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Many interesting systems in acoustics and fluid dynamics may be mathematically
modelled by partial differential equations (PDE) where linear advection and/or non-linear
reaction are the dominant effects [1–3]. For two space dimensions, the PDE’s take the
form

ut + aux + buy =0, ut + aux + buy = u(1− u), (1, 2)

where a and b are constants, and the reaction term in equation (2) is taken to be a normal
quadratic polynomial in u(x, y, t). Taken as initial value problems, i.e., u(x, y, 0)= f(x, y)
given, one will show below that both PDE’s can be solved exactly for

−aQ xQ+a, −aQ yQ+a, tq 0. (3)

However, a major reason for considering these equations is that they provide the
opportunity for studying finite difference schemes used to numerically integrate more
complex sets of PDE’s [4, 5].

The main purpose of this letter is to derive exact finite difference schemes for equations
(1) and (2). These exact schemes can then be used as bench marks for purpose of
comparison with finite difference schemes constructed using the standard methods [2, 4, 5].
This work extends the results previously reported in references [6, 7]. As a reminder, exact
finite difference schemes can be characterized as follows [8]: Let u(x, y, t) be the solution
to a two space dimension PDE; let uk

m,n be the solution to a finite difference model of the
PDE such that

tk =(Dt)k, xm =(Dx)m, yn =(Dy)n. (4)

Then the finite difference scheme is exact if

u(xm , yn , tk )= uk
m,n (5)

for all (positive) values of the step sizes (Dt, Dy, Dt). In general, functional relations will
exist among the three step-sizes; for example

Dx= g1 (Dt), Dy= g2 (Dt), (6)

where g1 and g2 are known functions. Thus, subject to the constraints of equations (6), such
schemes give the exact value of u(x, y, t) at each point on the computational grid [8]; the
truncation error is zero!

To proceed, the exact solutions of equations (1) and (2) must be determined. A direct
calculation shows that equation (1) has the solution

u(x, y, t)= f(x− at, y− bt), (7)
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if u(x, y, 0)= f(x, y) is given and f has a first derivative [9]. Likewise, for equation (2),
if u(x, y, 0)= g(x, y) is given, where for physical reasons 0E f(x, y)E 1, then the general
solution is

u(x, y, t)= g(x− at, y− bt)/[(1−e−t)g(x− at, y− bt)+ e−t]. (8)

To derive this result, equation (2) is linearized by means of the transformation

u(x, y, t)=1/w(x, y, t) (9)

to give

wt + awx + bwy +w=1. (10)

This last equation can be solved exactly [9].
Now observe that if Dx and Dy are selected so that

Dx= aDt, Dy= bDt, (11)

and if uk
m,n is taken to be

uk
m,n 0 f(xm − atk , yn − btk )=F(m− k, n− k), (12)

then uk
m,n satisfies the partial difference equation

uk+1
m,n = uk

m−1,m−1. (13)

This is the exact finite difference scheme for equation (1). A little algebraic manipulation
will put equation (13) into the form

uk+1
m,n − uk

m,n

Dt
+0 a

Dx1 $0uk
m,n + uk

m,n−1

2 1−0uk
m−1,n + uk

m−1,n−1

2 1%
+0 b

Dy1 $0uk
m−1,n + uk

m,n

2 1−0uk
m−1,n−1 + uk

m,n−1

2 1%=0. (14)

Examination of this expression shows that the discrete time derivative is the usual forward
Euler method. However, the discrete space derivatives have a more complex form. For
example, the discrete x derivative is the backward Euler method applied to the average
of uk

m,n over the n variable using adjacent lattice points in the m variable. A similar situation
holds for the discrete y derivative.

The same analysis can be applied to equation (2) and its solution given by equation (8).
The way to proceed is to solve equation (8) for g(x− at, y− bt) and use equation (13).
The corresponding exact finite difference scheme for equation (2) is

uk+1
m,n = uk

m−1,n−1 /[e−Dt +(1−e−Dt)uk
m−1,n−1], (15)

which can be rewritten in the form

(uk+1
m,n − uk

m,n )/f1 (Dt)+ a[(uk
m,n − uk

m−1,n )/f2 (Dx)]+ b[(uk
m−1,n − uk

m−1,n−1)/f3 (Dy)]

=uk
m−1,n−1 (1− uk+1

m,n ), (16)

where

f1 (Dt)= eDt −1, f2 (Dx)= a(eDx/a −1), f3 (Dy)= b(eDy/b −1), (17a, b)

and the functional relations given by equation (11) hold.
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It is clear that the exact schemes for equations (1) and (2) given, respectively, by
equations (14) and (16) are not what is obtained using the standard finite difference
methods [2, 4, 5]. For example, a standard scheme might give the following discrete model
for equation (2)

(uk+1
m,n − uk

m,n )/Dt+ a([uk
m+1,n − uk

m−1,n ]/Dx)+ b([uk
m,n+1 − uk

m,n−1]/Dy)=uk
m,n (1− uk

m,n ). (18)

with no a priori functional relations holding between the step-sizes. This scheme will, in
general, have ‘‘numerically choatic’’ solutions [8]. Other standard schemes for both
equations (1) and (2) will lead to similar results. However, the schemes of this letter are
exact and give the restrictions that must hold among the step-sizes. Consequently, these
schemes can be used as bench marks to test finite difference models for more complex
PDE’s [10].

The final observation is that the exact finite difference scheme for equations (1) and (2),
given, respectively, by equations (13) and (15), are quite simple in their structures. They
both are explicit schemes and easy to use for the calculation of numerical solutions. One
begins by selecting a value for Dt; the values for Dx and Dy are then given by equation
(11). For a particular initial function, u0

n,m , the numerical solution at any discrete time tk

can then be determined in a straight forward manner. The sole reason for rewriting these
simple expressions to the complex forms of equations (14) and (16) is to have relations
that can be directly compared to standard finite difference schemes such as equation (18).
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