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A multi-mode analysis of a beam-like structure undergoing transverse vibration and
subjected to a displacement-dependent friction force is conducted. The system model uses
a ramp configuration to increase the normal force of the dry friction damper proportional
to the beam’s transverse displacement. The system is studied by using harmonic balance
as an approximate analytical solution and then by using a time integration method.
Interesting findings include the appearance of internal resonance peaks when multiple beam
modes are considered. Also, as with the earlier single-degree-of-freedom study, two
dynamic response solutions exist at certain parameter values. It is found that the ability
to control the amplitude of the response is a function of the frequency range considered.
In general, near modal resonance peaks, the amplitude of the response decreases with
increasing ramp angle. However, in an ‘‘overlapping’’ region between resonance peaks, the
amplitude of the response actually increases with increasing ramp angle. It is also found
that the damping contribution from the displacement-dependent dry friction damper is
‘‘linear structural-like’’ in nature and relatively insensitive to the amplitude of the response.
This result suggests that in the case of turbine or compressor blades, this type of damping
arrangement may be effective in the suppression of flutter.
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1. INTRODUCTION

This paper considers the dynamic behavior of beam-like structures undergoing transverse
vibration and damped by displacement-dependent dry friction forces. Most studies assume
dry friction forces to be proportional to a constant normal force acting across the sliding
interface. Several studies, however, have explored the case where friction forces are
dependent on the slip displacement across the frictional interface [1–12]. While
displacement-dependence can always be expected in real systems, its effects on dynamic
behavior are not fully understood.

To include displacement-dependency, the normal force is allowed to vary with transverse
displacement as a result of the geometry of an attached dry friction damper. As seen in
Figure 1, this effect is modelled with a passive configuration using a ramp function to
increase the normal force linearly with displacement. Perhaps the most direct application
of this system is in the study of a turbomachinery blade with a shroud interface. Other
applications might include aerospace as well as civil engineering structures.
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This study also includes multi-degree-of-freedom (MDOF) modelling. While a
single-degree-of-freedom (SDOF) model is sometimes a good approximation, or one mode
projection of more physically realistic MDOF systems, multi-mode models are often
necessary to predict the dynamics of complex systems accurately and to describe their
behavior over a wide frequency range more fully. The MDOF model included in this paper
is particularly desirable for turbine blade applications in which the natural frequencies and
mode shapes depend on whether or not the friction interface of the blade is undergoing
slip or is fully stuck. Multiple DOFs are needed for one model to accommodate all the
possible types of responses [13]. Furthermore, the modes of response can change over the
frequency range studied. As the frequency of excitation is varied, the structure may evolve
from having a locked-up interface to having a slipping interface, and the behavior may
change dramatically. It should be emphasized with the MDOF model that the structure
may undergo motion even though the interface is fully locked up. In this case, the interface
behaves like a pinned connection along the span. Multi-mode solutions of dry friction
damped systems have been considered by several authors. Most relevant to the present
study is the work of Ferri and Dowell [14, 15] in which beam structures with attached dry
friction dampers were examined. Other references are cited in reference [16].

This paper is a direct extension of an earlier study by Whiteman and Ferri [17] which
was a SDOF analysis of the same beam-like model depicted in Figure 1. Comparisons are
made between the results of this past single-mode and present multi-mode analysis. The
present paper includes proportional modal damping which was not included in the earlier
SDOF study. Results from this paper confirm that a system with displacement-dependent
friction forces can exhibit significantly different behavior than systems with constant
friction forces. In fact, a key finding from the earlier work and this study is that the
damping contribution from dry friction alone is ‘‘linear structural-like’’ in nature and
relatively insensitive to the amplitude of the response. This result suggests that in the case
of turbine or compressor blades, a displacement-dependent damping arrangement may be
effective in the suppression of flutter.

Development of the model and governing equations of motion are presented in the
following section. Component mode synthesis is carried out by using the constraint
condition and a Lagrange multiplier approach to allow a multi-mode analysis to be
performed. The resulting system of equations is highly non-linear and an analytical
investigation in which the dry friction non-linearities are approximated by their first

Figure 1. System model: transverse frictional interface, normal force proportional to beam transverse
displacement.
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T 1

Parameter values

Item Symbol Value

Mass/unit length (kg/m) m(x) 0·6361
Beam length (m) L 0·3
Friction damper location (m) D 0·2
Young’s Modulus (N/m2) E 7·3×1010

Moment of Inertia (m4) I 1·325×10−10

Forcing amplitude (N) F 10·0
Forcing location (m) xF 0·3
Spring stiffness (N/m) K 100 000
Coefficient of friction m 0·5
Modal damping ratios z1, z2, . . . ,zNM 0·01
Preload force (N) N0 5

harmonic is presented in section 3. Section 4 presents an ‘‘exact’’ solution by way of a
Runge–Kutta time integration scheme. Results from the harmonic balance analysis are
then compared to the ‘‘exact’’ solution in section 5. Section 6 is a detailed analysis of the
damping characteristics of the system. Conclusions are presented in Section 7.

2. DEVELOPMENT OF THE MODEL AND GOVERNING EQUATIONS

Figure 1 shows the model to be studied. Table 1 lists the baseline parameter values.
These beam parameters were chosen to approximate an actual turbomachinery fan blade;
however the emphasis is on qualitative trends in the dynamic behavior of generic beam-like
structures.

The beam flexural displacement w(x, t) can be approximated using NM assumed modes:

w(x, t)= s
NM

i=1

zi (t)fi (x), (1)

where x is the spatial coordinate measured from the clamped end of the beam, t is time,
zi (t) is the modal amplitude of the ith assumed mode for the beam in flexure, fi (x). The
assumed modes are taken to be the exact fixed–free eigenmodes of a uniform clamped–free
beam:

fi (x)=
1

zmL 6cosh
li x
L

−cos
li x
L

−0cosh li +cos li

sinh li +sin li10sinh
li x
L

−sin
li x
L 17, (2)

where li is the ith root of the characteristic equation

cosh li cos li +1=0.

The method of component mode synthesis [18] is used to develop the governing
equations. As such, the system is disassembled into two parts [15]. The first part is a linear,
cantilever beam of length L, mass per unit length m(x), flexural rigidity EI(x), and viscous
modal damping. The second part is a massless, displacement-dependent non-linear dry
friction damper. Treating these subsystems separately, the kinetic energy of the beam is
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T=
1
2

s
NM

i=1

mi ż2
i , (3)

where mi is the modal mass of the ith beam mode:

mi =g
L

0

m(x)f2
i (x) dx.

It can be shown that the eigenfunctions fi (x) as given in equation (2) have been
normalized such that all modal masses are unity.

The potential energy of the beam is

V=
1
2

s
NM

i=1

mi v
2
i z2

i , (4)

where the modal stiffness of the ith beam mode is given by

mi v
2
i =g

L

0

EI(x)f0i (x)2 dx.

The virtual work on the beam due to a point force F(t) applied at the end of the beam
and viscous modal damping is

dWB = s
NM

i=1

(F(t)fi (L)−2zi vi żi ) dzi , (5)

where zi are the beam modal damping ratios and vi are the natural frequencies of the
assumed beam modes.

The kinetic and potential energies of the dry friction damper are assumed to be zero.
The virtual work of the damper consists of two parts. One part is associated with the
Coulombic force, mNx , where m is the sliding coefficient of friction (assumed to be equal
to the static coefficient of friction) and Nx is the normal force perpendicular to the sliding
interface. The second part accounts for the tangential component or in-plane restoring
force, Ny , between the roller and the ramp surface:

dWD =−mNx sgn (ẇd ) dwd −Ny dwd , (6)

where wd is the displacement of the damper and

Nx =N0 +K tan g =wd =, Ny =(N0 +K tan g =wd =)tan g sgn (wd).

Note that the transverse force Nx is composed of two parts. The first part, N0, is the preload
present in the spring K. The second part grows linearly with the damper displacement due
to the ramp angle, g.

A constraint, g, is introduced that states that the dry friction damper and the beam must
remain in contact at all times; i.e., the beam displacement at the point of attachment,
x=D, must remain equal to wd at all times:

g(z1, z2, . . . , zNM , wd )=w(D, t)−wd = s
NM

i=1

zi fi (D)−wd =0. (7)
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The ‘‘modified Lagrangian’’ used in the component mode synthesis technique [18] is

L*=T−V+ bg, (8)

where b is the Lagrange multiplier (force of constrant). Lagrange’s equations may now
be applied:

d/dt(1L*/1q̇i )− 1L*/1qi =Qi , i=1, NM+1, (9)

where the generalized co-ordinates qi are zi for i=1, NM and qNM+1 =wd . Qi are the
generalized forces that are obtained from the respective virtual work terms. The resulting
equations are

mi [z̈i +2zi vi żi +v2
i zi ]=F(t)fi (L)+ b(t)fi (D), i=1, NM, (10)

m(N0 +K tan g =wd =)sgn (ẇd )+ (N0 +K tan g =wd =) tan g sgn (wd )+ b(t)=0. (11)

These plus the constraint (7) form a system of NM+2 equations in as many unknowns
(zi , wd , b). One may note that with only one non-linear damper, component mode synthesis
has produced a system of governing equations consisting of NM+1 linear equations, and
a single non-linear equation.

3. HARMONIC BALANCE ANALYSIS

Considering the case of a harmonic forcing function, F(t)=F cos (vt), the harmonic
balance method can be applied to approximate the response of the beam. In this study,
the assumption will be made that a single harmonic adequately represents the response of
the system to harmonic excitation. Termed first order harmonic balance, this assumption
is valid provided that the displacement at the frictional interface is relatively free of
sticking.

Although this study will consider only first order harmonic balance, it is instructive to
discuss some of the features of multi-harmonic analyses. Several authors have considered
the inclusion of higher harmonics in the analysis of dry friction damped systems
[14, 19–22]. As discussed in reference [14], as more harmonics are included, the
displacements, strains, and even the friction force is shown to converge to results obtained
using time integration. Note that the harmonic balance method can only determine the
steady state response of a system, which can be stable or unstable. Depending on the
system and excitation parameters, the harmonic balance method may yield zero, one, or
many solutions. Usually, the period of the response is chosen to coincide with that of the
excitation; however, a subharmonic response could be easily accomodated by expanding
the response in terms of integer multiples of the subharmonic response of interest [22].
Finally, the numerical efficiency of harmonic balance methods can be considered. Since
the harmonic balance method yields the steady state solution directly, there is no need to
solve first for a transient response. This is especially helpful in the case of lightly damped
systems with widely spaced resonant frequencies in which case time integration methods
are burdened by long duration transients and small time steps. As shown below, first order
harmonic balance requires the solution of a system of linear algebraic equations plus a
single quadratic equation; thus its computational demands are extremely modest. However,
as more harmonics are included, the number and complexity of the system of non-linear
algebraic equations grows. This suggests that at some critical number of harmonics, it
would be more efficient to obtain the steady state response through numerical integration.

Retaining only the fundamental harmonic, one may express the forcing function and
unknowns, zi , b, wd , as
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F(t)=Fc cos (vt)+Fs sin (vt), zi = zc
i cos (vt)+ zs

i sin (vt), for i=1, NM,

(12, 13)

b(t)= bc cos (vt)+ bs sin (vt), wd =wc
d cos (vt)+ws

d sin (vt)=Wd cos (vt+ u).

(14)

Since only one damper is present, one can simplify the analysis without loss of generality
by specifying the phase of the damper response such that u=0:

wd =wc
d cos (vt). (15)

Substituting equations (12) through (15) into equations (7), (10) and (11) and balancing
harmonics yields

mi [(−v2 +v2
i )zc

i +2zi vvi zs
i ]=Fc fi (L)+ bcfi (D), for i=1, NM, (16)

mi [(−v2 +v2
i )zs

i −2zi vvi zc
i ]=Fs fi (L)+ bsfi (D), for i=1, NM, (17)

bs −(2/p)m(K tan gwc
d +2N0)=0, bc +tan g(K tan gwc

d +(4/p)N0)=0, (18, 19)

s
NM

i=1

zc
i fi (D)−wc

d =0, s
NM

i=1

zs
i fi (D)=0, (20, 21)

where the following fundamental harmonic approximations have been used:

sgn (wc
d cos (vt))1 (4/p) cos (vt), sgn (−vwc

d sin (vt))1−(4/p) sin (vt), (22, 23)

=cos (vt) = sgn (−vwc
d cos (vt))= cos (vt),

=cos (vt) = sgn (−vwc
d sin (vt))1−(2/p) sin (vt). (24, 25)

Equations (16) through (21) are a set of 2NM+4 linear algebraic equations and may
be solved as follows. Solve equations (16) and (17) for zc

i and zs
i in terms of Fc, Fs, bc and

bs. Solve equations (18) and (19) for bc and bs in terms of wc
d . Substituting the expressions

obtained for zc
i , zs

i , bc and bs into equations (20) and (21) yields two equations for wc
d , Fc

and Fs. Noting that the amplitude of the harmonic forcing function, F(t), satisfies the
relation F2 = (Fc)2 + (Fs)2, one may obtain a single quadratic relation for the displacement
at the damper, wc

d . Once wc
d is solved for, Fc and Fs can be determined from equations (20)

and (21), and the force of constraint, b, can be found from equations (18) and (19). Finally,
the modal amplitudes can be found from equations (16) and (17), and one may calculate
the displacement, velocity, and accelerations anywhere along the length of the beam.

Prior to plotting results, a non-dimensionalization scheme is used to scale the results.
This scheme will be similar to that used in the earlier work on this system by Whiteman
and Ferri [17] for comparison purposes. Recall from equation (1) that w(x, t) is the actual
beam flexural displacement, zi (t) are the modal amplitudes, and fi (x) are the
mass-normalized shape functions or assumed beam bending modes using fixed–free
boundary conditions (2). The modal amplitudes are non-dimensionalized such that

z̃i (t)=m1 v2
1 zi (t)/F, (26)

where F is the amplitude of the harmonic force applied to the beam at x=L,
F(t)=F cos vt. A non-dimensional frequency ratio is also introduced as

r=v/v1. (27)
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Figure 2. Harmonic balance results in terms of frequency response: ramp angle=5°; - - - -, NM=1; ——,
NM=2; ····, NM=5.

The non-dimensional beam displacement is defined as

w̃(x, t)= s
NM

i=1

z̃i (t)fi (x). (28)

For fixed force amplitudes, one may now plot frequency response curves obtained using
harmonic balance. Figure 2 is a plot of the harmonic balance prediction for the
non-dimensional beam end displacement, w̃L , for the parameter values given in Table 1
for a ramp angle of 5° and a varying number of assumed modes. Attention is restricted
to a range of excitation frequencies containing the first two system resonances. It is evident
from this plot that the harmonic balance results converge with the inclusion of only two
modes in this frequency range of interest.

Figure 3 is a similar plot for a ramp angle of 35°. It is interesting to note that now three
modes are required for convergence. This occurs as a result of the damper constraint
becoming stiffer, necessitating the inclusion of higher modes of vibration.

Figure 3. Harmonic balance results: ramp angle=35°, NM Values: - - - -, 1; ++, 2; ——, 3; ····, 5.
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Figure 4. Harmonic balance results: NM=3, ramp angles (°)=0: - - - -, 0 (A); ——, 5 (B); +++, 14 (C);
—w—, 25 (D); —*—, 35 (E).

Using three assumed modes, Figure 4 gives harmonic balance results for various ramp
angles, g. From a design standpoint, the implications of this plot are significant in
determining how to control the magnitude of the response using passive friction damping.
It is seen that the damper’s effectiveness depends strongly on the ramp angle and the
frequency range in which one is operating. For low frequency ratios, rQ 1·8, and for
frequency ratios above 5·5, the magnitude of the response becomes increasingly smaller
as the ramp angle is increased. In the mid-frequency range of 3Q rQ 5, however, the
magnitude of the response increases for larger ramp angles. This ‘‘overlapping’’ of the
response curves was also noted in the earlier SDOF study of this system [17], but has a
much more pronounced effect when multiple modes are considered.

Further observations concerning the approximate harmonic balance results will be made
after a comparison with the time integration results is completed in the following section.

4. NUMERICAL INTEGRATION TECHNIQUE

The system of multi-mode equations for the beam, equations (7), (10) and (11), may be
numerically integrated at various frequencies of excitation until steady oscillations develop.
These results can then be used to plot frequency response curves as was done with the
harmonic balance method.

Equation (11) contains discontinuous terms because of the signum function used in the
friction model. These discontinuities present computational difficulties during numerical
integration. In particular, when sticking occurs, the discontinuity in the friction law causes
the friction force to switch directions excessively, at times, with every time step. This can
lead to very high computational times, especially when using an automatic time-step
control technique in the integration, which was the case in this research.

On the other hand, maintaining a constant time step through a sticking interval can lead
to a significant loss of accuracy. To avoid these problems, a sticking condition was checked
each time the slip velocity crossed zero. If the maximum available friction force was
sufficient to prevent slipping, the time integration was restarted using a set of linear
equations representing the beam’s dynamics for complete sticking. After each time step,
the sticking condition was then rechecked to determine if the beam was still sticking or
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had started to slip. The theoretical development of the linear beam equations for the case
of a stuck friction interface follows.

When complete sticking occurs at the damper, the expressions for kinetic and potential
energy, as well as the expression for virtual work for the beam, equations (3), (4) and (5),
remain unchanged. The damper constraint (7) is such that the damper displacement
remains constant at the value at which sticking occurred, wd0. Application of component
mode synthesis and Lagrange’s equations now yields a completely linear system of
equations:

mi z̈i +2zi mi vi żi +mi v
2
i zi =F(t)fi (L)+ b(t)fi (D), for i=1, NM, (29)

s
NM

i=1

zi fi (D)=wd0. (30)

These equations can be reduced to eliminate b(t) and the constraint condition (30) in the
following manner. First, let the following represent ‘‘initial’’ modal quantities when
sticking occurs:

z10 ż10

z20 ż20

z0 =G
G

G

K

k

...
G
G

G

L

l

, ż0 =G
G

G

K

k

...
G
G

G

L

l

.

zNM0 żNM0

For the duration of the sticking interval the modal displacements and velocities can be
written as

z= z0 +Dz, ż= ż0 +Dż, (31)

where Dz and Dż represent the dynamic motion of the beam after the onset of sticking.
Substitution of equations (31) into equations (29) and (30) yields

mi Dz̈i +2zi mivi Dżi +miv
2
i Dzi =F(t)fi (L)+ b(t)fi (D)−2zi mivi żi0 −mi v

2
i zi0,

for = i=1, NM, (32)

s
NM

i=1

Dzi fi (D)=0. (33)

These equations can be combined into a reduced set of NM−1 equations using the
component mode synthesis procedure outlined in reference [18]. Using this procedure, first
one introduces the linear transformation

Dz(t)= [S]q(t), (34)

where
Dz2

Dz3

q=G
G

G

K

k

...
G
G

G

L

lDzNM

and [S] is a matrix that enforces the constraint condition

Dz1 =−[f2 (D)/f1 (D)]q1 − [f3 (D)/f1 (D)]q2· · ·−[fNM (D)/f1 (D)]qNM−1
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as its first row such that

−f2 (D)/f1 (D) −f3 (D)/f1 (D) · · · −fNM (D)/f1 (D)
1 0 · · · 0

[S] =G
G

G

K

k

...
...

...
...

G
G

G

L

l

.

0 0 · · · 1

The transformation (34) is substituted into equation (32), and the result is premultiplied
by [S]T. One can easily verify that the term [S]Tbf(D)=0, where

f1 (D)

f2 (D)
f(D) =G

G

G

K

k

...
G
G

G

L

l

,

fNM (D)

The final result is the desired set of linear differential equations that describe the beam
system when the interface is stuck:

[M]q̈+[C]q̇+[K]q=

m1 v2
1 z10 2z1 v1 m1 ż10

m2 v2
2 z20 2z2 v2 m2 ż20

[S]TF(t)f(L)− [S]TG
G

G

K

k

···
G
G

G

L

l

−[S]TG
G

G

K

k

···
G
G

G

L

l

, (35)

mNM v2
NM zNM0 2zNM vNM mNM żNM0

where

m1 0 · · · 0

0 m2 · · · 0
[M]= [S]TG

G

G

K

k

···
···

···
···

G
G

G

L

l

[S],

0 0 · · · mNM

2z1 v1 m1 0 · · · 0

0 2z2 v2 m2 · · · 0
[C]= [S]TG

G

G

K

k

···
···

···
···

G
G

G

L

l

[S],

0 0 · · · 2zNM vNM mNM

m1 v2
1 0 · · · 0

0 m2 v2
2 · · · 0

[K]= [S]TG
G

G

K

k

···
···

···
···

G
G

G

L

l

[S]·

0 0 · · · mNM v2
NM

Time integration of equation (35) is continued until it is determined that the system is no
longer stuck. This determination is made easily if one notes that b(t) is the force of
constraint. The value of b(t) can be obtained from any of the NM equations (29); in this
study the first modal equation in equation (29) is used. It can be shown that the interface
will remain stuck provided that
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m(N0 +K tan g =wd =)e =b(t)+ (N0 +K tan g =wd =) tan g sgn (wd ) =. (36)

Once it has been determined that the system is no longer stuck, the numerical integration
procedure is restarted using equations (7), (10), (11).

5. COMPARISON OF HARMONIC BALANCE AND NUMERICAL INTEGRATION
RESULTS

The accuracy of the harmonic balance results with respect to time integration results
is now examined. This is important in determining the extent to which conclusions based
on the harmonic balance results can be trusted. Based on the preliminary results from
harmonic balance, three assumed modes of vibration were deemed to be sufficient in the
frequency range 0Q rQ 8, for gE 35°.

Figure 5 shows frequency response comparisons between harmonic balance and
numerical integration at a ramp angle of 5° using a one mode and a three mode beam
model. Qualitatively, the multi-mode results compare well with the results using only one
mode. This is an important observation since it suggets that the results and conclusions
obtained using a one-mode analysis in earlier research efforts [17] are generally supported
by the multi-mode analysis in the low frequency range.

It is seen that the harmonic balance results as compared to numerical integration are
very good over the frequency range, rq 2·7. At lower frequencies of excitation where
stick/slip motion is much more prevalent, however, there is quite a large discrepancy. This
stick/slip motion is characterized by the dry friction damper ‘‘sticking’’ or ‘‘locking’’ for
a short time each time the velocity reverses direction. The accuracy of the first order
harmonic balance is degraded in the case of stick/slip motion because the intermittent
sticking adds higher harmonic content to the response, which can excite higher modes of
vibration [14]. In addition, the inaccuracy of the harmonic balance method in predicting
the phase shift between input and output as noted in reference [17] also contributes to
significant errors in displacement amplitude predictions at low forcing frequencies.

The effect of the addition of higher modes of vibration is clearly evident in the numerical
integration results using three modes. Internal resonance peaks are observed in the regions
around r=1–1·2; 1·4–1·6, 1·9–2·1; 2·4–2·7 and 5·8–6·0. These peaks are induced by

Figure 5. Frequency response curves for ramp angle=5°. (a) NM=1, (b) NM=3. Key: - - - -, harmonic
balance; ——, time integration.
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Figure 6. Fast Fourier transform; ramp angle=5°; NM=3; forcing frequency at r=2·7.

harmonics of the forcing function in those frequency ranges. As an example, the area of
transition at r=2·7 is analyzed in detail. At forcing frequencies higher than this, there
is good agreement between the harmonic balance and time integration predictions.
Frequencies below 2·7 indicate the emergence of an internal resonance peak. A Fast
Fourier Transform (FFT) of the steady state time response of the non-dimensional beam
end displacement for r=2·7 is presented in Figure 6. It appears from this plot that the
resonant peak is caused by a combination of the third subharmonic of the forcing exciting
the first beam mode at r=0·903 and of the seventh multiple of the third subharmonic
exciting the second beam mode at r=6·32. (Note that the assumed first and second natural
frequencies of the undamped clamped–free beam are 152·3 rad/s {r=1} and 954·7 rad/s
{r=6·27}.)

Figure 7 is a plot of the magnitudes of the modal amplitudes, z1, z2, and z3, at varying
excitation frequencies. This plot helps to confirm the above observation at r=2·4 to 2·7.
Similar analysis of the peaks at r=1·1, 1·5, 1·9 and 5·9 indicate that they are the result
of combinations of the third and fifth harmonics of the forcing frequency exciting
combinations of the first, second and third beam modes.

To confirm the general qualitative agreement between the one mode and multi-mode
solutions, Figure 8 is a plot of harmonic balance versus numerical integration results at

Figure 7. Modal amplitude contributions; ramp angle=5°: ——, z1; - - - -, z2; -w-w-w-w-, z3.
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Figure 8. Frequency response curves for ramp angle=14°; (a) NM=1; (b) NM=3. Key as in Figure 5.

a ramp angle of 14°. This is an especially interesting angle since it was shown in reference
[17] that nearly maximum sticking occurs for the one mode approximation at this
particular angle given the parameters in Table 1. It is interesting to note the increased
occurrence of internal resonance peaks evident in the multi-mode solution. This is due to
the more prevalent stick/slip behavior and the resulting increase in higher harmonic
content of the response.

It is also most interesting to note the existence of multiple equilibrium solutions for the
multi-mode results evident in Figure 8(b). This type of behavior was also observed in the
single-degree-of-freedom system analyzed in reference [17] and it was found that both
solution branches were stable. As such, both solution branches must be considered when
analyzing the dynamic response of the system. If one were unaware of the existence of the
upper solution branch, forced response amplitudes could be significantly underpredicted,
leading to premature component failure. While operating along the lower amplitude
solution branch, a sufficiently large disturbance could cause the system to jump to the
higher amplitude branch. Therefore, the existence of these two stable solution branches
could have a significant impact on design considerations.

6. DAMPING CONSIDERATIONS

A key finding in reference [17] was that the damping provided by displacement-depen-
dent dry friction was similar to linear structural damping. As such, the equivalent damping
ratio, z, was shown to be relatively insensitive to changes in the amplitude of the response
for relatively large amplitudes.

To provide evidence of this observation for the multi-mode case, a bandwidth method
or half-power method analysis was performed on the second resonant peak. Figure 9 is
a plot of multi-mode frequency response curves of this resonant peak for a variety of
forcing levels. To clarify the corresponding increase in the levels of the displacement
response, the dimensional end beam displacement is plotted on the y-axis. Using the
half-power method, it was found that the equivalent linear damping ratio for each curve
was approximately equal to 0·017. Thus, regardless of the levels of displacement response,
the equivalent damping ratio remained basically unchanged. Another key observation was
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Figure 9. Frequency response curves for beam end displacement (m), second resonant peak; ramp angle=5°;
NM=3, N0 =5 N, zi =0·01; various forcing amplitudes: (a) F=10 N, (b) F=20 N, (c) F=50 N.

that the damping of this second mode was much less than that provided in the region of
the fundamental mode when compared to the results of reference [17].

It was also noted in reference [17] that in the absence of the preload (N0 =0), the friction
force exactly satisfies the requirements of linear structural damping. That is, it provides
a force that is proportional to displacement but in phase with velocity. To further confirm
this observation, the preload and applied viscous damping were removed and additional
analyses were conducted. Figure 10 is a plot of these results. To construct this plot, several
half power analyses were again conducted on the second resonant peak at various forcing
levels. The calculated equivalent damping ratio was then plotted against the corresponding
peak dimensional end displacement. Again, the invariance of the equivalent damping ratio
to changes in displacement amplitude suggests that the damping properties of the second
resonant peak bear a close resemblence to those normally associated with linear structural
damping.

7. CONCLUSIONS

A multi-degree-of-freedom model of a beam-like structure damped with a
displacement-dependent friction force has been studied. These results qualitatively agree
with the results obtained analyzing the same structure using a SDOF model [17]. Both the
single and multiple mode analyses suggest that it may be possible to enhance the vibration
suppression properties of dry friction through the judicious selection of the ramp angle
associated with the interface connection.

Figure 10. Equivalent damping ratio versus beam end displacement amplitude in m: second resonant peak;
ramp angle=5°; NM=3, no viscous damping; no preload, N0 =0.
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It is found that the ability to control the amplitude of the response is a function of the
frequency range considered. In general, near modal resonance peaks, the amplitude of the
response decreases with increasing ramp angles. However, in an ‘‘overlapping’’ region
between resonance peaks, the amplitude of the response actually increases with increasing
ramp angle.

Both harmonic balance and time integration techniques were used in the analysis of this
system. It is shown that the presence of stick-slip motion and the inability of the harmonic
balance technique to predict the proper phase between the input force and the response
displacement at low frequencies of excitation result in significant errors in the harmonic
balance solution. In addition, time integration of the multi-mode model reveals numerous
internal resonance peaks. These peaks are the result of higher modes of vibration being
excited by the higher harmonic frequency content in the stick/slip response.

An analysis of the damping characteristics indicated that the dry friction force is most
effective in damping the fundamental mode. The other critical observation was that this
damping contribution by the displacement-dependent dry friction damper is still linear
structural-like in nature when multi-modes are considered and relatively insensitive to
changes in the amplitude of the response. This result indicates that in the case of turbine
or compressor blades, this type of damper arrangement may be effective in the suppression
of flutter.
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