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This work is concerned with the response of a beam grillage system to a harmonic point
load. This system serves as a particular example of a two-dimensional periodic structure,
and the aim of the work is to validate a number of recent results regarding the general
nature of the response of such structures to a localized excitation source. The grillage is
analyzed by using the hierarchical finite element method to model a single period and then
employing periodic structure theory to yield the ‘‘phase constant surfaces’’ which are
needed for the forced response analysis. The theoretical work is complemented by an
experimental study of a grillage system; a relatively high level of damping treatment is
employed to produce a non-reverberant system that behaves in a similar manner to an
infinitely extended system. Both the theoretical and experimental results show that the
response can exhibit highly directional ‘‘beaming’’, the spatial pattern of which is strongly
dependent on the excitation frequency, and this finding is fully consistent with the findings
of the aforementioned general study.
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1. INTRODUCTION

Any structure which is constructed by repeating a basic structural unit to form a regular
pattern is known as a periodic structure. Such structures occur widely in engineering, with
a prime example consisting of an orthogonally stiffened plate or shell: here the basic
structural unit can be considered to be an edge stiffened panel which is repeated in two
directions to form the complete system. In this case the system is said to be a
two-dimensional periodic structure, and much previous research effort has been directed
at the dynamic behaviour of structures of this type. The motivation for this work has arisen
from the fact that many engineering structures are subjected to significant dynamic
loading, and this can lead to excessive noise and vibration levels and/or fatigue damage
unless dynamic response is considered at the design stage.

The majority of previous work on two-dimensional periodic structures has been
concerned with the propagation of free plane wave motion through the system and/or the
response of the system to plane pressure wave excitation (as summarized in two recent
review papers [1, 2]). In the case of free plane wave motion, the system can be analyzed
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by applying Bloch’s theorem [3] to a mathematical model of a single period; examples of
this approach are given in reference [4] for an orthogonally stiffened plate and in reference
[5] for an orthogonally stiffened shell—in each case the hierarchial finite element method
was used to model the single period. The response of the system to pressure wave excitation
can also be analyzed by considering a single period, and this approach is described in
references [6] and [7] for the case of a stiffened plate. The response of a two-dimensional
periodic structure to localized forcing, such as a point load, is more problematical, since
the system response will not be homogeneous (i.e., of the same form in each period) and
thus it is not obvious that the response can be predicted by considering a single period
alone. This issue has recently been addressed in reference [8] for the case of harmonic point
loading and in reference [9] for the case of impulsive point loading. In each case it was
shown that the response can in fact be expressed in terms of the plane wave components
which are yielded by a free vibration analysis of a single periodic unit, and the developed
theory was applied to a simple two-dimensional periodic mass–spring system. For
harmonic excitation it was shown that the system response can display very distinctive
‘‘beaming’’ behaviour at certain frequencies, with significant motion being restricted to
narrow directional bands radiating from the point load. While this type of behaviour is
certainly predicted theoretically for the simple mass–spring system considered in reference
[8], two points remain to be proven: (i) whether beaming will occur for more complex and
more realistic two-dimensional periodic structures; and (ii) whether beaming can clearly
be observed in an experimental structure. With regard to point (ii) it can be noted that
beaming has very recently been observed by applying acoustic holography measurement
techniques to a point loaded ribbed shell [10]. The ribbed shell is basically a
one-dimensional periodic structure, in the sense that the ribs lead to structural periodicity
in the axial direction only, although the surface of the shell does of course form a
two-dimensional region. In the present work, points (i) and (ii) are investigated for a truly
two-dimensional periodic system via a theoretical and experimental study of a beam
grillage system. This serves to illustrate and validate the theory presented in reference [8]
for a realistic engineering structure which has been the subject of previous studies regarding
free wave motion [11].

A beam grillage is perhaps the simplest form of continuum two-dimensional periodic
structure which can be tested experimentally, and in the present work a beam grillage
constructed from strips of aluminium with bolted joints is considered. The response of the
system to a harmonic point load is computed by employing the analysis of reference [8]
in conjunction with an hierarchical finite element model of a single period. The predicted
response is then compared with experimental results and an excellent qualitative and good
quantitative level of agreement is demonstrated. In particular, the beaming behaviour
predicted in reference [8] is observed clearly in both the theoretical and experimental
results.

2. ANALYSIS OF FREE WAVE MOTION IN A PERIODIC BEAM GRILLAGE

2.1.        

The present analysis is concerned with the beam grillage system which is shown
schematically in Figure 1. The grillage is a two-dimensional periodic structure in the sense
that the complete system can be constructed by repeating a single ‘‘period’’ (highlighted
in Figure 1) in both the x1 and x2 directions. As a preliminary to modelling free wave
motion through the system, it is necessary to develop a mathematical model of the single
period, and in this regard the present analysis is restricted to the consideration of torsion
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Figure 1. A schematic of a periodic beam grillage system with a single period highlighted. The point A
represents the reference node.

and out-of-plane bending of the beam components: it is assumed that in-plane bending
and axial vibrations occur at frequencies beyond the current range of interest, and this is
certainly true for the experimental structure described in section 4.

The period highlighted in Figure 1 is modelled in what follows by using two hierarchical
finite elements, so that the system has three nodes, as indicated in Figure 2. Taking the
first element as an example, the out-of-plane displacement w and torsional rotation u are
expressed in the form

w(x, t)= s
N

r=1

ar (t)fr (x), u(x, t)= s
M

r=1

br (t)gr (x), (1, 2)

where x is measured along the beam axis. The out-of-plane degrees of freedom ar consist
of the four nodal degrees of freedom (w1 c1 w2 c2) shown in Figure 2, together with a set
of internal generalized degrees of freedom which make no contribution to the displacement

Figure 2. A two-element hierarchical finite element model of a single period. Note that for element 2, u2 and
u3 are bending degrees of freedom, while c2 and c3 are torsional degrees of freedom.



. .   .524

and slope at either end of the element. The shape functions fr (x) associated with the nodal
degrees of freedom are the standard cubic polynomials which are employed in a
conventional beam finite element [12], while those associated with the generalized degrees
of freedom are based on Legendre polynomials, as detailed in reference [13]. The first two
torsional degrees of freedom br which appear in equation (2) represent the nodal rotations
(u1 u2) shown in Figure 2, while the remaining degrees of freedom represent internal
rotations. In this case g1 (x) and g2 (x) are linear shape functions, while the subsequent
terms are Legendre polynomials with gr (0)= gr (L)=0, where L is the length of the
element [14]. Full mathematical details of the hierarchical finite element method are
available in references [13] and [14], and the shape functions fr (x) and gr (x) are plotted
in reference [14].

Given the assumed displacements in the form of equations (1) and (2), the kinetic energy
of the beam element can be written as [15]

T=(1/2) s
N

r=1

s
N

s=1

ȧr ȧs g
L

0

mfr (x)fs (x) dx+(1/2) s
M

r=1

s
M

s=1

b� r b� s g
L

0

Ip gr (x)gs (x) dx, (3)

where m and Ip are, respectively, the mass and polar moment of inertia per unit length.
Similarly, the strain energy of the element can be written as [15]

U=(1/2) s
N

r=1

s
N

s=1

ar as g
L

0

EIf 0r (x)f 0s (x) dx+(1/2) s
M

r=1

s
M

s=1

br bs g
L

0

GJg'r (x) g's (x) dx, (4)

where EI and GJ are the flexural and torsional rigidities of the beam. The integrals that
appear in equations (3) and (4) can be evaluated by employing symbolic computing, as
detailed in reference [14]. The equations of motion of the element then follow from
Lagrange’s equation, which states [15] that

d
dt 01T

1u̇r1−
1T
1ur

+
1U
1ur

=0, (5)

where ur represents either ar or br . Having derived the equations of motion of each of the
two elements in this way, the equations of motion of the complete period can be assembled
by enforcing compatibility at the coupling point (node 2); the resulting equations can then
be written conveniently in the following partitioned matrix form

M11 M12 M13 M1I ü1 K11 K12 K13 K1I u1 0

MT
12 M22 M23 M2I ü2 KT

12 K22 K23 K2I u2 0
G
G

G

F

f

G
G

G

J

j

G
G

G

F

f

G
G

G

J

j

G
G

G

F

f

G
G

G

J

j

G
G

G

F

f

G
G

G

J

j

G
G

G

F

f

G
G

G

J

j
MT

13 MT
23 M33 M3I ü3

+
KT

13 KT
23 K33 K3I u3

=
0

.

MT
1I MT

2I MT
3I MII üI KT

1I KT
2I KT

3I KII uI 0

(6)

Here ui =(wi ci ui ) represents the deflection of node i (for i=1, 2 and 3), and uI represents
the complete set of internal degrees of freedom (both out-of-plane and torsion) for the two
element assembly. The nodal degrees of freedom are shown in Figure 2, while the internal
degrees of freedom represent the amplitudes of the hierarchical shape functions; as
mentioned previously, these shape functions do not contribute to the displacements or
rotations at the nodal points.
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In the experimental structure considered in section 4, the beams are bolted together at
the connection point (node 2) and the bolt contributes a significant local mass; this is
allowed for in the present model by adding the bolt mass to the first diagonal entry of
M22. As described in the following section, the equations of motion of the single period,
equation (6), can be used to study the propagation of wave motion through the complete
system.

2.2.     

Free harmonic wave motion through a periodic system can be analyzed by employing
Bloch’s theorem, which states that the change in the complex wave amplitude across a
period does not depend upon the location of the period within the system. In the present
notation, the theorem takes the form u2 = exp (l1)u1 and u3 = exp (l2)u2, where the
constants l1 and l2 are functions of the frequency v of the wave motion but do not vary
from period to period. If the wave motion propagates without attenuation in either the
x1 or the x2 direction, then l1 and l2 will take the form l1 = io1 and l2 = io2, where o1 and
o2 (with −pQ oi E p for uniqueness) are known as the phase constants of the motion. In
this case Bloch’s theorem for a single period can be expressed conveniently in the matrix
form

u1 I 0

u2 Ieio1 0 u1

G
G

G

F

f

G
G

G

J

j

G
G

G

F

f

G
G

G

J

j
0 1u3

=
Ieio1 + io2 0 uI

=Ru, (7)

uI 0 I

where R and u are defined accordingly. This result can be combined with equation (6) to
yield

R*T (−v2M+K)Ru= 0, (8)

where M and K represent the matrices which appear in equation (6), and it has been noted
that the motion is time harmonic with frequency v. The use of the term R*T on the left
of equation (8) ensures that the relevant force equilibrium conditions are satisfied by the
wave motion [16]. Equation (8) can be re-expressed in the form

{−v2A(o1, o2)+B(o1, o2)}u= 0, (9)

where the matrices A and B are derived from M and K via the transformation matrix R.
For specified o1 and o2, equation (9) represents an eigenproblem that can be solved to yield
the eigenfrequencies v and the associated eigenvectors u; it can readily be verified that A
and B are Hermitian matrices, which means that the eigenfrequencies are real. Physically,
any triad (o1, o2, v) resulting from equation (9) corresponds to a propagating plane wave,
and a three-dimensional plot of the frequency v against the o1–o2 plane will yield a so-called
‘‘phase constant surface’’ v=V(o1, o2) [1, 2]—clearly, multiple surfaces will arise in a plot
of this type, since each point on the o1 – o2 plane is associated with multiple frequencies
via equation (9).

It is convenient to describe the location of any point on the beam grillage via a combined
global/local reference system of the form (n, x), where n=(n1 n2) identifies the period
containing the point and x=(x1 x2) identifies the point location within the period, as
shown in Figure 1. With this notation the out-of-plane wave motion w(n, x, o1, o2)
associated with a solution v=V(o1, o2) to equation (9) will have the form [3]

w(n, x, o1, o2)= a(x, o1, o2) exp (io1 n1 + io2 n2 + ivt), (10)
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where a(x, o1, o2) is a complex amplitude function; this function can be constructed from
the eigenvector u yielded by equation (9) in conjunction with the shape functions fr and
gr which appear in equations (1) and (2). As discussed in the following section, the phase
constant surfaces and the associated wave amplitude functions a can be used to compute
the response of the system to harmonic point loading.

3. RESPONSE OF A BEAM GRILLAGE TO HARMONIC POINT LOADING

The response of a general two-dimensional periodic structure to harmonic point loading
has been considered in reference [8]. In the present section, a slightly modified version of
the analysis contained in reference [8] is applied to the beam grillage system shown in
Figure 1.

The out-of-plane response w(n, x) of the grillage produced by a harmonic point load
of frequency v, location (n0, x0), and complex amplitude F, can be expressed in the form
of a modal expansion so that [15]

w(n, x)= s
p

s
q

Ffpq (n0, x0)fpq (n, x)
(1+ ih)v2

pq −v2 , (11)

where fpq (n, x) are the modes of vibration of the system, vpq are the natural frequencies
and h is the loss factor. The modes of vibration that appear in equation (11) are scaled
to unit generalized mass so that

s
N1

n1 =1

s
N2

n2 =1 gA

r(x)f2
pq (n, x) dx=1, (12)

where A represents the area of a period, r(x) is the density (mass per unit area), and N1

and N2 are, respectively, the total number of periods in the x1 and x2 directions.
The modes of vibration fpq (n, x) are strongly dependent on the boundary conditions

which are applied to the system, and the forced response yielded by equation (11) will
normally share this dependency. If, however, the system is highly damped, so that the
disturbance produced by the point load decays significantly before reaching the system
boundaries, then the response will be approximately independent of the boundary
conditions, and any mathematically expedient set of boudary conditions can be employed
to yield the mode shapes and natural frequencies which appear in equation (11). In this
case it is convenient to employ the Born–Von Kármán boundary conditions [8], as the
modes of vibration can then be expressed very simply in terms of propagating plane wave
components; since the modes form a complete set of admissible functions, there is no need
to consider evanescent forms of wave motion through the grillage system. The Born–Von
Kármán boundary conditions, which were originally developed for solid-state physics
applications [17], state that the left-hand edge of the system is contiguous with the
right-hand edge, and similarly the top edge is contiguous with the bottom edge, so that
the system is topologically equivalent to a torus. These conditions are satisfied by a plane
wave in the form of equation (11) provided that o1 =2pp/N1 ,o1p and o2 =2pq/N2 ,o2q

for integer values of p and q; the modes of vibration can be constructed by adding or
substracting two waves which propagate in opposite directions, so that one wave has the
phase constants (o1p , o2q ) while the other has the constants (−o1p , −o2q ). It follows from
equations (7)–(10) that both of these waves propagate at the same frequency
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vpq =V(o1p , o2q ) and further that a(x, −o1p , −o2q )= a*(x, o1p , o2q ), so that the sum and
difference of the waves leads to mode shapes of the form

6f1pq (n, x)
f2pq (n, x)7=6Re

Im72apq (x) exp (io1p n1 + io2q n2), (13)

where apq (x)0 a(x, o1p , o2q ). These modes will satisfy the unit generalised mass condition,
equation (12), provided that the wave amplitude functions apq (x) are scaled such that

(2N1 N2) gA

r(x) =apq (x) =2 dx=1. (14)

The use of equations (13) and (14) in equation (11) then leads to the result

w(n, x)= s
N1 /2

p=1−N1 /2

s
N2 /2

q=1−N2 /2

2Fa*pq (x0)apq (x) exp [io1p (n1 − n01)+ io2q (n2 − n02)]
[(1+ ih)V2(o1p , o2q )−v2]

, (15)

where it has been assumed (without loss of generality for a highly damped system) that
N1 and N2 are even, and the notation n0 = (n01, n02) has been employed. As explained in
detail in reference [8], equation (15) strictly represents the contribution to the response
arising from the modes which are associated with a single phase constant surface
V(o1, o2). As remarked in section 2.2, multiple phase constant surfaces will normally arise,
and in this case equation (15) must be summed over all the relevant surfaces. It is readily
shown that each surface contributes a total of N1 N2 modes to equation (10), which is
consistent with known results regarding the modal density of a two-dimensional periodic
structure [18].

In reference [8] the summations which appear in equation (15) were converted into
integrals over the o1–o2 plane, and the far field response of the system was evaluated by
employing the method of stationary phase. With this approach care is needed to take due
account of the presence of caustics, and the resulting analysis requires evaluation of the
third derivatives of the phase constant surface V(o1, o2). In the present work the phase
constant surfaces of the grillage system are computed numerically at discrete values of o1

and o2 by employing equation (9), and the numerical evaluation of the derivatives of a
surface is prone to error unless a very fine grid of (o1, o2) points is employed. For this reason
it has been found to be more efficient for the present system to employ equation (15)
directly rather than follow the more analytical approach described in reference [8].

Equation (15) enables the forced response of the grillage system to be computed if the
phase constant surfaces V(o1, o2) and the associated wave amplitude functions a(x, o1, o2)
are known. As described in section 2, these quantities can readily be found by employing
the hierarchical finite element method in conjunction with standard periodic structure
theory. Results yielded by this approach are presented in section 5 for an example grillage
system; as explained in the following section, the system considered has also been
manufactured and tested experimentally.

4. DESCRIPTION OF THE TEST STRUCTURE

The periodic grillage test structure was constructed from an orthogonal array of
aluminium strips as shown in Figure 3. The strips were of rectangular cross-section with
an aspect ratio of approximately 12 : 1 (19·06 mm×1·59 mm), and 14 strips were
employed in the vertical direction while 13 strips were employed in the horizontal direction.
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Figure 3. A schematic of the experimental structure. Note that the vertical direction is aligned with the x1-axis
shown in Figure 1, and the reference bolt position (A), n1 = n2 =1, is located in the lower right-hand corner;
the drive position is labelled B. All dimensions are in mm.

The vertical strips were more closely spaced than the horizontal strips, presenting a grillage
aspect ratio of approximately 0·62 : 1 (the precise bolt spacings were 71·43 mm and
115·38 mm). At the crossing points, holes were drilled through both strips to accommodate
the fasteners necessary to hold the assembly together: the mass of each set of washers, nut
and bolt was approximately 6×10−3 kg and the total mass of the grillage (including bolt
sets), was approximately 3·873 kg. One side of each strip was treated with a self-adhesive
damping sheet supplied by Sound Service (Oxford) Ltd, reference SD1 SA. The mass of
the complete structure, including the damping treatment, was 4·859 kg. The system was
suspended on two thin steel cables from a supporting frame, and two small, soft pieces
of foam were inserted between the frame and the grillage to prevent rigid body motion.
The orientation of the experimental set-up (Figure 3) is such that the vertical direction
coincides with the x1-axis shown in Figure 1.

The structure was excited by means of an electromagnetic non-contacting shaker. The
coil of the shaker was attached to a force transducer by using cyanoacrylate glue, and the
force transducer was screwed directly to the bolt set of the grillage node (7, 7). An
accelerometer was also mounted at this point; the effective mass of the transducer and
accelerometer was found to be 4 g, and the raw signal from the force transducer was
processed appropriately to produce the force actually applied to the grillage. The excitation
consisted of white noise band-limited to 1550 Hz by means of a low-pass filter, and the
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response at each grillage node was measured by means of a roving accelerometer and
recorded at a sampling rate of 5350 Hz for 8192 samples. All data processing was
performed by using the MATLAB basic toolbox [19], and all spectra and transfer functions
were averaged over 20 realizations; the response of the system to harmonic forcing at any
specified frequency in the range 0–1550 Hz could then be identified from the values of the
transfer functions at this frequency.

The purpose of the damping treatment was to produce a non-reverberant structure, since
the basic assumption which lies behind equation (15) is that the forced response is
independent of the boundary conditions—this requires a sufficiently high level of
damping to prevent the majority of the input disturbance from reaching the system
boundaries. The system loss factor was found by dividing the measuring frequency range
(from 0 to 1500 Hz) into 300 Hz frequency bands. For each band a Hanning window was
implemented, and the impulse response function within each band was obtained by
employing the inverse Fast Fourier Transform to the filtered signal. The damping was
then estimated from the decay rate of the impulse response function [20, 21]. Without
the damping treatment, the system was found to be highly reverberant, with a loss factor in
the region of 0·005. With the damping treatment present the measured loss factor varied
between 0·025 and 0·134 depending upon the measurement point (accelerometer location)
and frequency band, with an average in the region of 0·1. For this reason
a loss factor of 0·1 was adopted for the theoretical response predictions which are
presented in the following section. Complete details of the experimental procedure are
given in reference [22].

5. RESULTS

5.1.       

As discussed in section 2.2, equation (9) governs free plane wave motion through the
grillage: for specified values of the phase constants −pQ oi E p the equation yields
multiple eigenfrequencies v at which propagating wave motion can occur. These
frequencies are normally presented graphically as surfaces over the o1–o2 plane, and
computed results for the grillage described in the previous section are shown in
Figures 4(a–d) in units of cycles per second f (=v/2p). As detailed in section 2.1, a
two-element model of a single period has been used to obtain these results, and in this
case ten trial functions were employed in both equations (1) and (2). This leads to matrices
A and B in equation (9) which are of dimension 34×34, and thus in principle 34 phase
constant surfaces are yielded by the equation; only the first four surfaces, which are those
shown in Figure 4, lie within the frequency range of interest.

It should be noted that some care is needed in the interpretation of the surfaces that
are shown in Figure 4. The plots are arranged so that the lowest root v (or f ) yielded
by equation (9) is shown in Figure 4(a), the second root is shown in Figure 4(b), and so
on. This does not mean, however, that each plot represents a continuous function V(o1, o2);
rather, the composite plot of Figures 4(a–d) represents a set of continuous surfaces V(o1, o2)
which in some cases intersect each other. Thus Figure 4(a) represents a single continuous
phase constant surface, whereas Figures 4(b) and 4(c) taken together represent two
continuous phase constant surfaces which intersect. This feature is illustrated in Figure 5,
which contains an outline plot of all four surfaces; the curve highlighted on the plane
o2 =−p is associated with a single continuous surface, and it can readily be seen that this
surface is actually split between Figures 4(b) and 4(c).
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Figure 4. Phase constant surfaces for the beam grillage system: (a) first eigenfrequency; (b) second
eigenfrequency; (c) third eigenfrequency; (d) fourth eigenfrequency.

The present work is concerned with harmonic excitation of the grillage at a specified
frequency v (or f)— a section through the phase constant surfaces at a fixed frequency
will yield a contour on the o1–o2 plane, and a number of contours of this type are shown
in Figure 6. As discussed in reference [8], the geometry of the contour associated with a
particular value of f has a major influence on the nature of the response of the system to
point harmonic forcing. Considering, for example, the f=600 Hz contour shown in
Figure 6(a), a point load will excite predominantly those propagating waves (o1, o2) that
lie on the contour; the energy flow associated with each wave lies along the local normal
to the contour [18], and hence it is clear that the majority of the energy flow generated

Figure 5. A composite outline plot of the first four phase constant surfaces. The second continuous surface
is outlined on the o2 =−p plane; it is clear that this surface contributes to both Figures 4(b) and 4(c).



   531

Figure 6. Fixed frequency contours of the phase constant surfaces: (a) 100 Hz, 600 Hz and 800 Hz; (b) 1 kHz,
1·2 kHz and 1·4 kHz.

by the point load will be in the x1 direction. The response can therefore be expected to
be confined to a fairly narrow ‘‘beam’’ which is aligned to the x1-axis. In contrast, the
f=100 Hz contour is much more circular, and hence the forced response at this frequency
can be expected to have a more uniform spatial distribution. Features of this type are
clearly discernable in the forced response results which are presented in the following
section.

5.2.        

Results for the forced response of the system are presented here in terms of contours
of the normalized response =w(n1, n2)/w(7, 7) =2, where w(n1, n2) is the response at bolt
position (n1, n2), and w(7, 7) is the response at the drive point. The theory presented in
section 3 is applicable to non-reverberant systems, and it has been found that the present
system meets this requirement above 500 Hz; for this reason results are presented here for
the forced response at 200 Hz intervals between 600 Hz and 1400 Hz. These results are
shown in Figures 7–11 for (a) the experimental response contours and (b) the theoretical
response contours, where the contours have been generated by using the contour facility
of MATLAB [19], given the normalized response at each bolt point. By definition, the
normalized response at the drive point is unity, and hence it is clear from Figures 7–11
that in each case the response falls off rapidly with increasing distance from this point,
so that the system has the required property of being non-reverberant. Results have also

Figure 7. Normalized forced response contours =w(n1, n2)/w(7, 7)=2 for f=600 Hz. (a) experimental results;
(b) theoretical results.



Figure 8. Normalized forced response contours =w(n1, n2)/w(7, 7)=2 for f=800 Hz. (a) experimental results;
(b) theoretical results.

Figure 9. Normalized forced response contours =w(n1, n2)/w(7, 7)=2 for f=1 kHz. (a) experimental results;
(b) theoretical results.

Figure 10. Normalized forced response contours =w(n1, n2)/w(7, 7)=2 for f=1·2 kHz. (a) experimental results;
(b) theoretical results.

Figure 11. Normalized forced response contours =w(n1, n2)/w(7, 7)=2 for f=1·4 kHz. (a) experimental results;
(b) theoretical results.
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been obtained for the response at many other frequencies between 600 Hz and
1400 Hz—these results confirm that there is a well defined progression between the results
shown in Figures 7–11, so that all of the important physical features of the response are
captured by the limited range of results presented here.

The physical implications of the geometry of the phase constant surfaces were considered
in the previous section, and on this basis it was predicted that the energy flow generated
by a point load at f=600 Hz should be aligned predominantly to the x1 direction. This
prediction is borne out by both the experimental and theoretical results which are shown
in Figure 7, where strong beaming in the x1 direction is evident. The level of qualitative
agreement between the theoretical and experimental results shown in Figure 7 is clearly
very good, while the level of quantitative agreement is generally fair. In contrast, the
level of agreement between theory and experiment shown in Figure 8 for the higher
frequency f=800 Hz is poor. The theoretical results show beaming in the x2 direction,
which is consistent with geometry of the f=800 Hz contour shown in Figure 6: the
normals to the contour are predominantly in the x2 direction, which implies that the energy
flow is also in this direction. This behaviour is not demonstrated by the experimental
results at f=800 Hz, although beaming of this type is obtained experimentally at 1 kHz,
as shown in Figure 9. Considering Figures 7–9 together, it is clear that there is a
transition from horizontal beaming to vertical beaming between 800 Hz and 1 kHz; both
theory and experiment show this behaviour, although the theoretical transition frequency
is somewhere below 800 Hz while the experimental transition occurs above this
frequency.

The theoretical results at f=1·2 kHz shown in Figure 10 display beaming in both the
x1 and x2 directions (with a low response along the lines 245°); again, this is consistent
with the geometry of the f=1·2 kHz contour shown in Figure 6, in the sense that the
normals to the contour are predominantly in the x1 and x2 directions. The experimental
results shown in Figure 10 show beaming mainly in the x2 direction, although beaming
in both directions is clearly shown in Figure 11 for the higher frequency f=1·4 kHz. Both
the experimental and theoretical results shown in Figures 9–11 display a transition from
beaming in the x1 direction to beaming in both the x1 and x2 directions, although, as for
the previous transition between 600 Hz and 1 kHz, the precise transition frequency differs
between theory and experiment.

Taken together, the results shown in Figures 7–11 show a broad measure of agreement
between theory and experiment, particularly with regard to the occurrence of beaming and
the phenomenon of transition between different types of beaming. At some frequencies the
level of quantitative agreement between theory and experiment is relatively poor, and this
can be traced in part to errors in the theoretical prediction of the transition frequencies.
Possible sources of error lie in the modelling of the added damping treatment (which
increased the mass of the system from 3·873 kg to 4·859 kg), the modelling of the bolted
joints, and a lack of perfect periodicity in the experimental structure. The viscoelastic
properties of the damping treatment were not readily available, and thus only a partial
model of the mechanical behaviour of the material was included in the theoretical
predictions. With regard to the bolted joints, only translational inertia was included in the
model and with hindsight it is possible that rotational inertia could have played a
non-trivial role for the test structure. Finally, it is known that structural imperfections can
strongly influence the behaviour of a nominally periodic system [2], and the lightweight
grillage system was noted to be slightly curved in the experimental configuration. Despite
these reservations, it is thought that the level of agreement between theory and experiment
is sufficient to validate the analytical predictions of reference [8] for a realistic engineering
system.
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6. CONCLUSIONS

In the Introduction it was stated that two points remained to be proven regarding
the analysis contained in reference [8]: (i) whether ‘‘beaming’’ will occur for realistic
two-dimensional periodic engineering structures; and (ii) whether beaming can be clearly
observed in an experimental structure. With regard to point (i), the present theoretical
study of a periodic beam grillage has shown that beaming can certainly occur in structures
of this type; although not reported in any detail here, similar results have also been
obtained by the authors for an orthogonally stiffened plate [22]. With regard to point (ii),
beaming is clearly observable in the response of the present experimental beam grillage
structure, and a reasonable level of agreement between theory and experiment has been
obtained.

It should be emphasized that the present work has considered a non-reverberant system
in which little of the power input at the drive point reaches the system boundaries. Under
this condition the finite system behaves very like an infinite system, and the response is
not affected by the nature of the boundary conditions. For a reverberant system the
‘‘beaming’’ behaviour observed here will constitute the direct field input from the drive
point; the total response will include reflections from the system boundaries which may
or may not obscure the beaming behaviour, depending on the boundary conditions. Many
two-dimensional periodic engineering structures, such as orthogonally stiffened plates and
shells, are actually relatively heavily damped due to the attachment of trim and acoustic
treatment, as in the case of an aircraft fuselage structure. The present analysis has direct
application to structures of this type, and it is conceivable that the beaming phenomenon
could be exploited as a passive vibration isolation mechanism.
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