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PRIMARY RESONANCE OF A HARMONICALLY
FORCED OSCILLATOR WITH A PAIR OF

SYMMETRIC SET-UP ELASTIC STOPS
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Astronautics, 210016 Nanjing, People’s Republic of China

(Received 15 March 1996, and in final form 8 May 1997)

The primary resonance and the stability of a harmonically forced oscillator with a pair
of symmetric set-up elastic stops are studied by means of the average approach. It is found
that the set-up elastic stops greatly increase the complexities of the primary resonance as
follows. Four kinds of persistent primary resonance and three critical cases exist. The
motion of many of the persistent resonances becomes unstable when it begins to touch the
set-up elastic stops with decrease of the excitation frequency. Moreover, there coexist three
stable periodic motions and two unstable periodic motions at certain combinations of
system parameters.
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1. INTRODUCTION

The elastic components in mechanical systems are often preloaded due to a variety of
reasons. A simple, but widely used model in vibration control, vibration machinery and
so on is a harmonically forced oscillator with a pair of symmetrical set-up elastic stops
as shown in Figure 1. As shown in Figure 2(a), the elastic restoring force in such an
oscillator is piecewise linear and undergoes a finite jump equal to the preload when the
mass touches the set-up elastic stop.

In the past decade, the dynamics of piecewise-linear oscillators has been intensively
studied. For instance, Shaw [1] revealed the complex dynamics of a forced oscillator
impacting on two rigid walls by using the modern theory of dynamical systems. Cone and
Zadoks [2] studied the similar vibro-impact system with friction damping [2]. These studies
were based on a simultaneous restitution model, which neglects the impact time so that
the restoring force goes to infinity on impact as shown in Figure 2(b). To take the impact
time into account, many other studies have been based on the model of elastic stops having
the continuous, but piecewise-linear restoring force shown in Figure 2(c). For example,
Natsiavas [3] developed a numerical scheme to locate the periodic motions of harmonically
forced trilinear oscillators and discussed the stability of the periodic motions [3]. Hu [4, 5]
analyzed the grazing induced bifurcations of the same oscillator.

Compared with these two types of models, the preloaded elastic stops in the oscillator
results in more complicated restoring force, and hence the discontinuous vector field of
the differential equation of motion. However, little attention has been paid to the
qualitative changes of the system dynamics caused by the preload since the early study of
Den Hartog [6] on a harmonically forced, undamped oscillator with a pair of set-up
springs. To the author’s knowledge, only Mahfouz and Badrakhan [7] numerically studied
the chaotic motion of similar oscillators in the past decade.
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Figure 1. A harmonically forced oscillator with a pair of symmetric set-up elastic stops.

The primary aim of this paper is to reveal the effect of the set-up elastic stops on the
qualitative changes of the primary resonance of a harmonically forced oscillator with
clearance.

2. STEADY-STATE MOTION OF PRIMARY RESONANCE

Consider the harmonically forced oscillator with a pair of symmetric set-up elastic stops
as shown in Figure 1. The governing equation of motion of the system is

mẍ+ cẋ+ k[x+ mg(x)]=F sin vt (1)

where m, c, k, F, v and m are positive parameters denoting the mass quantity, the linear
damping coefficient, the linear stiffness coefficient, the excitation amplitude, the excitation
frequency and the ratio of the stiffness of an elastic stop to the linear stiffness, respectively.
Furthermore, mkg(x) denotes the restoring force of the symmetric set-up elastic stops with
clearance d and set-up amount e

g(x)=60,
x+(e− d) sgn x,

=x =E d
=x =q d

(2)

By scaling equations (1) and (2) with the dimensionless time, displacement and parameters
as follows

t=Xm
k

t, y=
x
d
, z=

c
2zmk

, d=
e
d

f=
F
kd

, l=vXm
k

(3)

one obtains the dimensionless differential equation of motion

y0+2zy'+ y+ mh(y)= f sin lt (4)

Figure 2. The elastic restoring force of three kinds of piecewise-linear oscillators.
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where

h(y)=60,
y+(d−1) sgn y,

=y =E 1
=y =q 1

(5)

and ()' denotes the derivative with respect to t.
To gain insight into the primary resonance of the system through analytic approach,

one confines the study to the case of weak nonlinearity, small damping and soft excitation

m=O(o), 2z=O(o), =l2 −1==O(o), f=O(o), 0Q o�1 (6)

and rewrites equation (4) as

y0+ l2y=(l2 −1)y− mh(y)−2zy'+ f sin lt (7)

Thus, the right hand of equation (7) is of order o.
Using the average approach, one can truncate the primary resonance to the first order

of o

y(t)= a(t) sin [lt+8(t)] (8)

and derive a set of autonomous differential equations that govern the time varying
amplitude a(t) and phase 8(t)

6a'=−(1/2l) (2zla+ f sin 8)
8'=−(1/2la){a[l2 −1− p(a)]+ f cos 8} (9)

where

p(a)=60,
(m/p) [p−2u+(2d−1) sin 2u],

=a =E 1
=a =q 1

(10)

u0 arcsin (1/a) $ (0, p/2] (11)

The steady-state motion of the primary resonance yields

62zla+ f sin 8=0
a[l2 −1− p(a)]+ f cos 8=0

(12)

There follows the equations of amplitude and phase, respectively

6a2{[l2 −1− p(a)]2 + (2zl)2}− f 2 =0
tan 8−2zl/[l2 −1− p(a)]=0

(13)

As the amplitude equation here is a quadratic equation of l2, it is easy to find whether
the equation has a pair of positive roots, a unique positive root or no positive root for
any given amplitude a. So, one can readily determine the amplitude–frequency curve.
Then, substituting a and the corresponding l into the phase equation, one obtains the
phase–frequency curve.
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3. STABILITY ANALSYSIS

As the small amplitude linear vibration is asymptotically stable, one can focus on the
stability of non-linear vibration with large amplitude only, i.e., the case of aq 1. For a
small disturbance (Da, D8) to the steady-state motion (a, 8), one has a set of linear,
time-invariant, variational differential equations from equation (9)

$Da'
D8'%= J $Da

D8%0$J11

J21

J12

J22%$Da

D8% (14)

The steady-state motion of the primary resonance is asymptotically stable if and only if
both of the eigenvalues of the Jacobian J have negative real parts.

As shown in Appendix A.1, the Jacobian J and the corresponding determinant are as
follows

J= & − z

f
2la2 cos 8−

2m

pla2 cos u
[(2d−1) cos2 u− d]

−( f/2l) cos 8

− z ' (15)

det J=( f/l2a2){ f/4− (m cos 8/p cos u) [(2d−1) cos2 u− d]} (16)

In what follows all possible parameter combinations that result in the unstable primary
resonance are analyzed. According to tr J=−2zQ 0 and the Hurwitz theorem, the
necessary and sufficient condition for the unstable primary resonance is

det J=( f/l2a2){ f/4− (m cos 8/p cos u) [(2d−1) cos2 u− d]}Q 0 (17)

For brevity, one defines a new variable

b0 b(a)0 cos u=z1−1/a2, a $ (1, +a) (18)

so that condition (17) becomes

q(b)0 [(2d−1) cos 8]b2 − (pf/4m)b− d cos 8q 0 (19)

Because b increases monotonically in the interval (0, 1) with a $ (1, +a), the condition
(17) for the unstable primary resonance when aq 1 is equivalent to condition (19) when
b, the solution of inequality (19), falls into the interval (0, 1).

The case of (2d−1) cos 8$ 0 is first considered and inequality (19) rewritten as

q(b)= [(2d−1) cos 8](b− b1) (b− b2)q 0 (20)

where

b1,2 = [1/8(2d−1) cos 8] (pf/m3zD) (21)

are the two roots of q(b)=0 and

D0 (pf/m)2 +64d(2d−1) cos2 8 (22)

When 0Q b1 Q 1 or 0Q b2 Q 1, the corresponding resonance amplitudes are

ar =z1/(1− b2
r ), r=1, 2 (23)

Now one classifies the positive solutions for inequality (20) as follows.
(a) 2d−1Q 0, cos 8q 0
If DQ 0, b1 and b2 are a pair of conjugate complex numbers. As shown in Figure 3(a),

the curve q= q(b) is in the lower-half plane and inequality (20) never holds. If De 0, then
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Figure 3. Various solutions for inequality (20).

the curve q= q(b) intersects the axis q=0 at b2 E b1 Q 0 as shown in Figure 3(b). The
solution b of inequality (20) yields b2 Q bQ b1 Q 0. No matter what case happens, the
primary resonance is asymptotically stable.

(b) 2d−1Q 0, cos 8Q 0
If DQ 0, b1 and b2 are a pair of conjugate complex numbers again. However, the curve

q= q(b) is in the upper-half plane and inequality (20) holds for arbitrary b. Hence, the
resonance is always unstable when aq 1.

If De 0, then 0Q b1 E b2. There exist three possible kinds of positive solutions for
inequality (20) as the thick line segments shown in Figure 3(c), Figure 3(d) and Figure 3(e),
respectively.

(i) 0Q bQ b1 and b2 Q bQ 1: In this case, the primary resonance is unstable when the
amplitude a yields 1Q aQ a1 or a2 Q a. According to b2 Q 1 and Dq 0, the corresponding
conditions for the system parameters

8=cos 8 =zd(1−2d)Q pf/mQ 4=cos 8 = (1− d), 0Q dQ 1
3 (24)

are derived in Appendix A.2.
(ii) 0Q bQ b1 Q b2 : In this case the primary resonance loses stability when the

amplitude increases to 1Q aQ a1, and then becomes stable when aq a1. From b1 Q 1 and
Dq 0, the corresponding condition for the system parameters

pf/mq 4=cos 8 = (1− d) (25)

can be similarly determined.
(iii) 0Q bQ 1Q b1 : If this is the case, the primary resonance is never stable when aq 1.

From b1 q 1 and Dq 0, the corresponding conditions for system parameters are

8=cos 8 =zd(1−2d) =Q pf/mQ 4=cos 8 = (1− d), 1
3 Q dQ 1

2 (26)

(c) 2d−1q 0, cos 8q 0
It is obvious that Dq 0 always holds in this case. There follows b1 Q 0Q b2. If b2 q 1,

as shown in Figure 3(f), inequality (20) has no solution in interval (0, 1) so that the primary
resonance is stable. Otherwise, the positive solution b for inequality (20) yields b2 Q bQ 1
as shown in Figure 3(g). Thus, the primary resonance becomes unstable from an
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asymptotically stable state when a2 Q a. According to b2 Q 1, one can obtain the conditions
for the system parameters

pf/mQ 4 cos 8(d−1), dq 1 (27)

(d) 2d−1q 0, cos 8Q 0:
In this case, Dq 0 is always true. From b2 Q 0Q b1, the positive solution for inequality

(20) should be 0Q bQmin (b1, 1) as shown in Figure 3(h) and Figure 3(i). There follows
a condition for the system parameters corresponding to b1 Q 1

pf/mq 4 cos 8(d−1) (28)

On this condition, the primary resonance is unstable when 1Q aQ a1. Otherwise, it is
unstable for all aq 1.

Finally, the case of (2d−1) cos 8=0 is discussed. Now, inequality (19) becomes

q(b)0−(pf/4m)b− d cos 8q 0 (29)

If cos 8e 0, inequality (29) has no positive solution and the primary resonance is
asymptotically stable. Otherwise, q(b)=0 has a single root b�=4dm =cos 8 =/pfq 0 so that
inequality (29) has the positive solution 0Q bQ b�. As a result, there exists āq 0
corresponding to b� such that the primary resonance is unstable when 1Q aQ ā.

4. PERSISTENT PRIMARY RESONANCE

Summarizing the conditions for unstable resonance derived in section 3, one finds that
there exist four kinds of persistent primary resonance and three critical cases for different
combinations of d and f/m. Although conditions (24–29) contain cos 8, all bifurcations of
the primary resonance with respect to the excitation frequency happen in the excitation
frequency range corresponding to =cos 8 = 1 1. So one can classify the resonance according
to the combination of d and f/m in the first quadrant of their plane. As shown in Figure 4,
the quadrant consists of four regions A, B, C and D, where the parameter combinations
result in four kinds of persistent resonance respectively. The interface of these regions
includes an arc defined by

pf/m=8zd(1−2d) (30)

and two line segments. They serve as three transition sets where the primary resonance
is critical in the sense of structural stability.

Given z=0·01 and m=0·3, four amplitude–frequency curves corresponding to typical
parameter combinations in regions A, B, C and D are shown in Figure 5, respectively. It
is obvious that the amplitude–frequency curve in case A is very similar to that of a system
with elastic stops not preloaded. However, when the amplitude increases with decrease

Figure 4. Transition sets and persistence regions of the primary resonance on the plane of system parameters.
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Figure 5. Amplitude–frequency curves of four kinds of persistent primary resonance (—, stable; - - - -,
unstable). (a) Case A, d=0·20, f=0·10; (b) Case B, d=0·20, f=0·28; (c) Case C, d=0·75, f=0·20; (d) Case
D, d=2·00, f=0·10.

of the excitation frequency, the system motion that just touches the set-up elastic stops
will become unstable. This behavior differs from that of a system with elastic stops
not preloaded [3–5]. For the parameter combinations in regions B, C and D, the
amplitude–frequency curves show more apparent effect of set-up elastic stops on the
primary resonance. One of the features of the set-up elastic stops is that the static stiffness
of the system becomes hardening first and then softening with increase of the system
displacement. The amplitude–frequency curves, therefore, twice change trends. As a result,
in cases B and D there coexist three stable periodic motions and two unstable periodic
motions in a frequency range.

5. CONCLUSIONS

The preload on the elastic stops in a harmonically forced oscillator gives rise to the
following qualitative changes of the primary resonance.

1. The periodic motion that just touches the elastic stops becomes unstable when the
amplitude increases with the decrease of the excitation frequency.

2. There are four kinds of persistent primary resonance. Among them, two kinds may
have five coexisting periodic motions, two of which are unstable.
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APPENDIX

A.1.    

Differentiating the right side of equation (9) with respect to a and 8, one has

J11 = (1/1a) [−(1/2l) (2zla+ f sin 8)]=−z

J12 = (1/18) [−(1/2l) (2zla+ f sin 8)]=−( f/2l) cos 8

g
G

G

G

G

F

f

J21 = (1/1a){−(1/2la){a[l2 −1− p(a)]+ f cos 8}}

=( f/2la2) cos 8+(m/lp) [(2d−1) cos 2u−1] du/da

J22 = (1/18){−(1/2la){a[l2 −1− p(a)]+ f cos 8}}=( f/2la) sin 8 (A-1)

To evaluate du/da in J21, on can differentiate equation (11) with respect to a

cos u du/da=−1/a2 (A-2)

Substituting equation (A-2) into J21 in equation (A-1) yields

J21 = ( f/2la2) cos 8−(m/pla2) [(2d−1) cos 2u−1]/cos u

=( f/2la2) cos 8−(2m/pla2) [(2d−1) cos2 u− d]/cos u (A-3)

In addition, the first equation in equation (12) gives

J22 =−z (A-4)

Thus, one has

det J= z2 + f 2 cos2 8/4l2a2 − (mf cos 8/pl2a2 cos u) [(2d−1) cos2 u− d] (A-5)

Using the first equation in equation (12) again, one has

f 2 cos2 8= f 2(1− sin2 8)= f 2 −4z2l2a2 (A-6)

By substituting it into (A-5), one obtains

det J=( f/l2a2){ f/4− (m cos 8/p cos u) [(2d−1) cos2 u− d]} (A-7)

A.2.    (24)
The inequality b2 Q 1 is

b2 = [1/8 cos 8(2d−1)] (pf/m+zD)Q 1 (A-8)

where

D0 (pf/m)2 +64d(2d−1) cos2 8q 0 (A-9)
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Inequality (A-8) can be rewritten as

z(pf/m)2 +64 cos2 8(2d−1)Q 8 cos 8(2d−1)− pf/m (A-10)

Further simplification of inequality (A-10) results in

pf/mQ 4 cos 8(d−1) (A-11)

Moreover, the right side of inequality (A-10) should be greater than zero so that

pf/mQ 8 cos 8(2d−1) (A-12)

Combining inequalities (A-9), (A-11) and (A-12), one has

8=cos 8 =zd(1−2d)Q pf/mQmin {4 cos 8(d−1), 8 cos 8(2d−1)}

=64 cos 8(d−1),
8 cos 8(2d−1),

0Q dE 1
3

1
3 Q dQ 1

2

(A-13)

However, the inequality

8=cos 8 =zd(1−2d)Q 8 cos 8(2d−1) (A-14)

only holds when 0Q dQ 1/3 or dq 1/2. Thus, inequality (A-13) can be simplified as

8=cos 8 =zd(1−2d)Q pf/mQ 4=cos 8 = (1− d), 0Q dQ 1
3 (A-15)


