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This work is concerned with the optimal design of a near-periodic beam system to
minimize vibration transmission and also maximum stress levels. Both narrow-band and
wide-band excitation are considered, and two sets of design parameters are investigated;
namely, the individual bay lengths and the individual bay damping values. It is found that
very significant reductions in the selected objective functions can be achieved with relatively
minor design changes. In the case of the system bay lengths, it is found that a near-optimum
design can usually be found by employing a ‘‘bound search’’ algorithm, which obviates the
need for a full optimization routine. Furthermore, it is shown that vibration transmission
cannot readily be reduced by changing the damping distribution in the system (while
maintaining the same amount of ‘‘total’’ damping), although significant reductions in the
maximum stress levels can be obtained through this means. The findings of the work have
application to more general engineering structures which are of near-periodic construction.
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1. INTRODUCTION

An engineering structure is said to be of ‘‘periodic’’ construction if a basic structural unit
is repeated in a regular pattern. A beam which rests on regularly spaced supports is one
example of a one-dimensional periodic structure, while an orthogonally stiffened cylinder
is an example of a two-dimensional periodic structure. It has long been known that
perfectly periodic structures have very distinctive vibration properties, in the sense that
‘‘pass bands’’ and ‘‘stop bands’’ arise: these are frequency bands over which elastic wave
motion respectively can and cannot propagate through the structure [1, 2]. If the excitation
frequency lies within a stop band, then the structural response tends to be localized to the
immediate vicinity of the excitation source. Conversely, if the excitation frequency lies
within a pass band, then strong vibration transmission can occur, and it is generally the
case that the resonant frequencies of the structure lie within the pass bands.

Much recent work has been performed concerning the effect of random disorder on a
nominally periodic structure (see, for example, [3–5]). It has been found that disorder can
lead to localization of the response even for excitation which lies within a pass band, and
this reduces the propensity of the structure to transmit vibration. This raises the possibility
of deliberately designing disorder into a structure in order to reduce vibration transmission,
and this possibility was briefly investigated in reference [6] for a one-dimensional periodic
waveguide which was embedded in an otherwise infinite homogeneous system. In this
regard, it should be noted that much previous work has been performed in the area of
optimal structural design, and it is now fairly routine to run an optimization algorithm
in conjunction with finite element analysis software to produce a design which is optimized
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for static or dynamic loading [7]. However, relatively little work has been directed
specifically at optimal structural design to reduce vibration transmission and stress levels,
where the concern tends to be with wide-band excitation at relatively high frequencies. In
this case the nature of the excitation is such that a fine mesh finite element model is needed
to capture the short wavelength of the high frequency structural deformation, and the
computational demands of such a model render standard optimization procedures
impracticable—in fact, a single response analysis of a system with fixed design parameters
can be computationally impracticable at high frequencies. The specific issue of design to
minimize vibration transmission has recently been addressed by Keane [8]. For the case
of a planar framework, a receptance structural analysis method was coupled to a genetic
algorithm optimization scheme to yield an efficient (and feasible) computational scheme.
It was shown that significant vibration reductions could be obtained across a fairly wide
frequency band, and this suggests that similar reductions might be achievable for
near-periodic systems.

In the present study, the work reported in reference [6] is extended for an embedded
waveguide to the case of a finite near-periodic beam system which more closely resembles
the type of optimization problem likely to occur in engineering practice. The beam is
taken to have N bays, and the design parameters are taken to be the individual bay
lengths, and individual bay damping. Both single frequency and band-limited excitation
are considered, and two objective functions are investigated: (i) the response in a bay
which is distant from the applied loading (minimization of vibration transmission), and
(ii) the maximum response in the structure (minimization of maximum stress levels). In
each case the optimal configuration is found by employing a quasi-Newton algorithm, and
the physical features of the resulting design are discussed in order to suggest general
design guidelines.

2. ANALYTICAL MODEL OF THE NEAR-PERIODIC BEAM

2.1.     

A schematic of an N-bay near-periodic beam structure is shown in Figure 1. The
structure is subjected to dynamic loading, and the aim of the present work is to find the
optimal design which will minimize a prescribed measure of the vibration response. No
matter what type of optimization algorithm is employed, this type of study requires
repeated computation of the system dynamic response as the design parameters are varied,
and it is therefore important to employ an efficient analysis procedure. In the present work
the h-p version of the finite element method (FEM) is employed with this approach, the
structure is modelled as an assembly of elements that have both nodal and internal degrees
of freedom. Each element has two nodes and the nodal degrees of freedom consist of the
beam displacement and slope. The internal degrees of freedom are generalized
co-ordinates, which are associated with an hierarchy of shape functions that contribute
only to the internal displacement field of the element. The internal shape functions used
here are the K-orthogonal Legendre polynomials of order four onwards. Full details of

Figure 1. A schematic of a simply supported N-bay periodic beam.
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the present modelling approach are given in reference [9], where the method was used to
study the effects of asymmetry on the dynamics of a periodic beam system.

For harmonic excitation of frequency v, the equations of motion of the complete beam
structure can be written in the form

[−v2M+(1+ ih)K]q=F, (1)

where M and K are the global mass and stiffness matrices (assembled from the individual
element matrices taking into account the presence of any mass or spring attachments and
allowing for constraints), q contains the system degrees of freedom, F is the vector of
applied forces, and h is the loss factor, which in the first part of the present study is taken
to be uniform throughout the structure. For non-uniform damping, h can be taken inside
K and assigned a different value for each element. In equation (1) and all subsequent
equations, the time dependency eivt is implicitly assumed for harmonic variables.

Equation (1) can readily be solved to yield the system response q. In the present work
it is convenient to use the time averaged kinetic and strain energies of each of the N bays
as a measure of the response—for the nth bay these quantities can be written as Tn and
Un say, where

Tn =
v2

4
q*T

n Mn qn , Un = 1
4 q*T

n Kn qn . (2, 3)

Here Mn and Kn are the mass and stiffness matrices of the nth bay, and qn is the degree
of freedom vector for this bay.

Many of the physical features of the forced response of a near-periodic structure can
be explained in terms of the free vibration behaviour of the associated perfectly periodic
structure. The following section outlines how the present finite element modelling
approach can be used to study the pass bands and stop bands exhibited by a perfect
periodic structure.

2.2.   

The finite element method described in section 2.1 can be applied to a single bay of a
perfectly periodic structure to yield an equation of motion in the form

Dq=F, D=−v2M+(1+ ih)K, (4, 5)

where the matrix D is referred to as the dynamic stiffness matrix, and M, K, q and F now
relate to the particular bay under consideration. In order to study wave motion through
the periodic system, it is convenient to partition D, q and F as follows:

D=2DLL

DIL

DRL

DLI

DII

DRI

DLR

DIR

DRR3, q= 2qL

qI

qR3, F= 2FL

0
FR3, (6–8)

where L relates to the degrees of freedom at the leftmost node, R relates to those at the
rightmost node and I relates to the remaining ‘‘internal’’ degrees of freedom. Equations
(4–8) can be used to derive the following transfer matrix relation between the displacements
and forces at the left- and right-hand nodes:

T0qL

FL1=0 qR

−FR1, T=0DLL −DLI D−1
II DIL

DRL −DRI D−1
II DIL

DLR −DLI D−1
II DIR

DRR −DRI D−1
II DIR1. (9, 10)
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Equation (9) can now be used to analyse wave motion through the periodic system:
such motion is governed by Bloch’s Theorem [10], which states that
(qL FL )T =exp (−io− d) (qR −FR )T, where o and d are known, respectively, as the phase
and attenuation constants. A pass band is defined as a frequency band over which d=0,
so that wave motion can propagate through the structure without attenuation. It follows
from equation (9) that

(T− I e−io− d)0qL

FL1=0001, (11)

so that o and d can be computed from the eigenvalues of T, thus enabling the pass bands
and stop bands to be identified.

2.3.  

Equations (1)–(3) enable the forced response of a general beam system to be
calculated for any prescribed set of system properties. The aim of the present analysis
is to compute the optimal set of system properties for a prescribed design objective,
and in order to achieve this, equations (1)–(3) are evaluated repeatedly as part of an
optimization algorithm. As an example, it might be required to minimize the kinetic
energy of bay N by changing the various bay lengths. In this case, equations (1)–(3)
provide the route via which the objective function (the kinetic energy in bay N) is
related to the design parameters (the bay lengths), and the optimization algorithm
must adjust the design parameters so as to minimize the objective function. The
optimization process has been performed here by using the NAG library routine
E04UCF [11], which employs a quasi-Newton algorithm. This type of algorithm
locates a minimum in the objective function, although there is no indication as to
whether this minimum is the global minimum or a less optimal local minimum. The
probability of locating the global minimum can be increased significantly by repeated
application of the NAG routine using random starts; i.e., by prescribing random initial
values of the initial design parameters. Numerical investigations have led to the use
of 30 random starts in the present work.

2.4.    

The examples presented in the following section each concern an N-bay beam
system which is excited by a point force located within bay 1. To remove any
sensitivity of the response to the precise position of the force, the response has been
averaged over 11 equally spaced locations within the bay—this gives an approximation
to a ‘‘rain-on-the-roof’’ forcing of bay 1. The frequency content of the applied loading
is an important design driver, and the following four cases are considered: (i) single
frequency loading within the second pass band of the ordered structure, (ii)
band-limited loading lying within the second pass band; (iii) band-limited loading
covering the whole of the second pass band; (iv) band-limiting loading which covers
the second stop band and the second pass band.

Two objective functions are considered in determining the optimal design,
corresponding to the minimization of vibration transmission and the minimization of
maximum stress levels: (i) the kinetic energy of the final bay TN ; and (ii) the maximum
bay strain energy Un occurring in the structure. In case (ii), the bay strain energy is taken
as a convenient indicator of the system stress levels to avoid the need for a detailed stress
recovery.
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Figure 2. Propagation constants for a simply supported beam.

3. NUMERICAL RESULTS

3.1.  :         

The foregoing analysis has been applied to a beam of flexural rigidity EI, mass per
unit length m and loss factor h=0·015, which rests on N+1 simple supports, thus
giving an N-bay near-periodic system. The design parameters are taken to be the bay
lengths (i.e., the separation of the simple supports), and the design is constrained so that
the length Ln of any bay lies within the range 0·9Lr ELn E 1·1Lr , where Lr is a reference
length. A non-dimensional frequency V is introduced such that V=vL2

r z(m/EI), and
the non-dimensional kinetic and strain energies of a bay are defined as T'n =Tn (EI/
L3

r =F =2) and U'n =Un (EI/L3
r =F =2), where F is the applied point load. For reference, the

propagation constants for a periodic system in which all the bay lengths are equal to
Lr are shown in Figure 2—the present study is focused on excitation frequencies which
lie in the range 23EVE 61, which covers the second stop band and the second pass
band of the periodic system. In the second pass band, the beam deformation has a
wavelength which is approximately equal to Lr : the current permitted change in bay
length 0.9Lr ELn E 1·1Lr is therefore equivalent to around 20% of the vibrational
wavelength, and this implies that significant modifications to the system’s behaviour
should be achievable.

3.1.1. Design for minimum vibration transmission
In this case, the objective function is taken to be the kinetic energy in bay N, so that

the aim is to minimize the vibration transmitted along the structure. As mentioned in
section 2.4, four types of loading are considered: (i) single frequency loading with V=50,
which lies within the second pass band of the ordered structure; (ii) narrow band-limited
loading with 46EVE 54; (iii) band-limited loading with 40EVE 60, which covers the
whole of the second pass band; (iv) band-limited loading with 23EVE 61, which covers
the whole of the second stop band and the second pass band.

Results for the optimal design under single frequency loading are shown in Table 1; in
all cases it was found that the bay lengths were placed against either the upper bound
(U=1·1Lr ) or the lower bound (L=0·9Lr ), and significant reductions in the energy level
of bay N were achieved. In this regard it should be noted that the dB reduction quoted
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T 1

The optimal design of a 1-D beam structure to minimize energy transmission at V=50. The
design parameter is bay lengths, the ‘‘Original energy’’ is the non-dimensional kinetic energy
in bay N of the periodic structure, and the ‘‘Final energy’’ is the non-dimensional kinetic

energy in bay N of the optimized structure

No. of Optimal pattern Original Final Reduction
bays, N energy energy energy (dB)

4 UULU 0·276E1 0·804E−3 35·4
5 ULULU 0·609E−1 0·179E−3 25·3
8 UULULULU 0·674E0 0·613E−5 50·4
9 ULULULULU 0·564E−1 0·135E−5 46·2

10 UULULULULU 0·424E0 0·523E−6 59·0
11 ULULULULULU 0·535E−1 0·117E−6 56·6
12 UULULULULULU 0·289E0 0·461E−7 68·0
13 ULULULULULULU 0·502E−1 0·101E−7 67·0
16 UULULULULULULULU 0·154E0 0·346E−9 86·5
17 ULULULULULULULULU 0·431E−1 0·761E−10 87·5

in Table 1 is defined as −10 log (TN /TNr ), where TNr is the kinetic energy in the final bay
of the ordered system. The optimal designs shown in Table 1 all tend to consist of a
bi-periodic structure, in which the basic unit consists of two bays in the configuration LU.
The pass bands and stop bands for this configuration are shown in Figure 3, and,
furthermore, TN for the optimal 12-bay system is shown in Figure 4 over the extended
frequency range 0EVE 250. By comparing Figures 2 and 3 it is clear why the selected
design is optimal—the new bi-periodic system has a stop band centred on the specified
excitation frequency V=50. As would be expected, it can be seen from Figure 4 that the
improvement in the response at the specified frequency V=50 is accompanied by a
worsening of the response at some other frequencies.

Results for the optimal design under narrow band-limited excitation over the range
46EVE 54 are shown in Table 2. In some cases two results are shown for the optimized

Figure 3. Propagation constants for a bi-periodic simply supported beam.
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Figure 4. The frequency response of a 12-bay beam: kinetic energy in bay 12, optimized for V=50, obtained
by adjusting bay length. —·—·—, The original structure; ——, the optimized structure, ‘‘UULULULULULU’’.

‘‘Final Energy’’: in such cases the first result has been obtained by ‘‘forcing’’ each bay
length on to either the upper (U) or lower (L) bound, while the second result has been
obtained by using the NAG optimization routine. If only one result is shown, then the
two methods yield the same optimal design. The ‘‘bound’’ result is easily obtained by
computing the response under each possible combination of U and L bay lengths—this

T 2

The optimal design of a 1-D beam structure to minimize energy transmission for
46EVE 54. The design parameter is the bay lengths, the ‘‘Original energy’’ is the
non-dimensional kinetic energy in bay N of the periodic structure, and the ‘‘Final energy’’

is the non-dimensional kinetic energy in bay N of the optimized structure

No. of Optimal pattern Original Final Reduction
bays, N energy energy (dB)

4 UULU 0·403E0 0·178E−2 23·5
5 ULULU 0·492E0 0·271E−2 22·6
6 UULULU 0·216E0 0·230E−3 29·7
7 ULULULU 0·250E0 0·301E−4 39·2
8 UULULULU 0·257E0 0·297E−4 39·4

NAG 0·257E0 0·295E−4 39·4
9 ULULULULU 0·162E0 0·348E−5 46·7

10 ULULLULULU 0·178E0 0·346E−5 47·1
11 ULULULULULU 0·157E0 0·418E−5 45·7
12 ULULULLULULU 0·127E0 0·395E−6 55·1

NAG 0·127E0 0·391E−6 55·1
13 ULULULULULULU 0·129E0 0·521E−7 63·9
14 ULULULLULULULU 0·105E0 0·464E−7 63·5



. .   .634

T 3

The optimal design of a 1-D beam structure to minimize energy transmission for
40EVE 60. The design parameter is the bay lengths, the ‘‘Original energy’’ is the
non-dimensional kinetic energy in bay N of the periodic structure, and the ‘‘Final energy’’

is the non-dimensional kinetic energy in bay N of the optimized structure

No. of Optimal pattern Original Final Reduction
bays, N energy energy (dB)

4 ULLU 0·670E0 0·103E−1 18·1
5 ULLLU 0·631E0 0·735E−2 19·3

NAG 0·631E0 0·711E−2 19·5
6 UULLLU 0·384E0 0·221E−2 22·4
7 ULLUULU 0·463E0 0·171E−2 24·3
8 UULLLLLU 0·430E0 0·966E−3 26·5

NAG 0·430E0 0·914E−3 26·7
9 UUULLLLLU 0·444E0 0·341E−3 31·1

10 UUUULLLLLU 0·449E0 0·192E−3 33·7
NAG 0·449E0 0·189E−3 33·8

11 ULLUUUULLLU 0·291E0 0·821E−4 35·5
12 UUULUULLLLLU 0·201E0 0·352E−4 37·6
13 ULUUUUULLLLLU 0·199E0 0·153E−4 41·1

requires 2N response calculations, which normally takes much less CPU time than the NAG
optimization routine. It is clear from Table 2 that the additional improvement in the
response yielded by the full optimization routine is minimal for this case. The optimal
structural configuration is similar to that obtained under single frequency excitation. This
is unsurprising as the frequency range 46EVE 56 is still within the stop band generated
by the new bi-periodic structure. However, for even bay numbers of Ne 10, two adjacent
lower bounds are set near the centre of the structure. This, in effect, causes the
structure to be made up of two bi-periodic structures of design ‘‘UL’’, connected back to
back.

Results for the optimal design under band-limited excitation over the range 40EVE 60
are shown in Table 3. The response curve for the 12-bay system is shown in Figure 5, where
it is clear that a significantly reduced response is achieved over the specified frequency
range: as would be expected, an increase in the response occurs at other frequencies. It
is interesting to note that most of the optimal designs shown in Table 3 lack
symmetry—however, it follows from the principle of reciprocity that a design that
minimizes vibration transmission from left to right will also minimize transmission from
right to left. It should therefore be possible to ‘‘reverse’’ the designs without changing the
transmitted vibration levels. This hypothesis is tested in Figure 6 for a 12-bay structure:
shown in the figure is the energy distribution for the optimal design UUULUULLLLLU
and for the reversed design ULLLLLUULUUU. Although the detailed distribution of
energy varies between the two designs, the energy levels achieved in bay 12 are identical,
as expected.

Results for the optimal design under wide-band excitation 23 EVE 61 are shown in
Table 4, and the response curve for the 12-bay optimized system is shown in Figure 7. The
form of optimal design achieved is similar to that obtained for the narrower excitation
band 40EVE 60, although there are detailed differences between the two sets of results.
In each case there is a tendency for a group of lower bound bays (L) to occur in the mid
region of the structure, and a group of upper bound bays (U) to occur at either end. This
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creates an ‘‘impedance mismatch’’ between the two sets of bays, which promotes wave
reflection and thus reduces vibration transmission along the structure. By comparing
Tables 1–4, it is clear that the amount of reduction in vibration transmission that can be
achieved reduces as the bandwidth of the excitation is increased.

3.1.2. Design for minimum ‘‘maximum’’ strain energy
In this case the strain energy Un of each bay is computed and the objective function is

taken to be the maximum value of Un . As in the previous section, the four frequency ranges
V=50, 46EVE 54, 40EVE 60 and 23EVE 61 are considered, and the optimal
structures obtained for N=9–12 are shown in Table 5.

Considering the single frequency results (V=50) shown in Table 5, it is clear that a large
dB reduction is achieved only for those systems which have an even number of bays;
furthermore, the optimal energy obtained has the same value (0·0297) in all cases. This
can be explained by noting that for an odd number of bays the frequency V=50 lies near
to an anti-resonance of the ordered structure, whereas a resonance is excited for an even
number of bays—this feature is illustrated in Figure 8 for the 12-bay structure. The
repeated occurrence of the optimal energy 0·0297 arises from the fact that the initial bay
pattern ULLLUUU occurs in all designs. It has been found that this pattern causes a
vibration reduction of over 20 dB from bay 1 to bay 8, so that the response in bay 1 (the
maximum response) is insensitive to the nature of the structure from bay 8 onwards. This
is illustrated in Figure 9, in which the energy distribution in the optimized 12-bay system
is shown.

The results shown in Table 5 for the three types of band-limited excitation display a
number of general features: (i) in contrast to the single frequency case, the dB reduction
achievable is not sensitive to having either an even or an odd number of bays; (ii) in

Figure 5. The frequency response of a 12-bay beam: kinetic energy in bay 12, optimized for 40 EVE 60,
obtained by adjusting bay length. —·—·0, The original structure; ——, the optimized structure,
‘‘UUULUULLLLLU’’.
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Figure 6. The distribution of kinetic energy within a 12-bay beam, showing reciprocity. Also shown is the
kinetic energy within the original beam. —·—·—·—, The structure ‘‘ULLLLLUULUUU’’; ——, the structure
‘‘UUULUULLLLLU’’; – – – – –, the original structure.

T 4

The optimal design of a 1-D beam structure to minimize energy transmission for
23EVE 61. The design parameter is the bay lengths, the ‘‘Original energy’’ is the
non-dimensional kinetic energy in bay N of the periodic structure, and the ‘‘Final energy’’

is the non-dimensional kinetic energy in bay N of the optimized structure

No. of Optimal Original Final Reduction
bays, N pattern energy energy (dB)

4 LLUU 0·536E0 0·581E−1 9·7
NAG 0·536E0 0·383E−1 11·5

5 LLLUU 0·340E0 0·180E−1 12·8
NAG 0·340E0 0·138E−1 13·9

6 LLLLUU 0·494E0 0·648E−2 18·8
7 LLLULUU 0·183E0 0·246E−2 18·7
8 LLLLLUUU 0·175E0 0·180E−2 19·9
9 ULLLLLLUU 0·139E0 0·904E−3 21·9

10 UUULLLLLUU 0·105E0 0·277E−3 25·8
11 UUULLLLLLUU 0·105E0 0·776E−4 31·3
12 UUULLLLLLLUU 0·166E0 0·526E−4 35·0
13 UUULLLLLLULUU 0·973E−1 0·282E−4 35·4
14 UUUULLLLLLULUU 0·581E−1 0·122E−4 36·8
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Figure 7. The frequency response of a 12-bay beam; kinetic energy in bay 12, optimized for 23 EVE 61,
obtained by adjusting bay length. —·—·—·, The original structure; and ——, the optimized structure,
‘‘UUULLLLLLLUU’’.

agreement with the single frequency case, the optimal energy is relatively insensitive to the
number of bays in the system; (iii) the optimal energy yielded by the ‘‘bound search’’
method becomes significantly greater than that yielded by the full optimization procedure
as the excitation bandwidth is increased. Point (i) arises simply because the excitation
bandwidth always encompasses at least one resonant mode of the system, and thus there
is no equivalent of the ‘‘anti-resonant’’ case that can arise for V=50. Point (ii) is due to
the fact that the maximum energy arises in or near to the excited bay, and this energy is
little affected by the more remote parts of the system. Point (iii) is important from a
computational point of view, since for wide-band excitation the simple ‘‘bound search’’
algorithm cannot be relied upon to produce a near-optimal result. This is illustrated in
Figure 10 for the case of a 12-bay system subjected to wide-band excitation 23EVE 61;
the ‘‘bound search’’ optimal design is UUUUUUUUULUU, whereas the design yielded
by the full optimization corresponds to bay lengths (as a multiple of Lr ) of 0·900; 0·988;
0·979: 1·007; 0·986; 1·019; 0·986; 1·026; 0·987; 1·058; 1·021; 0·948. As shown in Table 5, the
maximum stress energy is more than 3 dB lower for the fully optimized design.

The performance of the present optimization strategy can be assessed by considering the
range of results yielded by the 30 random starts employed in the search procedure. For the
12-bay system with 23 EVE 61, it was found that the 30 random starts yielded a range
of minimum values between 1·55×10−1 and 7·95×10−2 for the non-dimensional strain
energy; the dB reduction associated with those designs ranged from 3·1 dB to 6·0 dB. It
cannot be guaranteed (although it is likely) that the present approach has yielded the global
minimum. Further confidence could be achieved by employing more random starts or by
using an alternative optimisation procedure such as a genetic algorithm [8]. The present
results can be viewed at worst as a lower bound on the achievable vibration reduction, and
at best the globally optimal reduction.
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3.2.  :        



A uniform simply supported beam with the same flexural rigidity and mass per unit
length as the beam in System I is analyzed in this section. The loss factor in each bay,
hn , is now the design parameter. The initial structure has a uniform loss factor of hn =0·05,
which gives an average modal overlap factor of M=0·125 N for the second pass band

T 5

The optimal design of 1-D beam structure to minimize ‘‘maximum’’ strain energy. The design
parameter is the bay lengths. N' is the bay in which the optimal minimum ‘‘maximum’’
non-dimensional strain energy occurs, the ‘‘Original energy’’ is the initial ‘‘maximum’’
non-dimensional strain energy of the periodic structure, and the ‘‘Final energy’’ is the

non-dimensional strain energy in bay N' of the optimized structure

No. of Optimal Original Final Bay Reduction
bays, N pattern energy energy no. N’ (dB)

V=50

9 ULLLUUUUL 0·667E−1 0·297E−1 1 3·5
NAG 0·667E−1 0·296E−1 1 3·5

10 ULLLUUUULU 0·540E0 0·297E−1 1 12·6
NAG 0·540E0 0·296E−1 1 12·6

11 ULLLUUUULUU 0·691E−1 0·297E−1 1 3·7
NAG 0·691E−1 0·296E−1 1 3·7

12 ULLLUUUULULU 0·404E0 0·297E−1 1 11·3
NAG 0·404E0 0·296E−1 1 11·4

46EVE 54
9 ULLLLLULL 0·181E0 0·340E−1 1 7·3

NAG 0·181E0 0·331E−1 1 7·4
10 ULULLLLULL 0·207E0 0·344E−1 1 7·8

NAG 0·207E0 0·329E−1 1 8·0
11 ULLLLLULLLU 0·193E0 0·343E−1 1 7·5

NAG 0·193E0 0·328E−1 1 7·7
12 ULLLLLLLLULL 0·161E0 0·341E−1 1 6·7

NAG 0·161E0 0·328E−1 1 6·9

40EVE 50
9 UUUUULULU 0·486E0 0·710E−1 1 8·4

NAG 0·486E0 0·449E−1 1–2 10·3
10 ULULULULLL 0·606E0 0·643E−1 1 9·7

NAG 0·606E0 0·451E−1 1–2 11·3
11 ULULULULLUU 0·456E0 0·682E−1 1 8·3

NAG 0·456E0 0·425E−1 1–2 10·3
12 UUUUUUUUUUUL 0·332E0 0·550E−1 2 7·8

NAG 0·332E0 0·412E−1 1–2 9·2

23EVE 61
9 LLLLLLLLL 0·234E0 0·203E0 1 0·6

NAG 0·234E0 0·979E−1 1 3·8
10 LLLLLLLLLL 0·200E0 0·178E0 1 0·5

NAG 0·200E0 0·951E−1 1–2 3·2
11 UUUUUUUUULL 0·198E0 0·193E0 1 0·1

NAG 0·198E0 0·910E−1 1–2 3·4
12 UUUUUUUUULUU 0·314E0 0·182E0 1 2·4

NAG 0·314E0 0·795E−1 1–2 6·0
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Figure 8. The frequency response of a 12-bay beam: strain energy in bay 1, optimized for V=50, obtained
by adjusting bay length. —·—·—·, The original structure; ——, the optimized structure, ‘‘ULLLUUUULULU’’.

of an N-bay system (based on the fact that the band has a width of DV=20, a centre
frequency of Vc =50, and N modes lie in the band so that M=Vc h(N/DV)=0·125 N).
The modal overlap factor gives an indication of the smoothness of the frequency response

Figure 9. The distribution of strain energy within a 12-bay beam, optimized for V=50, obtained by adjusting
bay lengths. —·—·—·—, The original structure; ——, the optimized structure, ‘‘ULLLUUUULULU’’.
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Figure 10. The distribution of strain energy within a 12-bay beam, optimized for 23 EVE 61. —·—·—·, The
original structure; – – – – –, the ‘‘bound’’ obtained structure, ‘‘UUUUUUUUULUU’’; ———, the ‘‘NAG’’
obtained structure ‘‘0·900, 0·988, 0·979, 1·007, 0·986, 1·019, 0·986, 1·026, 0·987, 1·058, 1·021, 0·948’’ (multiples
of Lr ).

function: if MQ 1 the modes appear as distinct sharp peaks, whereas for Mq 1 the
resonant peaks merge, and the response function has a much smoother appearance. For
periodic structures the modal density, and hence the modal overlap factor, can vary
significantly over a pass band, with the greatest values occurring near the pass band edges.
The average value M=0·125 N is used here to give an indication of the degree of modal
overlap, and it is recognised that individual pairs of modes near to the band edges could,
in principle, deviate from this result. However, for the range of examples considered here,
this effect has not been found to be significant and M gives a good physical measure of
the modal overlap.

In the present study the bay loss factors hn are constrained such that

s
N

n=1

hn =0·05 N, (12)

which means that the ‘‘total’’ damping in the structure is held constant. Physically, the
damping might be introduced by bonding a damping layer to the structure, in which case
equation (12) corresponds to the use of a fixed total mass of damping material.

3.2.1. Design for minimum vibration transmission
Results for the optimized response of an N-bay system subjected to a single frequency

excitation with V=50 are shown in Table 6: as in section 3.1.1 the objective function was
taken to be the kinetic energy in bay N, and the NAG routine E04UCF was used to
perform the optimization. It is immediately obvious from the results shown in Table 6 that
the distribution of damping treatment is a very weak design parameter, in the sense that
little reduction in the level of vibration transmitted can be effected. In fact, it is found that
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T 6

The optimal design of a 1-D beam structure to minimize energy transmission at V=50. The
design parameter is bay damping, the ‘‘Original energy’’ is the non-dimensional kinetic energy
in bay N of the periodic structure, and the ‘‘Final energy’’ is the non-dimensional kinetic

energy in bay N of the optimized structure

Original
modal

No. of overlap Original Final Reduction
bays, N factor energy energy (dB)

4 0·5 0·236E 0 0·232E 0 0·07
5 0.625 0·443E−1 0·427E−1 0·16
6 0·75 0·947E−1 0·927E−1 0·09
7 0·875 0·322E−1 0·312E−1 0·14
8 1 0·463E−1 0·453E−1 0·10
9 1·125 0·221E−1 0·214E−1 0·14

10 1·25 0·250E−1 0·244E−1 0·11
11 1·375 0·145E−1 0·141E−1 0·12
12 1·5 0·141E−1 0·138E−1 0·09

the kinetic energy of bay N is almost independent of the damping distribution, regardless
of the value of the modal overlap factor or whether the system is resonant or non-resonant
at the excitation frequency V=50. In order to explain this general insensitivity, it is
necessary to consider three distinct cases: (i) a low modal overlap system excited
off-resonance; (ii) a low modal overlap system excited at resonance; and (iii) a high modal
overlap system. In case (i) it is obvious that the distribution of damping is of no
significance, since the non-resonant response is independent of damping. In case (ii) it

Figure 11. The distribution of kinetic energy within a 12-bay beam, optimized for V=50, obtained by
adjusting bay damping. —·—·—·—, The original structure; ——, the optimized structure, h1=h12 =0·00,
h2 = h11 =0·10, h3 = h10 =0·44×10−1, h4 = h9 =0·54×10−1, h5 = h8 =0·49×10−1, h6 = h7 =0·50×10−1.
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T 7

The optimal design of a 1-D beam structure to minimize ‘‘maximum’’ strain energy at
V=50. The design parameter is bay damping, N' is the bay in which the optimal minimum
‘‘maximum’’ non-dimensional strain energy occurs, the ‘‘Original energy’’ is the initial
‘‘maximum’’ non-dimensional strain energy of the periodic structure, and the ‘‘Final energy’’

is the non-dimensional strain energy in bay N' of the optimized structure

No. of Original Final Bay Reduction
bays, N energy energy no., N' (dB)

4 0·314E0 0·262E0 1–2 0·8
5 0·640E−1 0·493E−1 1–2 1·1
6 0·184E0 0·121E0 1–3 1·8
7 0·732E−1 0·423E−1 1–2 2·4
8 0·140E0 0·711E−1 1–2–3 2·9
9 0·814E−1 0·361E−1 1–2 3·5

10 0·121E0 0·479E−1 1–2 4·0
11 0·877E−1 0·306E−1 1–2 4·6
12 0·112E0 0·351E−1 1–2–3 5·0

should be recalled that the present concern is with a periodic structure having N bays.
The generalized loss factor associated with a particular mode can be expressed in the
form

heff = s
N

n=1

hn gbay n

mf2(x) dx, (13)

where f(x) is the mode shape (scaled to unit generalized mass) and m is the mass per unit
length of the beam. For a periodic structure, the modes are generally non-localized, and
the integral that appears in equation (13) yields approximately the same result for each
bay—given that the modes are scaled to unit generalized mass, the result is (1/N). Equation
(13) thus yields

heff 1 s
N

n=1

hn
1
N

=0·05, (14)

so that the modal damping (and hence the system response) is independent of the spatial
distribution of the damping. In case (iii), high modal overlap, it is less obvious that the
transmitted energy will be independent of the damping distribution. However, it can be
noted that a one-dimensional periodic system with high modal overlap has a relatively high
attenuation constant d arising from the presence of damping [12]. This implies that there
is a significant decay in the amplitude of an elastic wave as it passes along the system—the
amplitude decays by factor of exp (−d) over each bay; the total decay along the system
can be written approximately as exp (−an dn ), where dn is the attenuation constant for bay
n. The attenuation constant d varies approximately linearly with the loss factor h [12],
which implies that an dnAan hn =0·05 N and hence the total attenuation along the system
is independent of the detailed distribution of damping. This type of behaviour is shown
in Figure 11 for the case of a 12-bay system. It should be noted that the present argument
is based on the assumption that the system is non-reverberant, so that the ‘‘direct field’’
response estimate exp (−an dn ) truly represents the response in bay N. This reasoning will
not apply if a significant amount of energy is reflected from the right-hand end of the
system, as might occur if all the damping is concentrated in the first few bays of the system.
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Such a damping arrangement would tend to increase, rather than decrease, vibration
transmission, and an example of this type of behaviour is given in the following section.

It follows from the above arguments that the levels of vibration transmitted along a
periodic structure cannot significantly be reduced by modifying the spatial distribution
of damping, and this is borne out by the results shown in Table 6. Although not detailed
here, similar results have also been obtained for band-limited excitation. This behaviour
will generally not occur for a disordered system—the modes of a disordered system tend
to be localized, and it can be anticipated that damping will be employed to greatest effect
in regions of high modal displacement.

3.2.2. Design for minimum ‘‘maximum’’ strain energy
As in section 3.1.2, the objective function is in this case taken to be the maximum

bay strain energy Un occurring in the system. Results for the optimized maximum energy
are shown in Table 7 for the case of the single frequency excitation with V=50. It is
clear that little reduction in the maximum energy can be obtained when the number of
bays is small; this is because the system has a low modal overlap (M=0·125 N) and,
as explained in the previous section, neither the resonant nor the non-resonant response
is sensitive to the damping distribution in this case. As the modal overlap increases, the
single frequency force (V=50) begins to excite more than one mode (due to increasing
modal bandwidth), and the distribution of damping has more effect on the objective
function. The frequency response function of the optimized 12-bay system is shown in
Figure 12, and the energy distribution at V=50 is shown in Figure 13; in this case the
optimal damping consists of h1 =0·5229, h2 =0·0241 and h3 =0·0529, with zero damping
in all the other bays. It can be seen from Figure 13 that the optimal damping
arrangement has led to a near uniform distribution of strain energy across the system,
so that the reduction in the maximum strain energy (bay 1) is accompanied by an

Figure 12. The frequency response of a 12-bay beam: strain energy in bay 1, optimized for V=50, obtained
by adjusting bay damping. —·—·—·, The original structure; ——, the optimized structure, h1=0·5229,
h2 =0·2413×10−1, h3 =0·5293×10−1, h4 = h5 = h6 = h7 = h8 = h9 = h10 = h11 = h12 =0·0.
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Figure 13. The distribution of strain energy within a 12-bay beam, optimized for V=50, obtained by adjusting
bay damping. —·—·—·, The original structure; ——, the optimized structure, h1=0·5229, h2 =0·2413×10−1,
h3 =0·5293×10−1, h4 = h5 = h6 = h7 = h8 = h9 = h10 = h11 = h12 =0·0.

increase in vibration transmission (bay 12). As discussed in the previous section, the
present damping arrangement invalidates the argument that the transmitted energy should
be independent of the damping distribution, since the response in bays 4–12 is highly
reverberant.

It can be noted that the damping model employed in the present work is based on the
use of a viscoelastic loss factor h. The bay value h1 =0·5229 is extremely high, although
not beyond quoted results for certain plastics and rubbers [13]; the practical aspects of
achieving such a value would need to be considered in a design situation, and such

T 8

The optimal design of a 1-D beam structure to minimize ‘‘maximum’’ strain energy for
40EVE 60. The design parameter is bay damping. N' is the bay in which the optimal
minimum ‘‘maximum’’ non-dimensional strain energy occurs, the ‘‘Original energy’’ is the
initial ‘‘maximum’’ non-dimensional strain energy of the periodic structure, and the ‘‘Final

energy’’ is the non-dimensional strain energy in bay N' of the optimized structure

No. of Original Final Bay Reduction
bays, N energy energy no., N' (dB)

4 0·201E0 0·155E0 1–4 1·1
5 0·200E0 0·110E0 1–2–5 2·6
6 0·178E0 0·859E−1 1–2–3–6 3·2
7 0·186E0 0·698E−1 1–3–7 4·3
8 0·184E0 0·581E−1 1–4–5–8 5·0
9 0·188E0 0·485E−1 1–3 5·9

10 0·189E0 0·424E−1 1–10 6·5
11 0·182E0 0·378E−1 1–2 6·8
12 0·174E0 0·323E−1 1–2–3 7·3
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considerations could place additional bounds on the permissible values of h employed in
the optimization procedure.

From the frequency–response curve shown in Figure 12, it would appear that the
optimal damping arrangement has decreased the modal overlap of the system, since the
individual resonant peaks are much more clearly visible for the optimized system.
However, equation (13) and the subsequent discussion implies that the modal damping
factors, and hence the modal overlap, should be independent of the damping distribution,
which is in apparent contradiction with the results shown in Figure 12. This contradiction
can be resolved by noting that the damping distribution produces a coupling damping
factor between modes i and j of the form

hij = s
N

n=1

hn gbay n

mfi (x)fj (x) dx, (15)

where fi (x) and fj (x) are the relevant mode shapes of the undamped system. If the
damping is uniformly distributed, then equation (15) yields hij =0 by virtue of the
orthogonality of the mode shapes. If the damping distribution is highly non-uniform, then
hij may have an appreciable value, and for high modal overlap this coupling term can have
a significant effect on the system response, leading to the type of behaviour shown in
Figure 12. To give an alternative, wave-based, explanation for the results shown in
Figure 12, the visible resonant peaks are associated with wave phase closure over the
undamped section of the structure.

Results for the optimized maximum energy for the case of wide-band excitation with
40EVE 60 are shown in Table 8. Generally, greater reductions in the maximum energy
are achieved than the single frequency case of V=50, and again it was found that the
optimal damping was distributed near to the loaded bay to give a fairly uniform
distribution of energy down the system. For the 12-bay system the optimal damping
arrangement was found to be h1 =0·504, h2 =0·0945 and h3 =0·00145, with zero damping
in all other bays.

4. CONCLUSIONS

The present work has considered the optimal design of a near-periodic beam system to
minimize vibration transmission and also maximum stress levels. Two sets of design
parameters have been considered; namely, the individual bay lengths and the individual
bay damping values. The main conclusions drawn from this work are summarized below.
(1) Vibration transmission with variable bay length. In this case the optimal design involves
placing the structural design parameters (the bay lengths) on the permissible bounds, and
this means that a simple design search routine can be used in preference to a full
optimization algorithm. As would be expected, the obtainable reduction in vibration
transmission decreases with increasing excitation bandwidth and increases with increasing
system size.
(2) Vibration transmission with variable bay damping. It has been found that vibration
transmission cannot substantially be reduced by changing the way in which damping is
distributed through the system. A physical explanation of this result is presented in section
3.2.1 for the separate cases of low and high modal overlap.
(3) Maximum stress levels with variable bay lengths. In this case significant reductions can
be achieved, although the fully optimal configuration must normally be found by
employing a full optimization algorithm rather than a bound search approach.
Nonetheless, in most cases the bound search approach produces a near-optimal structure.
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In the case of single frequency excitation, the achievable reduction in maximum stress levels
is relatively low if the original design displays an anti-resonance at the excitation frequency.
For band-limited excitation, the achievable reduction normally decreases with increasing
bandwidth, and is rather insensitive to the system size.
(4) Maximum stress levels with variable bay damping. In this case the maximum stress levels
are reduced by concentrating the damping near to the excited bay. This produces a near
uniform distribution of energy throughout the system, which has the side effect of increasing
vibration transmission.

Clearly, the present study could be extended to consider a combined transmission/stress
objective function, and also simultaneous use of the damping and bay lengths design
parameters. The main purpose of the results reported here is to indicate that much improved
wide-band vibration performance can be achieved in near-periodic structures by performing
relatively minor design changes. This provides motivation for the study of more complex
systems than the 1-D beam example considered here.
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