm =0. (4)

Under this condition the above edge effect solution (2) allows one to satisfy not only the
three boundary conditions at the free side,

Mxc +Mx =0, Hc +H=0, Qxc +Qx =0, (5a–c)

where Mx , H and Qx are the resultants of the stresses (2), but also makes asymptotically
possible the following, more general than (5b), equation,

txyc + txy =0, (6)

where, in accordance with the linear distribution of txyc over z and accounting for equation
(4), one has

txyc =Hcz/I, txy =− s
a

m=0

Zm1
2cm/1x2 =− s

a

m=0

a2
mZmcm , (7)

and I= h3/12. Really, for the asymptotic orders of the displacements and of the stresses
of the edge effect solution, and of the classic plate theory solution, one has

u0 o3, v0 o2, sx =−sy 0 o2, txy 0 o, txz 0 o2, tyz 0 o, (8)

wc 0 1, uc 0 o, vc 0 o, sxc 0 o, syc 0 o, txyc 0 o, txzc 0 o2, tyz 0 o2,

where o= h/max {a, b} and so one can conclude that the displacements u and v and the
stresses sx and sy are small in comparison with uc, vc, sxc and syc, respectively; therefore
the condition (5a) is asymptotically fulfilled independently of the edge effect solution. In
consequences of equations (1b), (2) and (7) and the equalities

�Z'm�= a2
m�Zmz�,

Qx = �txz�= s
a

m=0

�Z'm�1cm/1y= s
a

m=0

a2
mQZmz�1cm =1y=−1�txyz�/1y=−1H/1y,

where � � is an integral over z from −h/2 to h/2, the conditions (5b) and (5c) are also
satisfied:

Hc +H= �(txyc + txy)z�=0, Qxc +Qx =−1(Hc +H)/1y=0.
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Equation (6) allows one to formulate the boundary conditions at the free side x=0 for
the solutions cm of equations (4) as

cm(0, y)=2Hc(0, y)�Zmz�/Iha2
m =48H0(−1)m(ham)−4,

where H0(y)=Hc(0, y), and to write the asymptotic solution of equation (4), the shear
stresses and the shear forces in the following final forms:

cm(x, y)=48H0(−1)m(ham)−4 exp(−amx),

txy =−48H0h−4 s
a

m=0

(−1)ma−2
m exp(−amx) sin amz,

txz =48(1H0/1y)h−4 s
a

m=0

(−1)ma−3
m exp(−amx) cos amz,

tyz =48H0h−4 s
a

m=0

(−1)ma−2
m exp(−amx) cos amz,

Qx = �txz�=96(1H0/1y)h−4 s
a

m=0

a−4
m exp(−amx),

Qy = �tyz�=96H0h−4 s
a

m=0

a−3
m exp(−amx).

Note that in accordance with equations (2) and the asymptotic evaluations (8), the
right-hand parts in the free vibration equations,

1sx/1x+ 1txy/1y+ 1txz/1z= rü, 1txy/1x+ 1sy/1y+ 1tyz/1z= rv̈,

1txz/1x+ 1tyz/1y+ 1sz/1z= rẅ,

where r is the density and (·)= 1( )/1t, are usually negligible; therefore the above
elastostatic edge effect solution in which the time t is a parameter may be also used in the
dynamic problems.

3.             

The shear stress distribution near the free side in the X-direction is illustrated in Table
1, in which values of the dimensionless resulting shear stress t̄ acting upon the plane
y=constant,

t̄= h2z(txyc + txy)2 + t2
yz/6H0,

are presented. One can see that the maximum value t̄max =1 corresponds to the classic
theory magnitude txyc =6H0/h2, which is realized beyond the edge effect zone. Thus,
introduction of the edge effect solution does not lead to an increase of the maximum value
of the shear stresses near the free side; this is given by classic plate theory.
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Equations (1), (2) and (5)–(7) show that at the side x=0 the edge effect shear stress
txz is distributed quadratically over z,

1txz/1z= s
a

m=0

Z0m1cm/1y=− s
a

m=0

a2
mZm1cm/1y= 1txy/1y

=−(z/I)1H0/1y=−(z/I)Qx ;

the distribution of the shear stress tyz (see the column x/h=0 in Table 1) is also close to
the parabolic in z approximation,

t̃yz =3Qy [1− (2z/h)2]/2h,

and for z=0 the difference t̃yz − tyz equals 9·7%. These results are in agreement with the
quadratic distribution of the shear edge effect stresses adopted in improved plate theories,
e.g., in Reissner’s plate theory [6].

Using the equality [7]

s
a

m=0

a−4
m = h4/96,

one can see that the integral R of Qy over x is

R(y, t)=g
a

0

Qydx=H0(y, t).

For the edge effect forces Qy 0 o2, while R0 o3; in the framework of classic plate theory
the forces Qy distributed near the free side x=0 should be regarded as the forces R
concentrated at the side. Thus, introduction of the shear edge effect solution permits one
to eliminate asymptotically both the shear forces Qxc and the twisting moments Hc

remaining in a classic plate theory solution at the free side; however, this off-loading is
accompanied by the appearance of the concentrated shear forces R acting upon the areas
perpendicular to the side.

T 1

The dimensionless resulting shear stress t̄= h2z(txyc + txy)2 + t2
yz/6H0 in the edge effect zone

near the free side x=0

x/h

ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
z/h 0·0 0·4 0·8 1·2 1·6 2·0

0·0 0·742 0·229 0·066 0·019 0·005 0·002
0·05 0·737 0·235 0·111 0·099 0·099 0·100
0·1 0·722 0·254 0·190 0·195 0·198 0·200
0·15 0·697 0·285 0·276 0·292 0·298 0·299
0·2 0·660 0·326 0·365 0·389 0·397 0·399
0·25 0·610 0·376 0·456 0·487 0·496 0·499
0·3 0·547 0·436 0·548 0·585 0·596 0·599
0·35 0·466 0·506 0·642 0·683 0·695 0·699
0·4 0·363 0·584 0·738 0·782 0·795 0·799
0·45 0·226 0·671 0·835 0·882 0·895 0·899
0·5 0·000 0·767 0·934 0·981 0·995 0·998
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If an adjacent side, e.g., y=0, is simply supported, then the distributed edge effect forces
Qy appearing at the supported side may be also regarded as the concentrated force R(0, t)
applied at the corner point x=0, y=0. However, if the adjacent side is clamped, then
at the corner point the twisting moment of classic plate theory and, consequently, the
corresponding corner force, equals zero. If the adjacent side is free, then also Hc =0 at
the corner point and therefore the edge effects near the side x=0 and near the side y=0
may be regarded independently, and the corner force equals zero too. Finally, if each of
the adjacent sides either is simply supported or is clamped, then the edge effects near them
do not arise; consequently, in these cases the concentrated force at the corner point is
imaginary.

4. 

1. The exact elasticity shear edge effect solution near the free side of thin plates
appropriate both in static and in free vibration problems has been presented in an explicit
asymptotic form.

2. The edge effect solution does not change the maximum value of the shear stresses
near the free side of a thin plate; this magnitude is obtained in the scope of classic plate
theory.

3. The asymptotic analysis confirms the parabolic in z distribution of the edge effect
shear stresses txz and tyz .

4. The asymptotic analysis reveals the way of formation of the concentrated corner force
and predicts that in thin plates the concentrated shear force appears only at the corner
point where a free side is adjacent to a simply supported one.
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