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FREE VIBRATION ANALYSIS OF MINDLIN
PLATES WITH UNIFORM ELASTIC EDGE
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Utilizing the superposition method, a solution is obtained for the free vibration
eigenvalues of Mindlin plates resting on uniform lateral elastic edge support. Subsequently,
it is shown how minor modifications to the eigenvalue matrix permit the incorporation of
the additional effects of rotational stiffness into the analysis. Solutions are based on the
Mindlin thick plate theory. Convergence is rapid and eigenvalue curves are plotted for
square plates and plates of aspect ratio 1·5, for various lateral and rotational spring
stiffnesses. Digital results are tabulated in order that other analysts will have reliable data
against which their findings may be compared.
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1. INTRODUCTION

It is well known that while classical rectangular plate edge conditions, referred to as
clamped and simply supported, are easy to formulate mathematically they are rarely fully
achieved in actual practice. This is particularly true of clamped edge conditions, which are
difficult to simulate experimentally, even under laboratory conditions.

For these and other reasons, a considerable amount of research effort has been devoted
in recent years toward exploring the effects of elasticity in edge supports on rectangular
plate free vibration frequencies. While it is not the intent here to present an exhaustive
listing of all related publications a number of publications of immediate interest in the
preparation of the present paper are noted. These include the early publication of
Warburton and Edney [1], a more recent publication by Kim et al. [2], and a sequence
of papers by the present author [3–6]. The first four references above pertain to problems
where the elastic stiffness coefficients are constant (uniform) along any one edge. The latter
two references are more general in that the stiffness coefficients may be made to take on
any desired spacial distribution along any edge.

All of the above publications, and most other related publications, have one
characteristic in common. They deal only with the free vibration of thin isotropic plates.
An exception is the work of Saha et al. [7]. They have examined the effects of lateral and
rotational elastic edge support on thick plates using an energy variational approach. Their
handling of the problem is somewhat complicated since it involves utilizing products of
Timoshenko beam solutions to represent the displacement and cross-sectional rotation
functions. The method is further complicated by the fact that the beam functions are given
rotational and lateral elastic support at each end.

The present paper begins by utilizing Mindlin thick plate theory and the superposition
method to investigate the behaviour of plates resting on uniform lateral elastic edge
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support. Finally, it is shown how minor modifications to the eigenvalue matrix permits
incorporation of the effects of edge rotational elastic support into the analysis. While
attention is focused here on thick plates, it is also known that these effects cannot be
neglected in the study of composite plates, even when they are thin. Composite plates
resting on elastic supports will constitute the subject of a future paper.

The objective of this paper then, is to exploit the superposition method in analysing the
free vibration behaviour of thick rectangular plates resting on uniform elastic edge support.
Specifically, attention is initially focused on plates resting on uniform lateral elastic
support. Subsequently, the effects of rotational elastic support along the edges are analysed
and discussed.

2. MATHEMATICAL PROCEDURE

Accurate analytical type solutions to the problems of interest are obtained by means of
the method of superposition. This method, which was exploited in references [3] through
[6], involving thin plate theory, was also utilized in references [8] and [9] involving Mindlin
theory. In view of the rather extensive description of the method as it applies to Mindlin
theory, in reference [9], a further detailed description is not required here. A brief
description will be provided only, for the sake of completeness.

2.1.    

In the superposition technique a set of judiciously selected boundary driven harmonic
forced vibration solutions (building blocks) are superimposed one-upon-the-other. In
order to investigate the present problem of interest the set of building blocks represented
schematically in Figure 1 are utilized. Slip-shear conditions are imposed along all
non-driven edges. This condition is indicated by two small circles adjacent to the edges.
Slip-shear conditions, as they relate to the Mindlin theory, imply a condition of zero
transverse shear and zero torsional moment along the edge. They also imply a condition
of zero rotation of the plate cross-section about an axis running along the edge at the plate
mid-surface.

One begins by focusing attention on the first building block. It is driven by an imposed
distributed harmonic transverse shear force of circular frequency v. Two connected solid
dots adjacent to the driven edge indicate that edge conditions differ from slip-shear
conditions only in that the transverse shear force is not equal to zero.

Figure 1. Schematic representation of building blocks utilized in theoretical analysis.
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The spacial distribution of the imposed harmonic shear force is expressed in series form
as

Qh =h=1 = s
K

m=1,2

Em cos (m−1)pj. (1)

The governing differential equations based on the Mindlin theory are, in dimensionless
form [9],
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Transverse shear forces, bending moments, etc., are written as

Qj =cj + 1W/1j, Qh =ch +(1/f) 1W/1h, Mj = 1cj /1j+(n/f) 1ch /1h,

Mh = 1ch /1h+ nf 1cj /1j, Mjh = 1ch /1j+(1/f) 1cj /1h. (5)

When the first building block of Figure 1 is driven by the first term of equation (1) the
problem will be one-dimensional in nature, i.e., the response will not be a function of the
co-ordinate j. In this case the governing differential equations reduce to the following pair
[9]:

d2W/dh2 +f d2ch /dh2 + l4f2f2
h W/n3 =0 (6)

and

d2ch

dh2 − (n3f
2/f2

h ) (ch +(1/f) (dW/dh))+ l4f2f2
h ch /12=0. (7)

One seeks now the response of the first building block to the first driving term. It is
convenient to represent the plate lateral displacement and cross-section rotation ch as

W(h)=X(h) and ch (h)=Z(h).

The governing differential equations then take the form

X0(h)+ am1Z'(h)+ bm1X(h)=0 (8)

and

Z0(h)+ am3X'(h)+ bm5Z(h)=0, (9)

where superscipts imply differentiation with respect to h and the coefficients am1 . . . etc.,
are defined in reference [9].

By applying the correct differential operators to this pair of equations, as was done in
reference [9], the parameter X(h) is eliminated and one is left with an ordinary fourth order
homogeneous differential equation involving the parameter Z(h). The roots associated
with the corresponding characteristic equation are all real for the present range of
interest [9]. Designating the three possible combinations of the pairs of associated roots
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as R1 , R2 , one has three possible forms of solution,

Case=1, R1 , R2 Q 0·0; Case=2, R1 Q 0·0; R2 q 0·0; Case=3, R1 , R2 q 0·0, (10)

In all computations conducted in connection with the present paper only case 2 has been
encountered. Recognizing that the functions X(h) and Z(h) must be symmetric and
antisymmetric, respectively, with respect to the j-axis it follows that one may write, for
case 2,

X(h)=Am cos ah+Bm cosh bh, Z(h)=AmSm1 sin ah+BmSm2 sinh bh, (11, 12)

where a=z=R1 =, and b=z=R2 =.
Expressions Sm1 and Sm2 are obtained by utilizing the coupling of equations (8) and (9),

as was done in reference [9].
Finally, imposing the boundary conditions of Qh =Em and ch =0, at h=1, one obtains

the response of the building block as

X(h)= (Em /X2){cos ah+X1 cosh bh}, (13)

Z(h)= (Em /X2){Sm1 sin ah+X1Sm2 sinh bh}, (14)

where X1 and X2 are easily obtained.
One next examines the response of the first building block to driving terms with the

subscript mq 1. The steps taken are described in detail in reference [9].
In view of the boundary conditions prescribed along the edges j=0 and j=1, Lévy

type solutions for the parameters W(j, h) . . . etc., are written as

W(j, h)=Xm (h) cos mpj, cj (j, h)=Ym (h) sin mpj, ch (j, h)=Zm (h) cos mpj.

(15–17)

Substituting these expressions in the governing differential equations one obtains, for
any mq 1, the following set of coupled ordinary homogenous differential equations. They
are written in matrix form as
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where the quantities am1 . . . etc., are defined in reference [9].
Operating on the above set of equations with appropriate differential operators it is

shown that the functions Xm (h) and Zm (h) may be eliminated from the set, thereby
obtaining a single sixth order homogeneous differential equation involving the function
Ym (h). Because derivatives of the first, third, and fifth orders are missing from this equation
the associated characteristic equation is reduced to a cubic algebraic equation. It is found
that for all studies conducted here, the roots are real and are designated as R1 , R2 , and
R3 . Following the procedure as described in reference [9], four distinct solution cases are
recognized.

They are

Case=1, R1 , R2 , and R3 Q 0·0; Case=2, R1 , R2 Q 0·0; R3 q 0·0;

Case=3, R1 Q 0·0; R2 and R3 q 0·0; Case=4, R1 , R2 and R3 q 0·0. (19)

In fact, for the current studies, only case 3 and case 4 have been encountered for mq 1.
One introduces a=z=R1 =, b=z=R2 =, and g=z=R3 =, and recognizes that functions

Xm (h) and Ym (h) must be symmetric with respect to the j-axis, while Zm (h) must be
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antisymmetric about the same axis. For case 4, one then has

Ym (h)=Am cosh ah+Bm cosh bh+Cm cosh gh. (20)

It is then shown through the coupling of the set of ordinary differential equations that
one may write

Xm (h)=AmRm1 cosh ah+BmRm2 cosh bh+CmRm3 cosh gh (21)

and

Zm (h)=AmSm1 sinh ah+BmSm2 sinh bh+CmSm3 sinh gh. (22)

Expressions for Rm1 , . . . , Sm1 , . . . etc., are obtained following steps described in
reference [9]. Expressions for Ym (h), Xm (h), etc., for case 3, will differ from the above only
in that the first term will involve cos ah instead of cosh ah.

The constants Am , Bm , etc., are evaluated by requiring zero torsional moment and zero
edge rotation along the edge, h=1. Furthermore, the shear force Qh , at the edge, h=1,
must equal the coefficient Em . Imposing these edge conditions it is readily shown that for
case 4 we obtain

Ym (h)= (Em /X3){cosh ah+X1 cosh bh+X2 cosh gh}. (23)

The functions Xm (h) and Zm (h) differ from Ym (h) primarily in that the parameters Rm1

and Sm1 , etc., of equations (21) and (22) must be included.
Having performed the above steps the solution for the response of the first building

block of Figure 1 is available.
The second, fifth, and sixth building blocks of the figure differ from the first only in that

they are driven along a different edge. All of these solutions are therefore readily extracted
from that of the first building block. One would normally introduce different subscripts
for these other solutions, in order to avoid confusion.

With solutions for the response of the above four building blocks available we direct
our attention to the remaining building blocks in the set. These differ from the first four
only in that they are driven by distributed harmonic edge rotations and their driven edges
are free of transverse shear forces and twisting moments. The driving edge rotation
distribution is also represented by the series of equation (1).

The reader will quickly appreciate that the form of solution for these building blocks
will be identical to those of the first four transverse-shear driven blocks. The only difference
is encountered when one enforces the boundary conditions along the driven edges. As a
result, only the quantities X1 and X2, and the quantities X1, X2 and X3, introduced for
the first building block solutions with m=1 and mq 1, respectively, will change. One adds
the letter P to the corresponding quantities of this latter set of solutions, designating them
as X1P, X2P, etc., for these edge-rotation driven building blocks. One thus has available
all of the forced vibration solutions required to conduct the desired free vibration analysis.

2.2.    

2.2.1. Plates with lateral elastic support only
The eigenvalue matrix, which is represented schematically in Figure 2, is generated

following established procedures. The corresponding matrix for thin plate studies is
described in reference [4].

One begins by enforcing dynamic elastic equilibrium along the edge, h=1. Starting with
the basic definition of shear force and plate lateral displacement, and moving into the
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Figure 2. Schematic representation of eigenvalue matrix based on three-term function expansions. Short bars
indicate non-zero elements. M or V on inserts to right indicate edges along which moment or lateral force
equilibrium is enforced.

non-dimensional domain it is readily shown that one must enforce the condition

Qh +KL1W=0 (24)

along the edge, h=1. The plus sign in the above equation must be replaced by a minus
sign when dynamic equilibrium is expressed along the edges, h=0 and j=0. The first
set of three homogeneous algebraic equations relating the unknown driving coefficients,
based on equation (24), are represented schematically in Figure 2. Following established
procedures the displacements W are expanded along the edge in a three-term cosine series.
The shear force is already available in such a series. The algebraic equations are obtained
by setting the net coefficient of each term in the expansion series representing equation (24),
equal to zero.

A second set of equations is obtained by enforcing dynamic equilibrium along the edge,
j=1, as indicated by the second insert to the right of the figure. The third set of equations
is obtained in a similar fashion requiring that the net bending moment along the edge,
h=1, should vanish. Moving down through Figure 2 it is seen that the complete
eigenvalue matrix for the problem is generated. Utilizing K terms in the building block
expansions one will have 8K unknowns and 8K homogeneous equations relating these
unknowns.

It will be observed that the matrix has 64 natural segments. Each segment can be referred
to by the subscripts I, J. It is expedient to first generate the matrix without including the
elastic-support shear forces as observed in equation (24). The matrix is then completed as
follows.

(1) Add to the diagonal elements of segments (1, 1) and (2, 2), the quantity 1·0.
(2) Subtract from the diagonal elements of segments (5, 5) and (6, 6), the quantity 1·0.



  341

Physical reasoning permits generation of the eigenvalue matrix to be greatly simplified,
in a manner similar to that described in reference [9]. Before making additions and
subtractions to diagonal elements as discussed above one can proceed as follows.

(1) Generate those elements only, which lie beneath the first four building blocks of
Figure 2.

(2) The remaining segments of the matrix are transferred from those computed above
with proper sign changes. It follows immediately that the following segment equalities
exist. Segment: (5, 5)=−(1, 1)KL3 /KL1 ; (7, 5)=−(3, 1); (1, 5)=−(5, 1)KL1 /KL3 ;
(3, 5)=−(7, 1); (5, 7)=−(1, 3)KL3 /KL1 ; (7, 7)=−(3, 3); (1, 7)=−(5, 3)KL1 /KL3 ;
(3, 7) =−(7, 2); (6, 6)=−(2, 2)KL4 /KL2 ; (8, 6)=−(4, 2); (2, 6)=−(6, 2)KL2 /KL4 ;
(4, 6)=−(8, 2); (6, 8)=−(2, 4)KL4 /KL2 ; (8, 8)=−(4, 4); (2, 8)=−(6, 4)KL2 /KL4 ;
(4, 8)=−(8, 4).

The following segments are extracted in a similar manner provided one changes signs
for the first, third, fifth rows, etc. Segment (2, 5) from (2, 1); (4, 5) from (4, 1); (6, 5) from
(6, 1); (8, 5) from (8, 1); (2, 7) from (2, 3); (4, 7) from (4, 3); (6, 7) from (6, 3); (8, 7) from
(8, 3); (1, 6) from (1, 2); (3, 6) from (3, 2); (5, 6) from (5, 2); (7, 6) from (7, 2); (1, 8) from
(1, 4); (3, 8) from (3, 4); (5, 8) from (5, 4); (7, 8) from (7, 4).

One is now ready to obtain the eigenvalues for any problem of interest by searching for
those values of l2 which cause the determinant of the associated eigenvalue matrix to
vanish. By setting one of the non-zero Fourier driving coefficients equal to unity, solving
for the remaining coefficients, and plotting the resulting net displacement, mode shapes
are obtained.

2.2.2. Matrix modifications required to handle edge rotational elasticity
Fortunately, it is extremely easy to modify the eigenvalue matrix in order to take into

account the effects of rotational elastic support along the plate edges. One begins by
examining the third set of equations represented schematically in Figure 2. This set pertains
to moment equilibrium along the edge, h=1. It will be evident that only the third building
block in the set contributes toward rotation along this edge. Starting from first principles
it is easily shown that edge moment equilibrium is expressed as

Mh +KR1ch =0. (25)

As indicated earlier, the enforced edge rotation, ch , is represented in series form,
utilizing the series of equation (1). It follows, therefore, that the only matrix modification
required in connection with the above set of equations is described thus. To each diagonal
element of segment (3, 3), of the previously existing matrix, one must add the quantity KR1 .
In a similar fashion one must add to the diagonal elements of segment (4, 4) the quantity
KR2 , and to the diagonal elements of segments (7, 7) and (8, 8) one must subtract the
quantities KR3 and KR4 , respectively. The eigenvalue matrix now handles problems with
both uniform lateral and uniform rotational elastic edge support.

3. PRESENTATION OF COMPUTED RESULTS

3.1.       

It will be appreciated that numerous verification checks on the analysis can be performed
by verifying that computed eigenvalues approach known limits, as the spring stiffness
coefficients are allowed to approach their natural limits of zero and infinity. An even more
convincing verification test can be performed. It is known that as the thickness-to-length
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ratio for the plate is allowed to take on values characteristic of thin plates the results
obtained by Mindlin theory must closely approach those obtained by thin plate theory.
Results will not coincide exactly, as the thin plate theory does not take plate rotary inertia
into consideration and it essentially assumes the plate has infinite stiffness in opposing
transverse shear induced deformation. It was demonstrated that all data presented here
satisfied the conditions discussed above.

In Figure 3 a semi-logarithmic plot of the first mode eigenvalue versus a dimensionless
lateral elastic spring stiffness parameter is presented for a square plate of thickness ratios
0·01 and 0·1. In this, and similar figures, the stiffness parameter covers five decades. These
decades have been selected with a view to providing the reader with eigenvalue information
over the range of greatest interest. It was found that by plotting eigenvalues against the
parameter KL1 /f2

h , instead of KL1 , curves for the two ranges of plate thickness ratio,
fh =0·01 and fh =0·1, would fit conveniently on the same figure.

Equal spring stiffness is assigned to each edge of the plate. It will be noted that results
for both plate thickness ratios approach zero as the spring stiffness is reduced. As the
stiffness parameter is increased the curve associated with the thinner plate approaches 2p2,
the well known eigenvalue for thin simply supported square plates.

Results of Figure 4 differ from those of Figure 3 only in that they pertain to the square
plate second mode. Because the plate is square these are in fact repeated eigenvalues and
dictate both second and third mode frequencies. Associated with each eigenvalue are two
distinct mode shapes, one with a single node line running parallel to the j-axis and one
with a single node line running parallel to the h-axis; it will be noted that the thinner plate
curve approaches the known second mode eigenvalue of 5p2 based on thin plate theory.

Figure 5 presents eigenvalues for fourth mode vibration of the same plate. The upper
eigenvalue limit equals 8p2 corresponding to the first doubly antisymmetric mode of
vibration of the simply supported plate. The lower eigenvalue limit corresponds to the first
doubly antisymmetric mode vibration of a completely free square plate and equals 13·489.

Figures 6–9 present similar data related to plates with aspect ratio equal to 1·5, and equal
basic elastic edge stiffnesses, k1 , k2 , etc., along each boundary.

Lower eigenvalue limits for the first three modes will, of course, equal zero. Upper limits
correspond to eigenvalues for simply supported plates of aspect ratio 1·5. These limits are
14·26, 27·42, and 43·87.

Figure 3. Eigenvalues versus stiffness parameter for square plate first mode vibration: f=1·0,
KL1 =KL2 =KL3 =KL4 .
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Figure 4. Eigenvalues versus stiffness parameter for square plate second mode vibration: f=1·0,
KL1 =KL2 =KL3 =KL4 .

Figure 5. Eigenvalues versus stiffness parameter for square plate fourth mode vibration: f=1·0,
KL1 =KL2 =KL3 =KL4 . Inserts indicate limiting cases approached.

Figure 6. Eigenvalues versus stiffness parameter for rectangular plate first mode vibration: f=1·5,
k1 = k2 = k3 = k4 .
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Figure 7. Eigenvalues versus stiffness parameter for rectangular plate second mode vibration: f=1·5,
k1 = k2 = k3 = k4 .

Figure 8. Eigenvalues versus stiffness parameter for rectangular plate third mode vibration: f=1·5,
k1 = k2 = k3 = k4 .

The fourth lowest eigenvalue for the plate of apsect ratio 1·5 is plotted in Figure 9. A
natural pair of upper and lower eigenvalue limits in this region are provided by the simply
supported plate with three half-waves running in the long edge direction, one running in
the short edge direction, and a corresponding completely free plate in first mode doubly
symmetric mode vibration. Associated eigenvalue limits are 49·35 and 9·412. Another
natural pair of limits are provided by the simply supported plate with two half-waves



40

0
0.1

KL1/φ2
h

λ2
20

10 1000

φh = 0.1

φh = 0.01

  345

Figure 9. Eigenvalues versus stiffness parameter for rectangular plate fourth mode vibration: f=1·5,
k1 = k2 = k3 = k4 .

running along each edge, and the first doubly antisymmetric mode vibration of the
completely free plate. Here, associated eigenvalue limits are 57·02 and 8·732.

It is found that the two natural-limit curves discussed above have a cross-over point at
about KL1 /f2

h =1·0 in Figure 9. That is why the fourth lowest eigenvalue for the problem
of Figure 9 has upper and lower eigenvalue limits of 49·35 and 8·732, respectively.

The eigenvalue versus stiffness parameter curves presented so far serve to provide the
reader with a general description of the variation of plate eigenvalues with edge stiffness
coefficients for a limited number of plate geometries. It will be appreciated that no attempt
can be made to provide designers with eigenvalues for all possible plate–edge support
configurations. It is also useful, in the author’s experience, to provide some eigenvalue
information in digital form. This provides other researchers and analysts with valuable
results against which their findings can be compared.

A number of highly accurate eigenvalues are tabulated in Tables 1–4. It has been found
that convergence is very rapid and four significant digit accuracy can be achieved with only
five terms employed in the building block expansion series. Nevertheless, all of the
tabulated data have been computed using seven terms in the series. The data covers the
first four eigenvalues for each case examined. An attempt has been made to choose the
range and invervals in the stiffness parameter in such a way as to cover the eigenvalue range
of greatest interest.

3.2.          

In Figure 10, results of a typical first mode study involving square plates with lateral
and rotational elastic support are presented. The lateral elastic stiffess coefficient is fixed
with KL1 /f2

h =10 000. This is seen to be the highest value utilized in Table 1. The rotational
stiffness parameter is allowed to vary over five decades. Each edge of the plate is given
equal support.

The eigenvalue curve for the thin plate (fh =0·01) begins very close to the known
classical eigenvalue for simply supported plates, based on thin plate theory (2p2).



. . 346

T 1

First four eigenvalues for square plates with equal elastic support on all edges: fh =0·01

KL1 /f2
h

ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
Mode 0·1 1·0 10·0 100·0 1000·0 10 000·0

1 1·171 3·628 9·660 16·33 19·09 19·55
2 1·658 5·220 15·78 35·99 46·96 48·84
3 1·658 5·220 15·78 35·99 46·96 48·84
4 13·26 14·48 23·07 50·17 72·37 77·49

T 2

First four eigenvalues for square plates with equal elastic support on all edges: fh =0·1

KL1 /f2
h

ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
Mode 0·1 1·0 10·0 100·0 1000·0 10 000·0

1 1·171 3·625 9·593 15·81 17·99 18·30
2 1·650 5·191 15·61 34·47 43·04 44·27
3 1·650 5·191 15·61 34·47 43·04 44·27
4 12·59 13·86 22·55 47·79 64·12 66·98

Furthermore, as the rotational stiffness parameter is increased the curve approaches the
classical eigenvalue for fully clamped plates of 35·98.

As expected, the eigenvalue curve for the thicker plate (fh =0·1) lies below the first
curve. The eigenvalue for the thicker plate in the fully clamped condition is reported by

T 3

First four eigenvalues for rectangular plates with equal basic elastic support on all edges:
f=1·5, fh =0·01

KL1 /f2
h

ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
Mode 0·1 1·0 10·0 100·0 1000·0 10 000·0

1 1·066 3·244 8·032 12·58 13·96 14·16
2 1·435 4·487 12·70 22·72 26·56 27·18
3 1·588 4·991 14·96 33·65 42·38 43·58
4 8·881 10·35 18·64 38·16 47·47 48·93

T 4

First four eigenvalues for rectangular plates with equal basic elastic support on all edges:
f=1·5, fh =0·10

KL1 /f2
h

ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
Mode 0·1 1·0 10·0 100·0 1000·0 10 000·0

1 1·066 3·241 7·974 12·21 13·35 13·49
2 1·432 4·473 12·58 21·87 24·89 25·31
3 1·580 4·963 14·80 32·28 39·31 40·18
4 8·524 10·03 18·36 36·36 43·50 44·45
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Figure 10. Eigenvalues versus rotational stiffness parameter for square plate first mode vibration:
KL1 /f2

h =KL2 /f2
h =KL3 /f2

h =KL4 /f2
h =10 000, KR1 =KR2 =KR3 =KR4 .

Figure 11. Eigenvalues versus rotational stiffness parameter for rectangular plate first mode vibration: f=1·5,
KL1 /f2

h =KL2 /f2
h =KL3 /f2

h =KL4 /f2
h =10 000, kR1 = kR2 = kR3 = kR4 .
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T 5

First mode eigenvalues for square plates with equal elastic support on all edges:
KL1 /f2

h =10 000

KR

ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
fh 0·1 1·0 10·0 100·0 1000·0 10 000·0

0·01 19·75 21·34 28·36 34·46 35·61 35·74
0·1 18·50 20·02 26·35 31·28 32·15 32·24

T 6

Comparison of the results, (A) of Saha et al. [7], thin plate results (B) extracted from
reference [1], and results of present analysis (C): fh =0·01, n=0·3, k2 =0·85, (b/a=1·0)

(KR1 =KR2 =KR3 =KR4 , KL1 −KL2 =KL3 =KL4 =3000)

KR1

ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV
10−7 10 25 50 100 500 2700 107

A 19·43 27·51 30·45 32·00 32·96 33·84 34·04 34·08
B 19·73 27·2 30·2 31·8 33·0 33·8 34·3 35·98
C 19·60 28·46 31·76 33·53 34·63 35·66 35·89 35·94

Yu and Cleghorn [10], as 32·61. Similar results are presented in Figure 11 for plates with
an aspect ratio b/a of 1·5. The upper limit based on thin plate theory, i.e., the fully clamped
rectangular plate eigenvalue, equals 26·95. The eigenvalue for first mode vibration of the
thick plate of aspect ratio 1·5 was reported by Yu and Cleghorn as 24·97. Again, the curves
terminate slightly below these upper limits, as expected.

Tabulated eigenvalues as a function of the elastic parameter KR , with fixed lateral elastic
support, are presented in Table 5 for square plates. This data will provide other researchers
with digital values against which comparisons can be made.

It is difficult to make comparisons with the findings of Saha et al. [7] as almost all of
their results are given in the form of curves. Nevertheless, results taken from their Table 5
and results of the present analysis are compared here in Table 6. These results pertain to
a thin square plate (fh =0·01). Their parameter values were used in the present analysis
when computing data entered into this table. The problem studied is essentially that of
a thin square plate as it moves from a condition of simple support to a fully clamped
condition. This is achieved by letting the rotational stiffness essentially move from zero
to infinity. It is seen that at the beginning there is fairly close agreement between the two
sets of results. However, as the rotational stiffness coefficient is increased, the results of
the present study climb at a slightly higher rate and terminate at a value of 35·94. This
is to be expected as the eigenvalue, based on thin plate theory, equals 35·09. Saha et al.
report a corresponding eigenvalue of 34·08. They also report results taken from reference
[11] based entirely on thin plate theory. This latter data was extracted from a plotted curve
and cannot be treated with high confidence.

4. SUMMARY AND CONCLUSIONS

The superposition method is shown to provide a powerful and straightforward means
of obtaining accurate analytical type solutions to the problem of shear deformable plates
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resting on uniform elastic edge supports. Unlike the Rayleigh–Ritz approach, no functions
need be selected in advance for representing plate displacement or cross-section rotations.
The differential equations are satisfied exactly throughout the domain of the plate and
boundary conditions are satisfied to any desired degree of accuracy. Convergence is rapid.
All of the known limits for the eigenvalue curves have been approached. Furthermore,
results obtained by the Mindlin theory were always found to approach the corresponding
results obtained by classical thin plate theory as the thickness-to-length ratio was allowed
to decrease.

It is expected that the work reported herein will provide analysts with insight into the
character of eigenvalues versus elastic-edge–stiffness curves. Accurate eigenvalues are
tabulated in digital form so that they will have reliable data against which they can
compare their computed results.
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APPENDIX: LIST OF SYMBOLS

a, b plate edge dimensions
D =Eh3/(12(1− n2)), plate flexural rigidity
E Young’s modulus of plate material
G modulus of elasticity in shear of plate material
h plate thickness
k1 , k2 , . . . basic lateral spring stiffness along plate edge; subscript 1 indicates edge, h=1; 2, 3,

4, indicate edges moving counter-clockwise from 1
KL1 , KL2 , . . . dimensionless lateral elastic edge coefficients, =k1aw/k2Gh, k2aw/k2Gh, etc.
kR1 , kR2 , . . . basic rotational spring stiffness along plate edges
KR1 , KR2 , . . . dimensionless rotational elastic edge coefficients, =kR1b/D, kR2a/D, kR3b/D, kR4a/D.
Mj , Mh dimensionless bending moments associated with j and h directions, respectively
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Mjh dimensionless twisting moment
Qj , Qh dimensionless shear forces associated with j and h directions, respectively
W plate lateral displacement divided by side length a
j, h distances along plate co-ordinate axes divided by side lengths a, and b, respectively
k2 Mindlin shear factor=0·8601
n Poisson ratio of plate material=0·333
n1 =(1− n)/2
n2 =(1+ n)/2
n3 =6k2(1− n)
f plate aspect ratio= b/a
fh plate thickness ratio= h/a
cj , ch plate cross-section rotations associated with j and h directions, respectively
v circular frequency of plate vibration

l2 =va2zr/D, free vibration eigenvalue
r mass of plate per unit area


