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The optimization of the placement of secondary sources and error sensors can enhance
the efficiency of active noise control. Since the classic quadratic cost functions are not
adapted to the search of the optimal placement, it is shown that the ‘‘minimax’’
criterion—minimization of the largest squared pressure at a number of distributed
points—better suits the strategy of selection in the placement of sources and sensors.
Sufficient numbers of sources and sensors, their locations and the volume velocity of each
secondary source are found simultaneously, in a short computation time, by solving a
unique linear programming problem. Bounds on the volume velocity are introduced easily.
If the number of sources is prescribed, a mixed programming problem is solved. This paper
is devoted to the application of this method in a one-dimensional enclosure with rigid walls.
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1. INTRODUCTION

Active noise control consists of reducing an undesirable noise measured at error sensors
by adjusting the volume velocity of each secondary source. The attenuation of noise
achieved depends on the location of sources and sensors. The optimization of their
placement can therefore lead to an additional reduction of noise.

In most of the papers dealing with the optimization of the placement of sources and
sensors, the cost function is a quadratic function of the volume velocities. For a single
frequency excitation, Curtis [1] presented several quadratic forms and their minimization:
the acoustic potential energy, the acoustic intensity, the acoustic power output and the
sum of squared pressure at distributed points. These quadratic forms usually have
the advantage of representing a physical quantity. Their minimization with respect to the
volume velocities is also easy. Unfortunately, their minimization with respect to the
locations of sources and sensors is not as easy, since the objective function is not a convex
function of the locations and has many local minima. This difficult problem of placement
of sources and sensors has been solved by different methods.

These methods usually correspond to two different strategies: selection or gradient
minimization. Benzaria and Martin [2] showed that there is a great advantage in combining
these two strategies. The strategy of selection consists in defining candidate locations and
determining the best placements among them. Natural algorithms such as genetic
algorithms and simulated annealing algorithms belong to the strategy of selection. They
are promising optimization techniques for the optimal placement of sources and sensors
in active noise control [3–5]. They provide near-optimal solutions. Heuristic algorithms are
quick and usually iterative methods of selection. All of them, to our knowledge, are
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devoted to the placement of secondary sources. Kim and Ih [6] propose two original
non-iterative criteria of selection of sources: the sensitivity or the volume velocity of each
secondary source when they act together. The iterative heuristic algorithms concern
selections by addition [7] or removal [7, 8] if the initial configuration is a single source or
a large set of sources.

Once a promising placement of sensors or sources is found, methods of gradient
minimization can be applied to improve the quality of the placement. Nayroles et al. [9]
proposed the use of the diffuse approximation as an interpolation method for experimental
data. First, the cost function is minimized with respect to the volume velocities. Second,
the gradient algorithm is applied to the optimization of the locations. When the volume
velocities are constrained, Yang and Tseng [10] advised optimizing simultaneously the
volume velocity and the location of the sources with a gradient-descent algorithm.

Although these previous methods based on a quadratic cost function bring about a large
improvement in the search of the optimal placement, they remain unsatisfactory because
they just provide near-optimal solutions. In this paper, it is shown that there exists an
appropriate cost function that better suits the strategy of selection in the placement of
sources and sensors: the largest squared pressure at a number of distributed points. Elliot
et al. [11] called this cost function the ‘‘minimax’’ criterion. This new cost does not
represent an energy like the acoustic potential energy. However, it is useful in many
circumstances when the acoustic noise level is compelled by not to exceed a certain level
at several points. For the ‘‘minimax’’ criterion, it is shown that an exact solution for the
optimal locations of sources and sensors is determined in a very short computation time
by solving a unique linear programming problem. Sufficient numbers of sources and
sensors, their locations and the volume velocity of each secondary source are found
simultaneously. If the number of secondary sources is prescribed, an exact solution for the
optimal locations of the secondary sources is determined by solving a mixed programming
problem. This paper is devoted to the application of this method to a one-dimensional
enclosure with rigid walls.

2. OPTIMAL PLACEMENT OF ERROR SENSORS

In this section we present the method of placement of error sensors in a one-dimensional
enclosure. After the ‘‘minimax criterion’’ is explained, it is shown that the optimal volume
velocities of the sources are found by solving a linear programming problem with a simplex
method. It is then proved that there is a sufficient number of error microphones. Their
locations are where the modulus of the acoustic pressure is such that, at the other candidate
points, the modulus of the pressure is smaller. Finally, the results for a one-dimensional
enclosure of length L with rigid walls are presented for a single or two secondary sources.

2.1.  

Let t denote the time, v the angular frequency, x the distance from the left termination,
j the imaginary unit and p(x, t) the sound pressure. A point monopolar primary source
with volume velocity qp (t) is located at the left termination (see Figure 1). N
point-monopolar secondary sources are located inside the enclosure. The ith secondary
source with volume velocity qi (t) is located at the distance xi from the left termination.
In a monochromatic sound field, the quantities have a single frequency harmonic time
variation and can be represented by the real part of a complex amplitude function
multiplied by the harmonic exponential e−jvt such that

p(x, t)=R(p(x) e−jvt),

qp (t)=R(qp e−jvt), qi (t)=R(qi e−jvt), 1E iEN. (1)
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Figure 1. Active noise control system with one secondary source.

Let k denote the wavenumber equal to v/c0, where c0 is the speed of sound. The complex
amplitude of the sound pressure p(x) satisfies the Helmholtz equation and two boundary
equations:

d2p
d2x

(x)+ k2p(x)= r0 jv s
N

i=1

qi

S
dxi ,

dp
dx

(0)= r0 jv
qp

S
,

dp
dx

(L)=0. (2)

Here dxi is the unidimensional Dirac delta function at point xi . The solution of the problem
(2) is (see, for example, reference [1])

p(x)=
qp

S
Zp (x)+ s

N

i=1

qi

S
Zi (x), Zp (x)= jr0 c0

cos [k(L− x)]
sin (kL)

[x,

Zi (x)=Zp (x) cos (kxi ) [xe xi , Zi (x)=Zp (xi ) cos (kx) [xE xi . (3)

Let the non-dimensional frequency f	 be equal to kL/p. The primary and secondary paths
then become

p(x)=
qp

S
Zp (x)+ s

N

i=1

qi

S
Zi (x),

Zp (x)= jr0 c0
cos [pf	 (1− x/L)]

sin (pf	 )
[x,

Zi (x)=Zp (x) cos (pf	 (xi /L)) [xe xi , Zi (x)=Zp (xi ) cos (pf	 (x/L)) [xE xi . (4)

Let Qs denote the vector of CN equal to (q1, . . . , qi , . . . , qN ).

2.2. 

The primary volume velocity is chosen to be equal to 1, for simplicity. The complex
sound pressure is now denoted by p(x, Qs ), to indicate the dependence on the secondary
volume velocities.

2.2.1. Minimax criterion
One can introduce the cost function J, which is the maximum value of the modulus of

the complex pressure (J2 is the maximum value of the squared pressure) inside a subset
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I of the segment [0, L]. The problem of minimization with respect to the volume velocity
Qs can be written as

min
Qs $ CN

J(Qs )=max
x $ I

=p(x, Qs ) =. (5)

The minimization of this cost function J is also called the ‘‘minimax’’ criterion.

2.2.2. Enclosure with rigid walls
The fact that the primary and secondary paths are imaginary simplifies the problem of

minimization. This is also the case for any three-dimensional enclosure with rigid walls.
Instead of searching for a solution in CN, one can show that the problem of minimization
is reduced to a problem in RN.

It can be seen easily that

=p(x, Qs ) =e =p(x, R(Qs )) = [x [Qs $ CN, (6)

where R(Qs ) is the vector of RN equal to (R(q1), . . . , R(qi ), . . . , R(qN )). It is deduced that

min
Qs $ CN

J(Qs )e min
R(Qs) $ RN

J(R(Qs )). (7)

Since RNWCN,

min
Qs $ CN

J(Qs )E min
R(Qs) $ RN

J(R(Qs )). (8)

One concludes that

min
Qs $ CN

J(Qs )= min
R(Qs) $ RN

J(R(Qs )). (9)

The problem of minimization is thus reduced to a problem in RN. The primary source
and the secondary sources are in phase or in opposition.

2.2.3. Linear programming problem
Now consider that the volume velocities qi of the secondary sources are real. The vector

Qs is therefore a vector of RN.
The complex modulus that was used previously can be replaced by an absolute value:

(A) min
Qs $ RN

J(Qs )=max
x $ I

=J[p(x, Qs )] =. (10)

This problem of minimization can be written as a linear programming problem with
N+1 real variables and 2× card(I) constraint inequalities, where card(I) represents the
number of points in the subset I:

min
Qs,E

z=E, (11)

J[p(x, Qs )]E
r0 c0

S
E [x $ I, J[p(x, Qs )]e−

r0 c0

S
E [x $ I. (12)

Since the simplex method works provided the variables are of the same sign, the problem
is transformed such that all the variables are positive (see Appendix 1).

The solution of a linear programming problem is found at a vertex of the solution space
(see the example of Figure 3 of section 2.3.1). A linear programming problem can be
reduced to a ‘‘combinatorial’’ problem that consists in determining which N+1
constraints (out of the 2× card(I) constraint inequalities) are satisfied by the solution. The
simplex method, first published by Dantzig [12], finds in an efficient way the optimal
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extreme point (Qopt
s , Eopt) in the solution space. One can now show that a sufficient number

and an optimal placement of error sensors can be deduced from this solution.

2.2.3. Sufficient number and placement of error sensors
One can introduce a new cost function J' and a new problem (B) one has

J'(Qs )=max
x $ I'

=J[p(x, Qs )] =, (13)

where I' is the subset of I such that

I'=6x $ I = =J[p(x, Qopt
s )] == r0 c0

S
Eopt7 (14)

and hence

(B) min
Qs $ RN

J'(Qs ). (15)

The solution (Qopt
s , Eopt) of the problem (A) can be shown to be also a solution of the

problem (B) if I is composed of a finite number of discrete points.
In Appendix 2 it is shown, first, that there exists a ball B of RN, centered in Qopt

s , of radius
r0 q 0 and of boundary dB such that

J(Qs )= J'(Qs ) [Qs $ B. (16)

In Appendix 3 it is shown, second, that the function J'(Qs ) is a convex function of RN.
If Q0, Q1 and Q2 are three points of RN satisfying Q0 = (1− t)Q1 + tQ2, where t is a real
number in ]0, 1[ (the bounds 0 and 1 are excluded), the relation of convexity is

J'(Q0)E (1− t)J'(Q1)+ tJ'(Q2). (17)

Equation (16) shows that Qopt
s is equally a minimum of J'(Qs ) for Qs $ B:

J'(Qopt
s )E J'(Qs ) [Qs $ B. (18)

If Qs $ RN�B, there exists Q0 $ dB and a real number t $ ]0, 1[ such that

Q0 = (1− t)Qopt
s + tQs [t $ ]0, 1[. (19)

Since J'(Q) is a convex function of RN,

J'(Q0)E (1− t)J'(Qopt
s )+ tJ'(Qs ). (20)

The inequality (20) gives

0E J'(Q0)− J'(Qopt
s )

t
E J'(Qs )− J'(Qopt

s ). (21)

Hence

J'(Qopt
s )E J'(Qs ) [Qs $ RN�B. (22)

With the inequalities (18) and (22) one can conclude that the solution (Qopt
s , Eopt) of the

problem (A) is also a solution of the problem (B).
This conclusion is very interesting because the same reduction of noise can be achieved

by the set I and by its subset I'. This means that there is a sufficient number M of error
sensors. This number is equal to card(I'). The locations of these error sensors are
determined by the subset I'. In solving the unique linear programming problem (A), the
optimal vector of volume velocities Qopt

s and the sufficient number M of error sensors and
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their locations are determined simultaneously. The N+1 constraints, which are satisfied
at the limit, reveal the microphone locations at which the modulus of the acoustic pressure
is such that everywhere else, the modulus is smaller. It does not mean, however, that the
better the control is at these locations, the lower the pressure is everywhere else. A
fundamental question arises at this stage: As the optimal volume velocity is obtained, what
is the use of having microphones? These microphones are indeed theoretically useless. In
practical applications, however, they are necessary if an adaptation is performed on-line
and has to follow slight variations of the primary signal (change of the location of the
primary source or change of the frequency of the signal) and of the environment (change
of the temperature). Without any adaptation, the efficiency of the active control can then
be largely reduced.

Remark 1. If I contains an infinite number of points the relation (18) must be replaced
by a positive directional derivative of J' in Qopt

s . The convexity of the function J' again
assures the final result.

Some additional conclusions on the sufficient number of error sensors can be found if
one adds two hypotheses: (i) there is not a perfect cancellation of noise in the zone of
silence defined by the set I (i.e., Eopt q 0); (ii) the solution (Qopt

s , Eopt) is not degenerate,
which means that it corresponds, in the solution space, to the intersection of exactly N+1
hyperplanes.

With hypotheses (i) and (ii), N+1 equalities (J[p(x, Qopt
s )]= (r0 c0 /S)Eopt or

J[p(x, Qopt
s )]=−(r0 c0 /S)Eopt) only are satisfied by the solution. Hence

card(I')=N+1. (23)

The sufficient number M of error sensors is therefore equal to N+1 where N is the number
of secondary sources.

Remark 2. If hypothesis (ii) is not satisfied, the solution (Qopt
s , Eopt) corresponds, in the

solution space, to the intersection of more than N+1 hyperplanes. In this case
card(I')qN+1, but some excess points belonging to I' are useless.

Remark 3. If hypothesis (i) is not satisfied, there is a perfect cancellation of noise. An
additional equality is satisfied (i.e., Eopt =0) by the solution so that equation (23) is
replaced by

card(I')+1=N+1. (24)

The sufficient number M of error sensors is therefore equal to N in this special case.

2.3.    

To be presented here is an application of the method with one secondary source. The
advantage of using a single secondary source is that the solution space is a convex space
of R×R+ that can be drawn easily (R+ is the set of the positive real numbers). If there
is an infinity of points in an interval, the solution space is bounded by an envelope of
straight lines that makes up a caustic. An example is chosen where the non-dimensional
frequency f	 is equal to 1/2 and the location of the secondary source is equal to L/2. Five
different subsets I of the segment [0, L] are chosen.

2.3.1. Subset I equal to {0·25, 0·5, 1·0}
The subset I, on which the cost function J is defined, contains three points denoted as

M1, M2 and M3 the co-ordinates of which are equal to 0·25, 0·50 and 1·00 respectively (see
Figure 2). The linear programming problem (11), (12) now contains six inequalities from
which the solution space of this simple problem is built. The sound pressure p(x, q1) is
deduced from equations (4):
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Figure 2. Locations of error sensors with I= {0·25, 0·5, 1}.

min
q1,E

z=E, (25)

F Jsin (p/8)+ q1 (z2/2) cos (p/8) EE
G G

(z2/2)+ q1 1/2 EEG G
G G

1+ q1 z2/2 EEj f
J Fsin (p/8)+ q1 (z2/2) cos (p/8) e−E

. (26)

G G
G Gz2/2+ q1 1/2 e−E
G G

1+ q1z2/2 e−Ef j
This solution space is presented in Figure 3. The solution (qopt

1 , Eopt) of the linear
programming problem is found in this figure and is equal to

0−z2
1+sin (p/8)
1+cos (p/8)

,
cos (p/8)− sin (p/8)

1+cos (p/8) 1.

What is more interesting is that, among the six inequalities, only two are satisfied at the
limit and determine the solution qopt

1 :

1+ qopt
1 z2/2=Eopt

g
F

f
h
J

jsin (p/8)+ qopt
1 (z2/2) cos (p/8)=−Eopt

. (27)

These two inequalities correspond to the points M1 and M3. That means that the point
M2, in this problem, is useless. The same solution qopt

1 would have been found for the
‘‘minimax’’ criterion with the points M1 and M3 only.

Figure 3. Solution space of the linear programming with I= {0·25, 0·5, 1}.



L

Primary
source

Secondary
source

L
2

q1

qp

M0 M2M1

E
M2

M1

M0

M0

M2

M1

q1

1

0 22–

.   . 544

Figure 4. Locations of error sensors with I=[0, L/2].

This simple problem shows that, in solving a unique linear programming problem, the
optimal volume velocity qopt

1 , a sufficient number (equal to two) of error sensors and their
locations (locations M1 and M3) are determined simultaneously.

2.3.2. Subset I equal to [0, L/2]
Instead of dealing with a discrete subset I, consider now that this subset contains an

infinite number of points and is equal to [0, L/2] (see Figure 4). As previously, one can
build the solution space shown in Figure 5 and determine the solution (qopt

1 , Eopt). This
solution is equal to (−z2/(1+z2), 1/(1+z2)). The construction of the solution space
is explained in detail in section 2.3.4. Among the infinite set of inequalities, two only are
satisfied at the limit by the solution:

z2/2+ qopt
1 1/2=Eopt

qopt
1 z2/2=−Eopt . (28)

They correspond to the points M0 and M2. This example shows that the sufficient number
of error sensors is again equal to two. The optimal points are determined here from an
infinite set of candidate locations.

2.3.3. Subset I equal to [L/2, L]
Now consider that the whole subset I is located on the right side of the secondary source.

In the example the subset I is equal to the segment [L/2, L] (see Figure 6). As previously,
one can build the solution space shown in Figure 7 (see section 2.3.4 for details) and
determine the solution (qopt

1 , Eopt). This solution is equal to (−z2, 0). This case is singular
because hypotheses (i) and (ii) of section 2.2 are not satisfied. There is a perfect cancellation
of the noise at each point of the subset I. The solution is also degenerate. The sufficient
number of error sensors is equal to 1 and each location is optimal. This result is well known

Figure 5. The solution space of the linear programming with I=[0, L/2].
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Figure 6. Locations of error sensors with I=[L/2, L].

Figure 7. The solution space of the linear programming with I=[L/2, L].

for the active noise control of a sound wave: a secondary source can cancel the noise
downstream and all the locations of error sensors are equivalent.

2.3.4. Subset I equal to [0, L]
The zone of silence now represents the whole enclosure (see Figure 8). This case is

interesting because the conclusions can be compared with the work of Curtis [1] and of
Nelson and Elliott [13], who used the acoustic potential energy in the enclosure as the cost
function. As previously, one can build the solution space shown in Figure 9 and determine
the solution (qopt

1 , Eopt). This solution is equal to (−z2/2, 1/2). Among the infinite set of
inequalities, two only are satisfied by the solution:

1+ qopt
1 z2/2=Eopt

qopt
1 z2/2=−Eopt . (29)

They correspond to the points M0 and M3 (i.e., the two terminations of the enclosure).
This particular placement of error sensors is actually optimal for a broad range of
frequencies depending on the location x1 of the secondary source with respect to the
wavelength l of the signal. One can separate the problem of placement into two cases

Figure 8. Locations of error sensors with I=[0, L].
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Figure 9. The solution space of the linear programming with I=[0, L].

according to whether the distance x1 is inferior or superior to the quarter wavelength of
the signal. First one can determine the solution space for any frequency.

2.3.4.1. Construction of the solution space S. The solution space S is defined as a convex
space of R×R+ equal to S1 +S2 such that

S1 =6(q1, E) $ R×R+= =J[p(x, q1)] =E
r0 c0

S
E [x $ [x1, L]7,

S2 =6(q1, E) $ R×R+= =J[p(x, q1)] =E
r0 c0

S
E [x $ [0, x1]7, (30)

Since =J[p(x, q1)] =E =J[p(L, q1)] = for all x in [x1, L]

S1 = {(q1, E) $ R×R+= =J[p(L, q1)] =E (r0 c0 /S)E}. (31)

The space S1 is therefore bounded by two straight lines that are defined by M3, and that
one can call D−

3 and D+
3 :

J[p(L, q1)]= (r0 c0 /S)E D+
3

g
F

f
h
J

j
D3

J[p(L, q1)]=−(r0 c0 /S)E D−
3

. (32)

The space S2 is the intersection of two spaces S−
2 and S+

2 of R×R+ such that

S+
2 = {(q1, E) $ R×R+=J[p(x, q1)]E (r0 c0 /S)E [x $ [0, x1]},

S−
2 = {(q1, E) $ R×R+=−J[p(x, q1)]E (r0 c0 /S)E [x $ [0, x1]}. (33)

Each space S+
2 and S−

2 is bounded by an envelope of straight lines that are denoted by
D+(x) and D−(x) respectively with x $ [0, x1]:

J[p(x, q1)]= (r0 c0 /S)E D+(x)

J[p(x, q1)]=−(r0 c0)/S)E D−(x)
. (34)

The envelopes of straight lines are defined as the tangents of two curves C+ and C−.
The curve C+ contains the intersection of the straight lines D+(x+Dx) and D+(x) when
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x varies and when Dx tends to zero. The parametric equations (E(x), q1 (x)) satisfied by
the curve C+ are determined from the equations

J[p(x, q1)]=
r0 c0

S
E D+(x)

g
G

G

F

f

h
G

G

J

j
J[p(x, q1)]+J$1p

1x
(x, q1 (x))% Dx=

r0 c0

S
E D+(x+Dx)

. (35)

Subtracting and adding these two last equations yields

J$1p
1x

(x, q1 (x))%=0, J[p(x, q1 (x))]=
r0 c0

S
E(x). (36)

One deduces that

E(x)=
1

sin (pf	 (x/L))
C+g

G

G

F

fq1 (x)=
sin (pf	 (1− x/L))

cos (pf	 (1− x1 /L)) sin (pf	 (x/L))
x $ [0, x1]. (37)

The curve C− is the symmetric curve of C+ with respect to the straight line E=0. The
curve C+ belongs to the hyperbolic curve H the Cartesian equation of which is

E2 =1+0cos (pf	 )+ q1 cos (pf	 (1− x1 /L))
sin (pf	 ) 1

2

. (38)

The straight lines D+(0) and D−(0) are the asymptotes of the hyperbolic curve H. The
solution space S is finally bounded by the straight lines D+

3 and D−
3 , and by the tangents

of the curves C+ and C−.

2.3.4.2. The distance x1 is inferior to l/4. When the distance x1 is inferior to l/4, one can
show that the optimal placement for the sensors is the couple M0, M3.

When x varies from 0 to x1, the corresponding point of C+ goes from one
end of H to the point (E(x1), q1 (x1)). When the distance x1 is inferior to l/4, E(x)q 1
for all x in [0, x1]. The curve C+ is included in one quarter of the hyperbolic curve
H (see Figure 10) and does not contain the top of H the co-ordinates of which are
(−cos (pf	 )/cos [pf	 (1− x1 /L)], 1). The construction of the boundary of S, explained in
(section 2.3.4.1.), gives a solution space bounded by the straight lines D+

3 , D−
3 , D−(0) and

C+. The optimal solution (qopt
1 , Eopt) belongs to D3 +D−(0). The optimal placement for

sensors is then the couple M0, M3.
When the distance x1 is equal to l/4, the pressure at the right side of the secondary source

is independent of the volume velocity q1. The curve C+ corresponds exactly to one quarter
of the hyperbolic curve H. The solution space contains two optimal extreme points (see
Figure 11) that belong to D3 +D−(0) and D3 +C+ respectively.

2.3.4.3. The distance x1 is superior to l/4. When l/4Q x1 Q l/2, the curve C+ contains
one quarter of the hyperbolic curve H and a top of H. The construction of the boundary
of S explained in (section 2.3.4.1.) gives a solution space bounded again by the straight
lines D+

3 , D−
3 , D−(0) and C+. However, the optimal point no longer belongs to D3 +D−(0).
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Figure 10. The solution space of the linear programming with I=[0, L] and x1 Q l/4.

When the distance x1 is superior to l/2 the curve C+ contains one half of the hyperbolic
curve H. The solution space is bounded by the straight lines D+

3 , D−
3 and C+ only.

In this domain of frequencies, the solution of the problem of placement depends on
frequency and two kinds of solution can be distinguished, as follows.

A. The solution belongs to D3 +C+ (see Figure 12). In this case the optimal placement
for the error sensors is the point M3 at the right termination and a point belonging to the
segment [0, x1].

B. The solution is at the top of the hyperbolic curve H (see Figure 13). The
corresponding point of [0, x1] is denoted x0. The secondary acoustic path Z1 (x0) is zero
at this point such that

cos (pf	 (x0 /L))=0. (39)

Figure 11. The solution space of the linear programming with I=[0, L] and x1 = l/4.
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Figure 12. The solution space of the linear programming with I=[0, L] and x1 q l/4.

It can be verified that one point x0 at least exists, since x1 q l/4:

pf	 (x1 /L)q p/2q 0. (40)

There then exists at least one point x0 in [0, x1] such that

pf	 (x0 /L)= p/2. (41)

This point x0 satisfies equation (39). The optimal placement for two error sensors
corresponds, in this case, to a pair of sensors located at the points x0 and x0 +Dx, where
Dx is small. The result of the control leads to

p(x0, qopt
1 )= p(x0 +Dx, qopt

1 )= j(r0 c0 /S)Eopt. (42)

When Dx tends to zero, the optimal volume velocity satisfies

1p
1x

(x0, qopt
1 )=0. (43)

This result can be achieved by the measurement of the acoustic particle velocity at the point
x0 and by the minimization of the kinetic energy at this point.

Figure 13. The solution space of the linear programming with I=[0, L] and x1 q l/4.
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The sound pressure p(x0, q1) at this point cannot be modified by an active control since
the secondary acoustic path Z1 (x0) is zero:

=J[p(x0, q1)] ==
r0 c0

S b cos [pf	 (1− x0 /L)]
sin (pf	 ) b= r0 c0

S
. (44)

Equation (44) shows that, when the distance x1 is superior to l/4, J(q1) is lower bounded
by r0 c0 /S for all volume velocity q1. One can conclude that

Eopt e 1. (45)

The cost function J(0) without control is equal to r0 c0 /S sin (pf	 ) such that

1EEopt E 1/sin (pf	 ). (46)

The inequalities (46) show that E=1 before and after control around the antiresonance
frequencies when x1 is superior to l/4. The control therefore has no effect around the
antiresonance frequencies when x1 is superior to l/4. This result is similar to the
considerations of Nelson and Elliott [13], who explained that, between the resonances of
the enclosure, there are many modes contributing to the acoustic potential energy, and that
the secondary source cannot control any one of these without significantly exciting the
others.

2.3.5. Subset I equal to {0, L/100, . . . , i×L/100, . . . , 99×L/100, L}
Numerical applications usually require one to discretize the set I that represents the zone

of silence. The subset I of section 2.3.4. is now discretized and contains a regular mesh
of 101 points ranging from 0 to L with a step equal to L/100.

Consider locations of the secondary source equal to L/2 or L/3. Curtis [1] noticed that
the latter location gives good reduction in acoustic potential energy over a range of
frequencies.

The simplex method is used to solve this linear programming problem. Results of
placement of sensors are presented in Table 1. The results confirm the conclusions of
section 2.3.4. When the distance x1 is inferior to l/4, the optimal placement for sensors
is at the terminations of the enclosure. For smaller wavelengths, two kinds of placement
are found: the point M3 associated with a point of the segment [0, x1] or a pair of sensors
on a node of the secondary path.

In Figure 14, the maximal modulus of the non-dimensional sound pressure E in the
enclosure is presented when x1 is equal to L/3. The sound pressure is visualized first without
active control, then with active control and optimally located sensors at each frequency,
at last with active control and sensors located at the terminations of the enclosure (i.e.,
points M0, M3). When the two sensors are optimally located, it was demonstrated in
section 2.2 that the active control is as efficient as an active control with an infinite number
of sensors (represented here by 101 sensors). That is why the active control always leads
to a reduction of the global cost function. With the two sensors M0, M3, it is found again
that this placement is optimal for frequencies inferior to 1·5. The frequency f	 =1·5
corresponds to a wavelength equal to 4x1. For frequencies superior to 1·5, this placement
is no longer optimal, but remains a ‘‘good’ placement. It must be noticed that the active
control can, however, lead to an increase of the cost function when the sensors are not
optimally located.

Figure 15 represents the same calculations as the previous figure except that x1 is now
equal to L/2. The placement M0, M3 for the two sensors is now optimal for frequencies
inferior to 1·0. As already mentioned by Curtis [1], the middle of the enclosure is not a
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T 1

Optimal locations of error sensors X1 and X2 divided by L

x1

ZXXXXXXXXCXXXXXXXXV
f	 L/2 L/3

0·1 0·0 1·0 0·0 1·0
0·2 0·0 1·0 0·0 1·0
0·3 0·0 1·0 0·0 1·0
0·4 0·0 1·0 0·0 1·0
0·5 0·0 1·0 0·0 1·0
0·6 0·0 1·0 0·0 1·0
0·7 0·0 1·0 0·0 1·0
0·8 0·0 1·0 0·0 1·0
0·9 0·0 1·0 0·0 1·0
1·0 0·0 1·0 0·0 1·0
1·1 0·09 1·0 0·0 1·0
1·2 0·17 1·0 0·0 1·0
1·3 0·23 1·0 0·0 1·0
1·4 0·29 1·0 0·0 1·0
1·5 0·33 1·0 0·0 1·0
1·6 0·31 0·32 0·29 1·0
1·7 0·29 0·30 0·25 1·0
1·8 0·27 0·28 0·22 1·0
1·9 0·26 0·27 0·19 1·0

good placement for the secondary source, whereas x1 =L/3 is rather good. Moreover,
these results confirm that the non-dimensional sound pressure E is superior to 1 when the
distance x1 is superior to one quarter of the wavelength.

2.4.     

Once the two optimal locations X1 and X2 for error sensors are known, one can show
that the active control that determines the volume velocity qopt

1 can be written as a
‘‘minimax’’ problem (B) or a quadratic problem (B').

Figure 14. The maximal modulus of the non-dimensional sound pressure: primary ( – –), controlled with
optimally located sensors ( —) and controlled with two sensors, the locations X1 and X2 of which are 0 and L
( - - -). The location x1 of the secondary source is L/3.
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Figure 15. As in Figure 14, except that the location of the secondary source is L/2.

First recall the expression for the problem (B) when there is a single secondary source:

(B) min
q1 $ R

J'(q1)=max (=J[p(X1, q1)] =, =J[p(X2, q1)] =). (47)

Since the optimal volume velocity qopt
1 satisfies =J[p(X1, qopt

1 )] == =J[p(X2, qopt
1 )] =, it is also

a solution of the problem (B') such that

(B') 6min
q1 $ R

J0(q1)=J2[p(X1, q1)]+J2[p(X2, q1)]
J2[p(X1, q1)]−J2[p(X2, q1)]=0 7. (48)

Upon using a Lagrange multiplier h, the volume velocity qopt
1 is now an extremum of

the augmented function J	 0:

J	 0(q1)=J2[p(X1, q1)]+J2[p(X2, q1)]+ h{J2[p(X1, q1)]−J2[p(X2, q1)]}. (49)

One can now show that −1E hE 1 and that qopt
1 is a minimum of J	 0.

One introduces the volume velocities qa and qb such that

J[p(X1, qa )]=J[p(X2, qa )], J[p(X1, qb )]=−J[p(X2, qb )]. (50)

The optimal volume velocity qopt
1 is equal to qa if =J[p(X1, qa )] =E =J[p(X1, qb )] = and to qb

elsewhere:

qa =−
Zp (X2)−Zp (X1)
Z1 (X2)−Z1 (X1)

, qb =−
Zp (X2)+Zp (X1)
Z1 (X2)+Z1 (X1)

,

=J[p(X1, qa )] == b Z1 (X2)Zp (X1)−Zp (X2)Z1 (X1)
Z1 (X2)−Z1 (X1) b,

=J[p(X1, qb )] == b Z1 (X2)Zp (X1)−Zp (X2)Z1 (X1)
Z1 (X2)+Z1 (X1) b. (51)

Hence

qopt
1 = qa if Z1 (X2)Z1 (X1)E 0, qopt

1 = qb if Z1 (X2)Z1 (X1)e 0. (52)
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Since qopt
1 is an extremum of the augmented function J	 0, it satisfies the equation

(1+ h)Z1 (X1)J[p(X1, qopt
1 )]+ (1− h)Z1 (X2)J[p(X2, qopt

1 )]=0. (53)

Equations (52) and (53) finally give the expression for the Lagrange multiplier:

h=−
Z1 (X1)+Z1 (X2)
Z1 (X1)−Z1 (X2)

if Z1 (X2)Z1 (X1)E 0,

h=−
Z1 (X1)−Z1 (X2)
Z1 (X1)+Z1 (X2)

if Z1 (X2)Z1 (X1)e 0. (54)

One can verify first that −1E hE 1 and rewrite the cost function J	 0:

J	 0(q1)= (1+ h)J2[p(X1, q1)]+ (1− h)J2[p(X2, q1)]. (55)

The cost function J0 is a quadratic form and qopt
1 is a minimum.

Two borderline cases can be pointed out.
The Lagrange multiplier h is zero when the moduli of the secondary paths =Z1 (X1) = and

=Z1 (X2) = are identical. The problem of minimization then consists of applying a classic
quadratic control: the sum of the squared pressures.

When one of the two error sensors is on a node of the secondary acoustic path, the
absolute value of the Lagrange multiplier =h = is one.

The value of the Lagrange multiplier for two different locations of the secondary source
is presented in Table 2. It is pointed out that the location of the secondary source in the
middle of the enclosure is particular in so far as the Lagrange multiplier is zero when the
two error sensors are at the two terminations. The use of J	 0 can be useful for practical
applications. The problem (B') can be solved indeed by classic control algorithms.

T 2

The Lagrange multiplier h for two different locations x1 of the secondary source

x1

ZXXXXXXXXCXXXXXXXXV
f	 L/2 L/3

0·1 0·0 0·01
0·2 0·0 0·03
0·3 0·0 0·08
0·4 0·0 0·15
0·5 0·0 0·27
0·6 0·0 0·45
0·7 0·0 0·75
0·8 0·0 0·73
0·9 0·0 0·31
1·0 0·0 0·0
1·1 0·02 −0·24
1·2 0·11 −0·45
1·3 0·26 −0·63
1·4 0·55 −0·81
1·5 0·97 −1·0
1·6 0·50 −0·03
1·7 0·18 −0·01
1·8 −0·56 0·09
1·9 0·37 0·18
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Figure 16. The maximal modulus of the non-dimensional sound pressure: primary ( – –), controlled with
optimally located sensors by two secondary sources x1 =L/3 and x2 =L/2 ( —) and controlled by one secondary
source x1 =L/3 ( - - -).

2.5.    

When two secondary sources are used, the sufficient number of error sensors is equal
to three.

Suppose that one chooses two secondary sources with respective locations x1 and x2

equal to L/3 and L/2 and a zone of silence described by the set I of section 2.3.5.
When the distance x1 of the closest secondary source is inferior to the quarter of the

wavelength, a significant attenuation is again achieved (see Figure 16). The optimal
placement of the error sensors now depends on frequency and the locations are summed
up in Table 3.

When the distance x1 of the closest secondary source is superior to the quarter of the
wavelength, the conclusion of section 2.3, saying that Eopt e 1, is still valid. In the band
of frequencies [1·5, 5·0], this bound is reached for almost all the frequencies with an active
control by two secondary sources. At many frequencies, the second source is even useless
so that the sufficient numbers of sources and sensors are often reduced to 1 and 2
respectively.

3. OPTIMAL PLACEMENT OF SECONDARY SOURCES

This section is devoted to the optimal placement of secondary sources in an
unidimensional enclosure with rigid walls of length L. The primary volume velocity is
chosen equal to 1. The secondary volume velocities can then be chosen real following
remark 2.2.1.

T 3

Optimal locations of the three sufficient error sensors

Frequencies Optimal locations

[0·00–0·67] 0·0 0·33 0·34
[0·68–1·27] 0·0 0·33 1·00
[1·28–1·50] 0·0 0·33 0·34



     555

3.1.    

One wants to determine the influence of the location x1 of a single secondary source on
the ‘‘minimax’’ criterion defined in section 2.2. The zone of silence represents the whole
enclosure so that I=[0, L].

3.1.1. The distance x1 is inferior to the quarter of the wavelength
When the distance x1 is inferior to the quarter of the wavelength, one can determine the

maximal modulus Eopt of the non-dimensional sound pressure inside the zone of silence
and present its variations with respect to the location x1 of the secondary source.

One knows indeed, from section 2.3.4, that the optimal point of the solution space
belongs to D+

3 +D−(0) or D−
3 +D−(0), which correspond to two points that are denoted

by (q+, E+) and (q−, E−). It can be seen easily that Eopt is the smallest positive value between
E+ and E−. These two points are therefore defined as the solutions of the two systems

1+ q+ cos [pf	 (x1 /L)]=E+ sin [pf	 ]
g
F

f
h
J

jcos [pf	 ]+ q+ cos [pf	 (1− x1 /L)]=−E+ sin [pf	 ]
, (56)

1+ q− cos [pf	 (x1 /L)]=−E− sin [pf	 ]
g
F

f
h
J

jcos [pf	 ]+ q− cos [pf	 (1− x1 /L)]=−E− sin [pf	 ]
. (57)

The values of E+ and E− are deduced:

E+ =
sin [pf	 (x1 /L)]

cos [pf	 (1− x1 /L)]+ cos [pf	 (x1 /L)]
,

E− =
sin [pf	 (x1 /L)]

−cos [pf	 (1− x1 /L)]+ cos [pf	 (x1 /L)]
. (58)

One can conclude that:

Eopt(x1)= sin [pf	 (x1 /L)]/{=cos [pf	 (1− x1 /L)] =+cos [pf	 (x1 /L)]}. (59)

The derivative of Eopt(x1) gives

dEopt

dx1
(x1)=

pf	
L

1+sign {cos [pf	 (1− x1 /L)]} cos [pf	 ]
{=cos [pf	 (1− x1 /L)] =+cos [pf	 (x1 /L)]}2

e 0. (60)

The inequality (60) proves that Eopt(x1) increases from zero to 1/=sin (pf	 ) = when x1 varies
from 0 to l/4. In this space domain, there is no local minimum and the secondary source
should be placed as close as possible to the left termination where the primary source is
located.

3.1.2. The distance x1 is superior to the quarter of the wavelength
When the distance x1 is superior to the quarter of the wavelength the variations of Eopt

with respect to x1 are more complicated. An example is presented in Figure 17 where the
non-dimensional frequency is chosen to be equal to 3. The inequality (46) saying that
1EEopt E 1/sin (pf ) is verified again.

Local maxima of Eopt(x1) are found for x1 equal to [(2n+1)/2f ]L, where n is an integer.
For such locations the secondary acoustic path Z1 (x) is zero at the right side of the
secondary source. The source cannot control the primary sound pressure in this area. At
the right termination, for instance, the sound pressure is equal to (r0 c0 /S)j/sin (pf	 ) for
any secondary volume velocity. No active control is therefore achieved for these locations
of the secondary source and Eopt is equal to 1/=sin (pf	 ) =.
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Figure 17. The maximal modulus of the non-dimensional sound pressure controlled with optimally located
sensors against the source position x1 and f	 equal to 3.

When the distance x1 is superior to the quarter of the wavelength, one can show that
the location of the secondary source x1 at the right termination is optimal. It has already
been seen that Eopt e 1. With this location, it can be shown that Eopt is exactly equal to
1. The expression of the sound pressure field is indeed

p(x, q1)= j
r0 c0

S 6cos [pf	 (1− x/L)]+ q1 cos (pf	 (x/L))
sin (pf	 ) 7. (61)

Suppose that the locations of two error sensors are the x0 and x0 +Dx of the section 2.3.
When Dx tends to zero, the optimal volume velocity again satisfies (1p/1x) (x0, qopt

1 )=0.
With equation (61), this becomes

sin [pf	 (1− x0 /L)]− qopt
1 sin (pf	 (x0 /L)=0. (62)

Since x0 corresponds to a sound pressure node of the secondary sound pressure field,
cos (pf	 (x0 /L))=0 and the equation (62) can be simplified to

qopt
1 =−cos (pf	 ). (63)

Hence

p(x, qopt
1 )= j

r0 c0

S 6cos [pf	 (1− x/L)]− cos (pf	 ) cos (pf	 (x/L))
sin (pf	 ) 7=j

r0 c0

S
sin (pf	 (x/L)).

(64)

Since Eopt =(S/r0 c0) max
x $ [0, L]

=J[p(x, qopt
1 )],

Eopt = max
x $ [0, L]

=sin (pf	 (x/L)) = (65)

Since =sin (pf	 (x0 /L)) ==1, one can conclude that Eopt =1 and that the location of the
secondary source at the right termination is optimal.
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3.2.     

As the notation of a sufficient number of error sensors has been introduced previously,
there is equally a sufficient number of secondary sources.

3.2.1. A linear programming problem
One can now introduce a subset K of [0, L]. In numerical applications it is considered

that K is a discrete subset containing N0 candidate locations for the secondary sources.
The aim is to determine the sufficient number N of secondary sources and their locations.
The sufficient number M of error sensors and their locations are found simultaneously.

The ith candidate location for a secondary source is denoted xi and its corresponding
real volume velocity is denoted q(xi ).

Let Qs denote a vector of RN0 that is equal to (q(x1), . . . , q(xi ), . . . , q(xN0)). One then
writes a new problem of minimization (Ao ):

(Ao ) min
Qs $ RN0

Jo (Qs )=max
x $ I

=J[p(x, Qs )] =+ o s
N0

i=1

=q(xi ) =, (66)

where e is a small quantity. The second term of the cost function Jo is added in order to
assure the uniqueness of the solution. The cost function Jo (Qs ) is strictly convex, whereas
J(Qs ) is only convex. As is presented in Appendix 1, the simplex method actually solves
the problem (Ao ) instead of the problem (A).

The minimum Qopt
s of the cost function Jo is a solution of the ‘‘minimax’’ problem.

Among all the solutions of the ‘‘minimax’’ problem, the sum of the absolute values of the
volume velocities is minimal with Qopt

s .
An interesting property of this kind of problem (already used by Kirsch [14] for the

optimal design of structural control systems) is that the solution is composed of a small
number of non-zero variables.

As I' has been introduced, one can define K', a subset of K, as

K'= {x $ K =qopt(x)$ 0}. (67)

The sufficient number N of secondary sources is equal to card(K') and their locations are
defined by the subset K' itself. The problem (Ao ) can be written as a linear programming
problem [15]. The sufficient numbers N and M of secondary sources and microphones and
their respective locations are found by solving a unique linear programming problem.

3.2.2. Application
The sets I and K are equal to [0, L] and [x1, L] respectively.
When the distance x1 is superior to the quarter of the wavelength, it is found that a single

source located at the right termination is optimal and sufficient for the ‘‘minimax’’
problem.

Now consider that x1 is inferior to the quarter of the wavelength. The sufficient numbers
N and M are found to be equal to 2 and 3 respectively. The locations of secondary sources
are x1 and L. The locations of the error sensors are 0, x1 and x1 +Dx, where Dx is a small
quantity representing the step of the mesh used for the numerical computation. Other
locations are also optimal for the ‘‘minimax’’ problem but the sum of the absolute values
of their volume velocities is larger.

Note again that

Eopt(x1)= (S/r0 c0) max
x $ I

=J[p(x, Qopt
s )] =

and consider determining its variations with respect to x1.
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When Dx:0, the variables (qopt(x1), qopt(L), Eopt) are the solution of the system:

p(0, qopt(x1), qopt(L))=Eopt, p(x1, qopt(x1), qopt(L))=Eopt,

(1p/1x) (x+
1 , qopt(x1), qopt(L))=0, (68)

cos (pf	 )+ qopt(x1) cos [pf	 (1− x1 /L)]+ qopt(L) =Eopt,

cos [pf	 (1− x1 /L)]+ qopt(x1) cos [pf	 (1− x1 /L)] cos (pf	 (x1 /L))

g
G

G

G

G

F

f

+qopt(L) cos (pf	 (x1 /L)) =Eopt,

sin [pf	 (1− x1 /L)]+ qopt(x1) sin [pf	 (1− x1 /L)] cos (pf	 (x1 /L))

−qopt(L) sin (pf	 (x1 /L)) =0. (69)

The solution is

qopt(x1)=−1,

qopt(L)= tg 0pf	
2

x1

L1 sin $pf	 01−
x1

L1%, Eopt =tg 0pf
2

x1

L1. (70)

The results of the optimal placement of sources and sensors in the enclosure are
summarized in Table 4. The obvious solution of the placement is the same location for
the primary and the secondary source. This location is, in practical applications, often
impossible. That is why a closest candidate point x1 has been considered for the placement
of the secondary sources.

If x1 is inferior to the quarter of the wavelength of the primary excitation, two sources
and three sensors are sufficient for active noise control. The particle volume velocity is
cancelled on the right side of the point x1.

If x1 is superior to the quarter of the wavelength of the primary excitation, a single source
and two sensors are sufficient for active noise control. The particle volume velocity is
cancelled at the point x0, which corresponds to a node of the secondary sound pressure
field.

3.3.  

The method that is presented in the last section can be generalized by two means. First,
bounds on the modulus of the volume velocities can be introduced. Second, the number
N of active sources can be fixed inferior to the sufficient number of secondary sources.

In the presentation, one still considers Qs in RN0.
One introduces, therefore, a new problem of minimization (AN

o ):

(AN
o ) min

Qs $ RN0
Jo (Qs )=max

x $ I
=J[p(x, Qs )] =+ o s

N0

i=1

=q(xi ) =, (71)

T 4

Sufficient sources and sensors

N M Sources Sensors Eopt(x1)

x1 E l/4 2 3 x1, L 0, x1, x1 +Dx tg 0pf	
2

x1

L1
x1 e l/4 1 2 L x0, x0 +Dx 1
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=q(xi ) =EA, 1E iEN0, s
N0

i=1

x(q(xi ))EN. (72)

The function x(q) is equal to zero if q is equal to zero and to one elsewhere. The absolute
value of each secondary source is bounded by A.

3.3.1. Fixed charge problem
The problem of minimization can be written in another form:

min
Qs,E

z=E+ o s
N0

i=1

=q(xi ) =, (73)

J[p(x, Qs )]E
r0 c0

S
E [x $ I, J[p(x, Qs )]e−

r0 c0

S
E [x $ I,

=q(xi ) =EA, 1E iEN0, s
N0

i=1

Ui EN, Ui = x[q(xi )]. (74)

The variables Ui are integer, equal to zero or 1. The vector (U1, . . . , Ui , . . . , UN0) is noted
U. The quantity o is divided by r0 c0 /S compared with the expression (71).

The problem (AN
o ) is now similar to a problem of operational research called the fixed

charge problem. Hirsch and Dantzig [16] formulated the problem as early as 1954. Hadley
[17] demonstrated that the optimal solution of the fixed charge problem is a vertex of the
convex space of solutions. The cost function can be computed at each vertex and the point
realizing the minimum of the cost function is retained. Since the number of these vertices
can be large, it is advantageous to use methods in which just a limited part of them is
examined. Taha [18] presented some algorithms that have been specially developed for the
fixed charge problem. He presented heuristic algorithms and exact algorithms. Among the
latter ones, Hadley formulated the fixed charge problem as a problem of mixed
programming with real and integer variables. The adaptation to the present problem is

min
Qs,U,E

z=E+ o s
N0

i=1

=q(xi ) =+ o' s
N0

i=1

Ui , (75)

J[p(x, Qs )]E
r0 c0

S
E [x $ I, J[p(x, Qs )]e−

r0 c0

S
E [x $ I,

=q(xi ) =EAUi , 1E iEN0, 0EUi E 1, 1E iEN0,

Ui integer, 1E iEN0, s
N0

i=1

Ui EN, (76)

where o' is a small quantity (o'�o). The last term

e' s
N0

i=1

Ui

assures the uniqueness of the solution.
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3.3.2. Integer and mixed programming
Linear programming forms the basis for most of the development in integer or mixed

programming. In integer programming, all of the variables are integer. In mixed
programming, one part of the variables are integer and the rest is real. The fact that some
variables are integer makes the problem more complicated. Taha [18] divided all the
methods of integer programming into two groups: cutting-plane methods and
branch-and-bound methods. In cutting methods, additional constraints cut off portions of
the solution space so that no feasible points are ever excluded. In branch-and-bound
methods, the non-promising feasible vectors are discarded without being tested. On the
one hand, a large memory space of the computer is filled when the size of the tree becomes
large. On the other hand, an approximated solution is available at an early stage of the
computation. The bounds of the minimum are identified at each step. When the lower and
the upper bounds are equal, an exact solution is determined. The bounds also provide
information about the quality of the approximated solution that is found and updated
during the computation.

3.3.3. Description of the algorithm
The branch-and-bound method of Land and Doig [19] is chosen here in order to solve

the mixed programming problem (75), (76), the solution and minimum of which are
denoted by (Qopt

s , Uopt, Eopt, zopt).
Step 0. By removing the constraint that compells the variables Ui to be integer, the

problem (75), (76) is transformed into a linear programming problem that is solved by a
simplex algorithm. The solution and minimum of this linear programming problem are
denoted (Q0

s , U0, E0, z0). The first lower bound B− of zopt is defined as

B− = z0. (77)

One can now distinguish two cases.
A. If

a
N0

i=1
x(U0

i )EN,

the algorithm is finished. The solution (Qopt
s , Uopt, Eopt) of the integer programming problem

is equal to (Q0
s , x(U0), E0), where x(U0)= (x(U0

1), . . . , x(U0
i ), . . . , x(U0

N0)).
B. If

a
N0

i=1
x(U0

i )qN,

the next step is prepared. An index for the first node is chosen. Choose i0 such that

U0
i0 = max

i $ {1, . . . , N0}
{U0

i =U0
i $ 1}. (78)

i0 is called the branching index of the first node. Each node is also endowed with a root
vector S of dimension N0, the components of which are equal to 0, 1 or 2. For the first
node, the components Si are all equal to 2. Each node is also endowed with a cost J that
is a lower bound for all its child nodes. For the first node, J is equal to z0.

Step n. Go to the node with the lowest cost (at step 1 there is a single node). This node
has the branching index i0, the root vector S and the cost J equal to B−. Two child nodes
are created now. One fixes Si0 =0 for the daughter node and Si0 =1 for the son node. A
linear programming problem is associated to each child node. It again corresponds to the
problem (75), (76), where the variable Ui is a real variable that is not constrained to be
integer when Si is equal to 2 and that is fixed to 0 or 1 in function of Si elsewhere.

Let (Q	 s , U	 , E	 , z̃) denote the solution and the minimum of the linear programming
problem associated to the son node (or daughter node).
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T 5

Locations of sources with f	 =0·5

N�A 1/4 1/3 1/2 1 10

1 1 1 1 1 1
2 1–2 1–2 1–2 1–21 1–21
3 1–2–3 1–2–3 1–2–21 — —
4 1–2–3–21 1–2–3–21 — — —
5 1–2–3–4–21 — — — —

A. Each child node again has a branching index i0 such that

U	 i0 = max
i $ {1, . . . , N0}

{U	 i =U	 i $ 1 and Si =2}. (79)

B. Each child node has a cost J that is given by the minimum z̃ of the associated linear
programming problem. Among all the child nodes of the tree, the node with the lowest
cost is determined. It is the next active node for the next step of branching. The cost J
of this node is the new lower bound B− of the problem. It is verified that the lower bound
B− increases at each step.

C. If
a
N0

i=1
x(U	 i )EN

and if z̃ is inferior to the present upper bound B+, the upper bound is updated:

B+ = z̃. (80)

(Q	 s , x(U	 ), E	 ) is a new approximated solution. It is verified that the upper bound B+

decreases during the computation.
D. If B− =B+, the algorithm is finished. The exact solution of the integer programming

problem is (Q	 s , x(U	 ), E	 ). If B− QB+, go to step n+1.

3.3.4. Results of placement
Let the subsets I and K be equal to [0, L] and [x1, L]. The distance x1 is chosen equal

to L/2. The subsets are actually discretized with the step Dx equal to 0·025× L
corresponding to 41 points Xi for the sensors and 21 points xi for the sources:

xi =(L/2){1+ (i−1)/20}, 1E iE 21, Xi =(L/2) (i−1)/20, 1E iE 41. (81)

Two non-dimensional frequencies are considered: f	 equal to 0·5 and 1·2, that correspond
to a distance x1 inferior and superior, respectively, to one-quarter of the wavelength.

In Tables 5 and 6 are presented the optimal placement of sources at the two frequencies
for different numbers N of sources and different bounds A on the volume velocities. Since
qp is chosen equal to 1, the bound AQ 1 constrains the modulus of the volume velocity

T 6

Locations of sources with f	 =1·2

N�A 1/4 1/3 1/2 1 10

1 21 21 21 21 21
2 20–21 20–21 20–21 — —
3 19–20–21 19–20–21 — — —
4 18–19–20–21 — — — —
5 — — — — —
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T 7

Sufficient number M of sensors with f	 =0·5

N�A 1/4 1/3 1/2 1 10

1 1 1 1 2 2
2 1 1 2 3 3
3 2 2 3 — —
4 2 3 — — —
5 2 — — — —

of each secondary source to be inferior to the modulus of the volume velocity of the
primary source.

When A is superior or equal to 1, the results of the placement of sources are identical
to a problem with unconstrained volume velocities. When xi is superior to one-quarter of
the wavelength, the sufficient number of sources is equal to 1 and the secondary source
is located at the right termination. When x1 is inferior to one-quarter of the wavelength,
the sufficient number of sources is equal to 2 and the two secondary sources are located
at the right termination and the point x1. If a unique source is available, the optimal
placement depends on the non-dimensional frequency f	 and on the point x1. If Eopt(x1)
given by equation (59) is inferior to 1, the optimal placement is the point x1. Otherwise,
the right termination should be prefered. The optimal placement of a unique secondary
source at the non-dimensional frequency f	 =0·5 is the point x1.

When A is inferior to 1 and x1 is superior to one-quarter of the wavelength, the source
at the right termination is split into several sources of smaller modulus of volume velocity.
The sufficient number of sources is increased.

When A is inferior to 1 and x1 is inferior to one-quarter of the wavelength, the influence
of the bounds on the placement of sources is more complicated. The solution of the
unconstrained problem presented in section 3.2.2. gives qopt(x1)=−1. The source at the
point x1 is therefore split into several sources when the bound A becomes inferior to 1.

3.3.5. Sufficient number of error sensors with bounded sources
For unbounded sources, it has been shown in section 2.2.3 that the sufficient number

M (equal to card(I')) of error sensors is equal to N+1, where N is the number of
secondary sources.

For bounded sources, the solution (Qopt
s , Eopt) belongs to N	 additional hyperplanes:

qopt
i(a) =3A, a $ {1, . . . , N	 }. (82)

The integer number N	 is in [0, N]. The solution (Qopt
s , Eopt) belongs now to N	 + card(I')

hyperplanes such that the equation (23) becomes

card(I')+N	 =N+1. (83)

Hence

1EMEN+1. (84)

When the sources are bounded, the sufficient number M of error sensors decreases. The
results for the two examples of the previous section are presented in Tables 7 and 8. The
sufficient number M of error sensors is equal to N+1 only when the bound A is superior
or equal to 1. In this case, the problem is identical to an unconstrained problem.
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T 8

Sufficient number M of sensors with f	 =1·2

N�A 1/4 1/3 1/2 1 10

1 1 1 1 2 2
2 1 1 2 — —
3 1 2 — — —
4 2 — — — —
5 — — — — —

T 9

Number of steps n with f	 =0·5 (—, solution with a zero volume velocity)

N�A 1/4 1/3 1/2 1 10

1 0 0 0 3 4
2 0 0 17 0 0
3 4 61 0 — —
4 67 0 — — —
5 26 — — — —

T 10

Number of steps n with f	 =1·2 (—, solution with a zero volume velocity)

N�A 1/4 1/3 1/2 1 10

1 0 0 0 0 0
2 0 0 0 — —
3 0 0 — — —
4 0 — — — —
5 — — — — —

3.3.6. Computational time
Let M0 and N0 denote the numbers of candidate locations for the sensors and sources

(here equal to 41 and 21 respectively), and T the computational time required to solve the
linear programming problem with M sensors and N sources. It has been found empirically
that TAM1·5N1·5.

If n is the number of steps of the algorithm, the mixed programming problem requires
that 2n+1 linear programming problems with M0 sensors and N0 sources are solved. The
computational time with the mixed programming is denoted by T1. The number n is
presented in Tables 9 and 10 for the two non-dimensional frequencies f	 =0.5 and f	 =1·2.
It is noticed that the problem often requires solving only one single linear programming
problem (in all the cases when f	 =1·2):

T1 2 (2n+1)× (M0 /M)1·5(N0 /N)1·5 ×T. (85)

One can now compare the computational time T1 with the computational time T2 if the
whole set of CM

M0
×CN

N0
linear programming problems with M sensors and N sources is

solved:

T2 =CM
M0

×CN
N0

×T. (86)

The ratio T2 /T1 with f	 =0·5 is presented in Table 11. Mixed programming seems to be
advantageous as soon as the number N of secondary sources exceeds one. It should be
emphasized that the solution that is found is an exact solution of the ‘‘minimax’’ problem.
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T 11

Ratio T2 /T1 with f	 =0·5 (—, solution with a zero volume velocity)

N�A 1/4 1/3 1/2 1 10

1 0·03 0·03 0·03 0·3 0·2
2 1 1 2 1×103 1×103

3 70 5 2×104 — —
4 30 1×105 — — —
5 4×102 — — — —

4. CONCLUSIONS

An appropriate cost function called the ‘‘minimax’’ criterion better suits the strategy of
selection in the placement of sensors and sources than the classic quadratic cost functions.
This cost function is the largest squared pressure at a number of distributed points.
Sufficient numbers of error sensors and secondary sources, their locations and the volume
velocity of each secondary source are found simultaneously by solving a unique linear
programming problem. An exact solution is determined in a short computational time.

The ‘‘minimax’’ criterion can be generalized by the introduction of bounds on the
volume velocity of the secondary sources. Moreover, the number of sources can be fixed
inferior to the ‘‘sufficient’’ number of sources. In this case a mixed programming problem
is solved.

In an unidimensional enclosure with a primary source located at the left termination,
the obvious solution consists of superposing the secondary source on the primary source.
With the additional constraint that there is a minimal distance between the secondary
source and the primary source, it is found that the problem of placement differs according
to whether or not this minimal distance is inferior to one-quarter of the wavelength. When
the minimal distance is inferior to one-quarter of the wavelength, the sufficient number
of sources and sensors are two and three respectively. The first source is placed as close
as possible to the primary source. The second source is located at the right termination.
The particle volume velocity is cancelled on the right side of the first secondary source.
When the minimal distance is superior to one-quarter of the wavelength, a single source
at the right termination and two sensors are sufficient for active noise control. The particle
volume velocity is cancelled on a node of the secondary sound pressure field.
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APPENDIX 1: TRANSFORMATION OF THE PROBLEM A

The linear problem is written first with an augmented cost function in order to assure
the unicity of the solution. With a small quantity oq 0, the cost function z becomes indeed
strictly convex:

min
Qs,E

z=E+ o s
N

i=1

=qi =, (A1)

J[p(x, Qs )]E (r0 c0 /S)E [x $ I, J[p(x, Qs )]e−(r0 c0 /S)E [x $ I. (A2)

The positive and negative parts of the volume velocities qi can then be introduced:
�qi �+ =max (qi , 0) and �qi �− =max (−qi , 0). The problem has now a new expression
with 2N+1 real positive variables:

min
Q+

s ,Q−
s ,E

z=E+ o s
N

i=1

(q+
i + q−

i ), (A3)

J[p(x, Q+
s −Q−

s )]E (r0 c0 /S)E [x $ I,

J[p(x, Q+
s −Q−

s )]e−(r0 c0 /S)E [x $ I,

q+
i = �qi �+, q−

i = �qi �−. (A4)

Here Q+
s and Q−

s are the vectors of (R+)N that are equal to (q+
1 , . . . , q+

i , . . . , q+
N ) and

(q−
1 , . . . , q−

i , . . . , q−
N ) respectively.

By removing the last two equalities, the problem is written as a linear programming
problem with a linear cost function and linear inequalities:

min
Q+

s ,Q−
s ,E

z=E+ o s
N

i=1

(q+
i + q−

i ), (A5)
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J[p(x, Q+
s −Q−

s )]E (r0 c0 /S)E [x $ I, J[p(x, Q+
s −Q−

s )]e−(r0 c0 /S)E [x $ I.

(A6)

One can now show that the solution (Q+opt
s , Q−opt

s , Eopt) of this last problem satisfies, for
all i, q+opt

i = �qopt
i �+ and q−opt

i = �qopt
i �− (i.e., q+opt

i =0 or q−opt
i =0). If there exists an index

i such that q+opt
i $ 0 and q−opt

i $ 0, then (Q+opt
s , Q−opt

s , Eopt) is not a solution of the problem
of minimizing, because the cost function z can be reduced by the quantity
2o min (q+opt

i , q−opt
i ) without changing the values of the inequalities. That proves that

q+opt
i =0 or q−opt

i =0. The equalities q+
i = �qi �+ and q−

i = �qi �− are therefore useless in
the problem of minimization. The last problem, that is solved by the simplex algorithm,
can therefore be used to determine the solution of the problem A.

APPENDIX 2: DEMONSTRATION OF EQUATION (16)

If the set I is composed of a finite number of discrete points, one can show that (i) there
exists a ball B in RN of radius r0, centered in Qopt

s and of boundary dB such that

Qopt
s $ B, J(Qs )= J'(Qs ) [Qs $ B. (A7)

Demonstration. If (i) is false, for all r0 in R+ there exists a unit vector Q0 in RN such
that

\r $ ]0, r0] J(Qopt
s + rQ0)q J'(Qopt

s + rQ0),

max
x $ I�I'

=J[p(x, Qopt
s + rQ0)] =qmax

x $ I'
=J[p(x, Qopt

s + rQ0)] =. (A8)

When r0:0, equation (A8) becomes

max
x $ I�I'

=J[p(x, Qopt
s )] =emax

x $ I'
=J[p(x, Qopt

s )] =. (A9)

However, the definition of I' says that

max
x $ I�I'

=J[p(x, Qopt
s )] =Qmax

x $ I'
=J[p(x, Qopt

s )] = (A10)

if I is composed of a finite number of points.
The contradiction between the inequalities (A9) and (A10) proves that (i) is true.

APPENDIX 3: DEMONSTRATION OF EQUATION (17)

One can show that the function J'(Q) is a convex function of RN.

Demonstration. Introduce three points Q0, Q1 and Q2 of RN such that

Q0 = (1− t)Q1 + tQ2, t $ ]0, 1[. (A11)

There exists a point x' in I' such that

J'(Q0)= =J'[p(x', Q0)] =. (A12)

Let F(Q) denote the function equal to =J[p(x', Q)] =. Since F(Q) is a convex function in
RN,

F(Q0)E (1− t)F(Q1)+ tF(Q2). (A13)

Since F(Q)E J'(Q),

J'(Q0)E (1− t)J'(Q1)+ tJ'(Q2). (A14)

The function J'(Q) is therefore a convex function in RN.


