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The aim of this paper is to develop the formulation of a finite element for the study of
the axial, torsional and flexural dynamic behavior of a rotating array of blades taking into
account the gyroscopic effect and the centrifugal loadings. The displacements within the
element are described in terms of superposition of the rigid body motion and the deflections
relative to the rigid body configuration. A truncated Fourier’s series has been adopted to
approximate the dependence on tangential direction of the displacement field while
polynomial shape functions are employed in the radial direction. Just the zero and one
nodal diameter deflections have been considered in the Fourier series as they are the only
ones coupled to the axial, torsional and flexural behavior of the disc–shaft system. The
element equations of the motion are obtained using a complex co-ordinate formulation.
Analytical solutions and experimental results have been compared to the results of the FEM
model to test its accuracy.
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1. INTRODUCTION

It is common practice in the rotordynamic study of rotors to neglect the flexibility of the
disc-array of blades assemblies connected to them. The dynamic behavior of the disc
assemblies is then analyzed in a separate step to determine if dangerous resonance
conditions are met during operation. This approach corresponds to the implicit
assumption that the disc–blade modes are decoupled to the dynamic behavior of the shaft.
Even if this assumption leads to considerable simplification in the rotordynamic analysis,
in the case when the shaft and the disc assemblies have natural frequencies close to each
other a strong interaction can occur between them and the rigid body assumption becomes
incorrect. The need of a model taking into account the interaction between shaft, disc and
array of blades is emphasized in the case of rotors supported by active magnetic bearings.
The coupling between axial and torsional degrees of freedom due to the presence of stagger
and twist angles of the blades can lead the system to an instability due to the active control.
In the case of actively controlled rotors, the risk of instability makes it of essential
importance to take coupling effects into account in the design of the mechanical, electrical
and control subsystems.
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A comprehensive survey article of the dynamic behavior of arrays of blades and their
range of applicability is given by Leissa [1] considering both beam and plate/shells models.
The differences occurring in the in-plane and out-of-plane vibrations induced by the
rotational speed are pointed out along with the effects of the pretwist, the coupling between
the bending and torsional degrees of freedom, and the effects of the shrouds.

To obtain a physical insight into the rotordynamic implications due to the flexibilities
of disc and an array of blades attached to it, Crawley and Mokadam [2] and Chun and
Lee [3] demonstrate that the stagger angle of the blades determines an inertial coupling
between the in-plane and out-of-plane motion of the disc. In reference [2] evidence is given
of the decoupling occurring between the motions involving two or more nodal diameters
and the dynamic behavior of the shaft, so that just the zero and one nodal diameter are
coupled to the dynamic of the shaft.

The equations of motion of a bladed disc are derived by Chun and Lee [3] in terms of
the combination of the rigid body motion and the deflection of the disc and the array out
of the rigid body configuration. No torsional and axial motions are considered and the
solution of the equations of motion is carried out by means of admissible functions in the
radial direction while a Fourier’s series truncated at the first term has been employed to
express the dependence on the tangential direction. Blade and shaft modes are shown to
be strongly coupled in the case where their flexibility is comparable.

The interaction of flexible discs connected to flexible blades by means of compliant
coupling is investigated by Tomioka et al. [4]. Springs are introduced between disc and
blades to account for the flexibility of the coupling and between contiguous blades to
account for the interaction between shrouds. A Ritz method is employed to approximate
the dependence on radial co-ordinates of the unknown displacement field while the
dependence from the angular location is expanded in a Fourier series. The study evidences
a relation between the number of blades and the nodal diameters of the disc deflection.
The influence of non-continuous shroud rings has been investigated both theoretically and
experimentally by Zmitrowicz [5].

Even if the Ritz [2] and other assumed modes methods [3] can be helpful in obtaining
a physical insight in the dynamic coupling due to the flexibility of the blades, their
application in real-world configurations is very difficult, due to the complicated geometries
usually adopted. The finite element method has been demonstrated to be more flexible to
cope with these situations.

A number of papers has been written on the definition of finite elements suitable to the
rotordynamic interaction due to the array of blades. Assuming the shaft as rigid, a two
node Timoshenko type element has been developed by Kirkhope and Wilson [6] for the
study of the dynamic behavior of the disc assembly. The degrees of freedom of the element
include the axial, the tangential displacements of each blade cross-section and its twist
angle. No coupling between bending and torsion is assumed (the flexural axis coincides
with the centroidal axis). Since blade and disc are assumed to maintain common
displacement and orientation at their interface, torsional modes of the blades are excited
by the rim at the diametral nodes where the displacement is null but the orientation of
the rim experiences a maximum variation.

A dynamic substructuring technique is used by Wildheim [7] to determine the blade–disc
interaction. The displacement field within the system is expressed as the combination of
a rigid body displacement field and the deflection out of it.

The strong excitation of the blade torsional modes occurring in helicopter rotor blades,
led Magari et al. [8, 9] to the formulation of a beam finite element taking into account
the distinction between centroid and shear centre of the sections. This analysis
demonstrates a coupling between flexural and torsional modes of each blade.
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The strong gyroscopic effects that can be induced on the rotor of a jet engine in the case
of an aircraft manoeuver has been studied by Sakata et al. [10] by means of a model taking
into account the interaction occurring between a flexible blade–disc assembly with a
flexible shaft. Due to the decoupling demonstrated in [2], only the one nodal diameter
modes are accounted for. In-plane, out-of-plane bending displacements and torsion of the
blade are considered in the analysis.

While the approximation of the low aspect ratio blades as beams is usually successfully
adopted for studying the interaction between shaft, disc and array of blades, it is not
possible to predict local modes of the blades such as chordwise bending [1] and its
interaction with the dynamic behavior of the disc. Distributed and lumped mass
approaches are then adopted by Hsieh and Abel [11] to develop solid elements to be
employed in the modelling of coupled disc–blade assemblies taking into account geometric
non-linearities but not the coupling with the shaft and Coriolis effects due to rotation.

Low aspect ratio stub blades are studied by Omprakash and Ramamurti [12] by
assuming the blades as shallow shells. The problem has been solved by means of the
Rayleigh–Ritz method by exploiting the cyclic symmetry of the system.

The development of a finite element taking into account of the axial, flexural and
torsional behavior of array of blades is carried out in the present paper also taking into
account the coupling between axial and torsional behavior due to the stagger and pretwist
angles. The blades are assumed to be clamped to the disc outer diameter and the interface
is simulated by means of a disc–blade transition element that can be connected to a
previously developed disc finite element [13]. The element matrices are obtained by means
of a Lagrangian approach and the equations of motion are written in complex
co-ordinates. The analytical solutions obtained in the case of a rotating pendulum and of
a rotating blade connected to a rigid disc are used as an assessment of the accuracy of
the results. Experimental results obtained on the rotor of a turbomolecular pump including
several arrays of blades have also been compared with the predictions of the FEM model
showing good agreement.

2. ELEMENT KINEMATICS

The main assumptions underlining the present analysis are that all the blades are equal,
and are equally spaced along the outer diameter of the disc to which are connected the
elastic and the inertial axes of the blades are aligned along a radial direction, the shear
center and the centroid of each section are located at the same point of the section. The
last assumption does not detract too much in the case of sections with a small camber of
the airfoil such as in the case of turbomolecular pumps.

The number of blades must be such that the array is elastically and inertially axisymetric.
Although the present formulation is developed with the assumption that the number of
blades is even and higher than four, it can be adapted also for an odd number of blades
provided that their number is high enough to make the asymmetries negligible. Figure 1
shows a blade cross-section taken perpendicularly to the radial direction. G indicates the
centroid of the section, with u1, u2, u3 its principal inertial axes and the reference frame
with axes u, v, w along the radial, tangential and axial directions, an angle c due to the
stagger and pretwist of the blade is defined between the axial direction w and axis u2 of
minimum inertia value.

Shear deformations and the rotational inertia of the cross-sections of the blades are
considered to be negligible; this can be accepted in the case when the radius of gyration
of the sections is small compared to the wavelength of the highest modes which are to be
considered in the analysis. This assumption is usually acceptable in the case of the arrays
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of blades employed for low pressure stages of gas turbines, compressors and high vacuum
turbomolecular pumps while it can be questionable in the case of in-plane vibrations of
the stub, low aspect ratio blades usually adopted for high pressure stages [1].

Due to the high number of blades usually included in an array, the uncorrelated motions
of each individual blade do not affect the rotordynamic behavior of the shaft as they do
not affect either the position of the centre of gravity or the orientation of the inertial axes
of the array. Because this study addresses the motions influencing the rotordynamic
behavior, only co-ordinated motions of the array are accounted for in the present analysis.
Similarly to the case of the disc element [13], the array is then modelled as a
two-dimensional object, all properties being concentrated along the radial inertial/elastic
axes of each blade.

If both the blades and the interface with the shaft were rigid bodies, the orientation in
space of the array would be dictated by the deformation of the shaft. During the
deformation the reference plane of the array is assumed to maintain the same orientation
in space of a rigid-body attached to the relevant shaft section, while the array, owing to
its flexibility, exits this reference.

As in [13] and [14], the Lagrangian co-ordinates used to describe the rigid body motions
of the array are: the displacement {C} of the geometrical center C of the shaft, angles FX'

and Fy , indicating the orientation of the midplane and angle Fz accounting for the torsion.
A further angle qi takes into account the angular location at time t of the undeformed
configuration of the ith blade caused by the rotation of the shaft with angular speed v.
As the deformations of the array are described as deviations from the rigid body
configuration, non-inertial terms can be foreseen in the equations of the motion.

By assuming that the cross-sections of each blade remain plane during the deformation,
the dynamic behavior of the array can be described in terms of the location of the centroid
of each section and of the rotations about the inertial axes.

Let ui , vi , wi be the radial, tangential and axial displacement of the centroid Pi of a
section of the ith blade taken at a radius r. Let {Pi} be the co-ordinates in an inertial
reference of point Pi expressed as:

{Pi}= {C}+[R]({r}+ {si}), (1)

where

[R]= t
4

i=1

[Ri ]; {r}= {r 0 0}T, {s}= {u v w}T. (2)

Figure 1. Cross-section of a blade; v, w=tangential and axial directions, u2 =axis of minimum principal area
moment of inertia u3 =axis of maximum area moment of inertia.
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The expressions of the rotation matrices [Ri ] are reported in [14] as functions of angles
FX', Fy , Fz and v. Due to the small values of angles Fi , i=X', y, z the trigonometric
functions within rotation matrices (2) (except for matrix [R3]) have been approximated by
the first two terms of their Taylor series expansion. The displacement field expressed by
equation (1) is very similar to that defined in [10] and in [3], the main difference being the
inclusion of rotation Fz with the aim of modelling the torsional behavior of the rotor in
addition to the axial and flexural ones. Unknown displacements u, v, w are functions of
the radial location r of point Pi within the ith blade and of time t, while rigid body rotations
FX', Fy , Fz and displacements {C}, are just depending on t. The absolute velocity {P� }, is
obtained as the time derivative of equation (1). The nomenclature is listed in the Appendix.

3. ELEMENT SHAPE FUNCTIONS

The displacements u(r, qi , z, t), v(r, qi , z, t), w(r, qi , z, t) have been approximated using
shape functions of angle qi and radius r. The array of blades is discretized into annular
elements of inner and outer radii ri and ro ; a non-dimensional radial co-ordinate x is defined
as x=(r− ri )/Dr where Dr= ro − ri is the radial thickness of the element. The area A of
the cross-section of each blade, its area moments of inertia I2, I3 about the principal axes,
and angle c are assumed to be linear functions of the non-dimensional radius x within
the element. Unknowns u(x, qi , z, t), v(x, qi , z, t), w(x, qi , z, t) are then approximated
by means of a truncated Fourier’s series expansion of the angular location qi .

u(x, qi , t)= ux (x, t) cos qi + uy (x, t) sin qi ,

v(x, qi , t)= v0(x, t)+ vy (x, t) cos qi − vx (x, t) sin qi ,

w(x, qi , t)=w0(x, t)−wy (x, t) cos qi +wx (x, t) sin qi . (3)

The zero-order harmonics v0 and w0 account for the zero nodal diameter deformations of
the array; they have been taken into account in the analysis as they describe the torsional
and axial vibration of the array. The zero order term of the displacements u has been
discarded as it is uncoupled with the axial, torsional and flexural behavior of the shaft.
The first harmonic ux,y , vx,y , wx,y accounts for deformations with one nodal diameter; they
have been included as describing a displacement field coupled to the flexural behavior. The
higher order harmonics account for displacements that are not coupled to the axial,
torsional and flexural behavior of the rotor, and have then been neglected [13].

Due to the orthogonality of trigonometric functions all harmonics contributions are
decoupled with each other, the use of a truncated Fourier’s series expansion instead of a
complete one therefore does not lead to any major approximation in the retained terms
[2].

As equations (3) approximate the unknown displacement field as a product of
trigonometric functions of angle qi and unknown functions of x and t, the truncated
Fourier’s series is equivalent to the implicit assumption of a shape function along the polar
co-ordinate qi .

The subscripts of the coefficients in equations (3) and their signs have been adopted by
considering that positive values of ux (x, t), uy (x, t) describe a displacement field leading
to a displacement in the positive x and y directions of the centre of gravity of the array.
The same holds for the coefficient function vy (x, t), while the displacement in −x direction
justifies the negative sign affecting vx (x, t). The subscripts and the signs in the last of
equations (3) are set by taking into account that positive values of wx (x, t) and wy (x, t)
determine a rotation of the principal axes of inertia of the array about the x- and (−y)-axes
respectively.
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Shape functions of the non-dimensional radial co-ordinate are then employed to
approximate functions ux,y (x, t), vx,y (x, t) and wx,y (x, t) as a product of known functions
of x and a finite number of element Lagrangian co-ordinates:

v0(x, t)= [nv (x)]{qv0(t)}, w0(x, t)= [nw (x)]{qw0(t)},

ux (x, t)= [nu (x)]{qvx (t)}, uy (x, t)= [nu (x)]{quy (t)},

vx (x, t)= [nv (x)]{qvx (t)}, vy (x, t)= [nv (x)]{qvy (t)},

wx (x, t)= [nw (x)]{qwx (t)}, wy (x, t)= [nw (x)]{qwy (t)}. (4)

Linear functions are adopted for the displacements in the radial direction ux,y (x, t), while
cubic polynomials for the tangential and the axial displacements vx,y (x, t) and wx,y (x, t):

[nu (x)]= [(1− x)x] [nv (x)]= [nw (x)]= [A B C D], (5)

where

A=2x3 −3x2 +1, C= x2(2x−3),

B=(−x3 +2x2 − x)Dr, D= x2(1− x)Dr. (6)

While in the case of a disc finite element [13] the elastic uncoupling between the deflections
in-plane and out-of-plane of the disc justifies the use of shape functions of different orders,
in the case of an array of blades the orientation c of the inertial axes leads to an elastic
coupling between the deflections in-plane and out-of-plane of the disc. The adoption of
shape functions of different order is then no longer justified. Even in the limiting cases of
c=0, p/2, when the two deflections are elastically uncoupled, the deflections in the plane
and out of plane of the array are basically of the same type, thus suggesting the choice
of identical shape functions.

The use of cubic shape functions requires the inclusion of the displacements and their
radial derivatives bv,wi computed at the element inner and outer nodes ( j=1, 2) as element
degrees of freedom. They are defined as:

bwxj = 1vxj /1rj

bvxj =+1wxj /1rj
,

bwyj = 1vyj /1rj

bvyj =+1wyj /1rj7c with j=0, 1, 2 (7)

subscript v and w indicate that the radial derivatives 1wx,y /1r and 1vx,y /1r can be thought
as rotations about directions v and w respectively.

The set of Lagrangian co-ordinates employed to represent the displacements in the axial
and in tangential directions (zero nodal diameters) of the array are then:

{qv0}= {v01 bw01 v02 bw02}T; {qw0}= {w01 bv01 w02 bv02}T (8)

while those describing the deflections of the array coupled to the flexural behavior are (one
nodal diameter):

{qux}= {ux1 ux2}T, {quy}= {uy1 uy2}T,

{qvx}= {vx1 bwx1 vx2 bwx2}T, {qvy}= {vy1 bwy1 vy2 bwy2}T,

{qwx}= {wx1 bvx1 wx2 bvx2}T, {qwy}= {wy1 bvy1 wy2 bvy2}T. (9)

Substituting expressions (4) in (3) and then into equation (1), the configuration of the
element at a given time is expressed in terms of known functions of the angular and radial
locations and of a finite number of 34 Lagrangian co-ordinates.
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The element is provided with three nodes: node 0 has six degrees of freedom: three
translations of the central node {C} and three rigid body rotations:

{q0}= {XC ; YC ; ZC ; FX'; Fy ; Fz ;}T. (10)

The other two nodes are located at the inner and the outer radii, each of them is provided
with 14 degrees of freedom describing the deflections listed in the vectors of equation (8)
and (9).

4. EQUATIONS OF MOTION OF THE ELEMENT

The equations of motion of the element have been written from the expressions of the
kinetic and the potential energies following a Lagrangian approach. Due to the assumption
that the element is subject to small displacements, the expressions of the kinetic and
potential energies have been computed by neglecting all contributions of orders higher than
the second.

4.1.  

The kinetic energy has been computed taking into account the contributions due to the
rotational inertia of the cross-sections during the rigid body motions of the array while
the contribution of the rotational inertia has been discarded when considering the
deviations from the rigid body configuration. As in the case of the previously developed
disc element [13], the flexural deformations of the blades are relevant only if the dimensions
of the sections are small compared to the radial lengths. In the opposite case, if the sections
are of a size comparable with the radial length, only rigid body motion needs to be
accounted for.

Let {P� i}XYZ represent the velocity relative to the inertial reference OXYZ of the centroid
of the ith blade section at radius r(x)= (r1 +Drx), the kinetic energy T is:

T= 1
2 s

N

i=1 g
1

0

rA(x){P� i}T{P� i}Dr dx, (11)

where r is the mass density and A(x) is the area of the section.
Expressing {P� i}XYZ as the time derivative of equation (1), the kinetic energy is expressed

in terms of the degrees of freedom of node 0 included in matrix [R] and of the unknown
displacement field {s}. As this study is addressed to the definition of a linear finite element,
the rotation matrix [R] and its time derivative have been approximated by the first two
terms of the Taylor’s series expansion in terms of the angular degrees of freedom of node
0. In this step the angular location qi of the ith blade has not been expanded being its value
determined only by the angular speed and time t.

Indicating with subscripts 0, 1 and 2 the constant, first and second order contributions
to the Taylor’s series expansion, the velocity {P� i} can be written in short-hand form as:

{P� i}= {P� i}0 + {P� i}1 + {P� i}2. (12)

Using the same notation to designate the different order contributions to matrices [R] and
[R� ], taking into account that vector {r} is a constant and that the unknown fields {s} and
{ṡ} are of the first order in the degrees of freedom (9) of nodes 1 and 2, the three terms
of equation (12) are given by:

{P� i}0 = [R� ]0{r}, {P� i}1 = {C� }+[R� ]1{r}+[R� ]0{s}+[R]0{ṡ},

{P� i}2 = [R� ]2{r}0 + [R� ]1{s}+[R� ]1{ṡ}. (13)
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Substituting equation (12) in equation (11), taking into account that the rotation matrix
[R]0 is an identity matrix, and that [R� ]0 is null, then neglecting all contributions of order
higher than the second, the kinetic energy becomes:

T=T0 +T1 +T2, (14)

where

T0 = 1
2 s

N

i=1 g
1

0

rA(x){P� i}T
0 {P� i}0Dr dx,

T1 = 1
2 s

N

i=1 g
1

0

rA(x)({P� i}T
0 {P� i}1 + {P� i}T

1 {P� i}0)Dr dx,

T2 = 1
2 s

N

i=1 g
1

0

rA(x)({P� i}T
1 {P� i}1 + {P� i}T

0 {P� i}2 + {P� i}T
2 {P� i}0)Dr dx. (15)

As only the second order component T2 needs to be taken into account in writing the
Lagrange’s equations as the zero and the first order contributions, T0 and T1 give way to
null or constant terms in the element dynamic equations; the latter have then been
discarded for the sake of simplifying the analytical work involved in their explicit
computation.

The discretized expressions (3) and (4) are then substituted in T2 to obtain the element
kinetic energy in terms of its Lagrangian co-ordinates. In computing the time derivatives,
angle qi must be considered as a function of time so that:

dqi /dt=v. (16)

In the case when the number of blades N is even, the orthogonality of the harmonics
functions leads to a decoupling between the zero and the first harmonic contributions to
the kinetic energy. The explicit computation of the kinetic energy of equation (15) shows
a decoupling between the axial, torsional and flexural behavior. Similarly the first
harmonic terms contributing to the in-plane displacements u, v and the out-of-plane ones
w are decoupled. The kinetic energy can then be split into four independent contributions:

T=Taxl +Ttrs +Tinp +Toutp (17)

where the axial Taxl , torsional Ttrs , in-plane Tinp and the out of plane Toutp contributions
to the kinetic energy can be expressed as functions of the element degrees of freedom and
of the shape functions:

Taxl = 1
2(mZ� 2

0 +2Z� 0[maxl1]{q̇w0}+ {q̇w0}T[maxl2]{q̇w0}),

Ttrs = 1
2[Jp (v+F� z )2 +2(v+F� z )[mtrs1]{q̇v0}+v2{qv0}T[mtrs2]{qv0}

+ {q̇v0}T[mtrs2]{q̇v0}],

Tinp = 1
2[v

2({qux}T[minp1]{qux}+ {quy}T[minp1]{quy}+ {qvx}T[minp2]{qvx}

+ {qvy}T[minp2]{qvy}−2{qux}T[minp3]{qvx}−2{quy}T[minp3]{qvy})

+v({quy}T[minp1]{q̇ux}− {qvy}T[minp3]T{q̇ux}− {qux}T[minp1]{q̇uy}

+ {qvx}T[minp3]{q̇uy}− {quy}T[minp3]{q̇vx}+ {qvy}T[minp2]{q̇vx}

+ {qux}T[minp3]{q̇vy}− {qvx}T[minp2]{q̇vy})+ 1
2{q̇ux}T[minp1]{q̇ux}
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+ {q̇uy}T[minp1]{q̇uy}+ {q̇vx}T[minp2]{q̇vx}+ {q̇vy}T[minp2]{q̇vy}

+X� 0[minp4]{q̇ux}+X� 0[minp5]{q̇vx}+m(X� 2
0 +Y2

0 )

+Y� 0[minp4]{q̇uy}+Y� 0[minp3]{q̇vy}],

Toutp = 1
2[v

2({qwx}T[moutp2]{qwx}+ {qwy}T[moutp2]{qwy})+v(2JpFyF� X'

+ 4F� X'[moutp1]{qwy}−4F� y [moutp1]{qwx}+2{qwy}T[moutp2]{q̇wx}

−2{qwx}T[moutp2]{q̇wy})+ Jt (F� 2
x' +F2

y )+2F� y [moutp1]{q̇wx}

+2F� X'[moutp1]{q̇wx}+ {q̇wx}T[moutp2]{q̇wx}+ {q̇wy}T[moutp2]{q� wy}], (18)

where m is the element mass, Jp its polar moment of inertia about the z-axis while Jt is
its moment of inertia about one of the radial directions through the element center of mass.
Matrices [maxli], [mtrsi], [minpi] and [moutpi] are given by integrals:

[maxl1]=N g
ro

ri

rA[nw ] dr=N g
ro

ri

rA[nv ] dr,

[maxl2]=N g
ro

ri

rA[nw ]T[nw ] dr=N g
ro

ri

rA[nv ]T[hv ] dr,

[mtrs1]=N g
ro

ri

rrA[nw ] dr=N g
ro

ri

rrA[nv ] dr,

[mtrs2]=N g
ro

ri

rA[nw ]T[nw ] dr=N g
ro

ri

rA[nv ]T[nv ] dr,

[minp1]=
N
2 g

ro

ri

rA[nu ]T[nu ] dr,

[minp2]=
N
2 g

ro

ri

rA[nw ]T[nw ] dr=
N
2 g

ro

ri

rA[nv ]T[nv ] dr,

[minp3]=
N
2 g

ro

ri

rA[nu ]T[nw ] dr=
N
2 g

ro

ri

rA[nu ]T[nv ] dr,

[minp4]=
N
2 g

ro

ri

rA[nu ] dr

[minp5]=
N
2 g

ro

ri

rA[nw ] dr=
N
2 g

ro

ri

rA[nv ] dr,

[moutp1]=
N
2 g

ro

ri

rrA[nw ] dr=
N
2 g

ro

ri

rrA[nv ] dr,

[moutp2]=
N
2 g

ro

ri

rA[nw ]T[nw ] dr=
N
2 g

ro

ri

rA[nv ]T[nv ] dr.
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The choice of a non-inertial frame Cxyz for the definition of the element Lagrangian
co-ordinates makes the kinetic energy function of both the displacements and velocities.
The expressions (18) and (19) are valid for an array of blades and those valid for a disc
element [13] are nearly identical: this is due to the assumption that the blades are located
at constant angular steps, that their number is even and that the rotational inertia of the
sections is negligible compared to their mass. This last assumption is responsible of the
decoupling between axial and torsional contributions to the kinetic energy even when the
stagger angle c$ 0, p/2.

4.2.  

The potential energy of the element is due both to the elastic strain–stress nature of the
material (Ue ) and to the contribution usually referred to as the ‘‘geometric effect’’ (Ug ).
The latter accounts for the increase in the element stiffness due to the radial centrifugal
force acting along the axis of each blade (centrifugal stiffening):

U=Ue +Ug (20)

Due to the assumptions that the radial dimensions of each blade are large compared
to its cross-sections and that its shear deformations are negligible, each blade can be
considered as a Bernoulli’s beam. With A indicating the area of the cross-section and I2

and I3 its area of moments of inertia about the principal axes u2 and u3 of Figure 1, the
elastic energy Ue of the array is expressed as the sum of the contributions due to the radial
extension of each blade and to the flexural deflections along the axes u2 and u3:

Ue = 1
2 s

N

i=1 g
1

0

E$A
Dr

(s'1 )2 +
1

Dr3 (I2(s02 )2 + I3(s03 )2)% dx. (21)

Prime (') indicates the partial derivative relative to the non-dimensional radial co-ordinate
x and E is Young’s modulus. The displacements s1, s2, s3 along the inertial axes are linked
to the axial, tangential and radial directions by means of angle c:

s1 = u, s2 = v cos c+w sin c, s3 =w cos c− v sin c. (22)

The expression of the elastic potential energy is obtained in terms of the element degrees
of freedom by substituting the discretized displacements of equations (4) and (3) in
equation (22) and finally in (21). In the case when angle c is such that the inertial axes
2 and 3 of the sections are not aligned with tangential and axial directions (c$ 0, 2p/2),
the axial and torsional degrees of freedom are shown to be coupled in the potential energy
contribution Ueaxltrs while the in plane and out of plane degrees of freedom give way to
contributions Ueinp , Ueoutp which are decoupled regardless of the value of angle c:

Ue =Ueaxltrs +Ueinp +Ueoutp (23)

contributions Ueaxl trs , Ueinp and Ueoutp are expressed in terms of the element degrees of
freedom as:

Ueaxl trs = 1
2({qw0}T[keaxl trs1]{qw0}+ {qv0}T[keaxl trs2]{qv0}+2{qv0}T[keaxl trs3]{qw0}),

Ueinp = 1
2({qux}T[keinp1]{qux}+ {quy}T[keinp1]{quy}+ {qvx}T[keinp2]{qvx}+ {qvy}T[keinp2]{qvy}),

Ueoutp = 1
2({qwx}T[keoutp ]{qwx}+ {qwy}T[keoutp ]{qwy}). (24)
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Stiffness matrices [kei ] are given as functions of the shape functions by the following
integrals:

[keaxl trs1]=
N
Dr3 g

1

0

EIv [n0w0]T[n0w0] dx, [keaxl trs2]=
N
Dr3 g

1

0

EIv [n0v0]T[n0v0] dx,

[keaxl trs3]=
N
Dr3 g

1

0

EIvw [n0v0]T[n0w0] dx, [keinp1]=
N

2Dr g
1

0

EA[n'u ]T[n'u ] dx,

[keinp2]=
N

2Dr3 g
1

0

EIw [n0v ]T[n0v ] dx, [keoutp ]=
N

2Dr3 g
1

0

EIv [n0w ]T[n0w ] dx. (25)

Iv , Iw are the area moments of inertia of a section relative to the tangential and the axial
directions v and w of Figure 1. The area moment of inertia Ivw is responsible for the
coupling between the axial and torsional degrees of freedom due to angle c. In the case
where the principal inertial axes of all the blade sections are aligned with the tangential
and axial directions, Ivw =0 and the torsional and axial behaviors of the array become
elastically decoupled.

Whenever a section is pushed out of its unperturbed location, the radial centrifugal pull
acting on it originates a restoring force that tends to bring it back to the undeformed
condition. The second contribution, Ug , to the potential energy of equation (20) is usually
referred to as ‘‘geometric effect’’ and is caused by the centrifugal forces Fr that the portion
of each blade extending from a given radius r to the tip ro applies on the section at radius
r. Assuming that the blades are free to expand radially at the tip, the thermal effects do
not induce any radial load along the axis of the blades, the force Fr can then be expressed
as:

Fr (r)=v2 g
ro

r

rAr dr=v2Prv (r) (26)

where Prv (r) represents the radial force per unit rotational speed (kgm) of the portion of
the blade from radius r to the tip. It is worth noting that the restoring force due to the
centrifugal field is the only one acting in the case of the rotating pendulum shown in the
example 6.1. The geometric contribution to the potential energy can be expressed as:

Ug =
1

2Dr
s
N

i=1 g
1

0

Fr (x)[v'2 +w'2] dx. (27)

Substituting the discretized displacements of equations (3) (4) into equation (27), the
geometric term in the potential energy can be split into four independent contributions:

Ug =Ugaxl +Ugtrs +Uginp +Upoutp , (28)

where

Ugaxl = 1
2v

2{qw0}T[kgaxlv ]{qw0}, Ugtrs = 1
2v

2{qv0}T[kgtrsv ]{qv0},

Uginp = 1
2v

2({qvx}T[kginpv ]{qvx}+ {qvy}T[kginpv ]{qvy}),

Ugoutp = 1
2v

2({qwx}T[kgoutpv ]{qwx}+ {qwy}T[kgoutpv ]{qwy}). (29)
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As with the case of the kinetic energy of equation (17), no coupling is introduced because
of the geometric term Ug between the torsional and the axial degrees of freedom. The
geometric stiffness matrices [kgiv ] are given by the following integrals of the shape functions
and of Prv of equation (26):

[kgaxlv ]=
2N
Dr g

1

0

Prv [n'w0]T[n'w0] dx, [kgtrsv ]=
2N
Dr g

1

0

Prv [n'v0]T[n'v0] dx,

[kginpv ]=
N
Dr g

1

0

Prv [n'v ]T[n'v ] dx, [kgoutpv ]=
N
Dr g

1

0

Prv [n'w ]T[n'w ] dx, (30)

As the force Fr of equation (26) has no constant contributions due to thermal effects or
shrink fit conditions, the geometric stiffness matrices always give a stiffening effect, at least
in the case when the blades are connected to the rotor at the inner radius.

4.3.  

The Lagrangian function L=T−U of the element is obtained from the kinetic energy
of equation (17) and the potential energy of equation (20). As both the potential and
kinetic energies show a decoupling between the in-plane and out-of-plane degrees of
freedom, the in-plane and out-of-plane dynamic equations of the element will be decoupled
between them while an angle c$ 0, p/2, will determine a coupling between axial and
torsional degrees of freedom. This coupling is due to the contribution Ueaxltrs of equation
(24). Although coupled with each other, the axial and torsional equations of motion will
be decoupled to both in-plane and out-of-plane flexural degrees of freedom. It is then
possible to split the equations of motion in three uncoupled subsets describing respectively
the axial–torsional behavior, the in-plane motion and the out-of-plane motion of the array.
The element co-ordinates can be split accordingly in three vectors:

Z0

{qw0} X0 + iY0

g
G

G

F

f

h
G

G

J

j
g
G

G

F

f
h
G

G

J

j

{Qaxltrs}=
Fz0

, {Qinp}= {qux}+i{quy}
{qv0} (10×1) {qvx}+i{qvy} (7×1)

{Qoutp}=6 Fy0 − iFx0

{qwy}−i{qwx}7(5×1)

(31)

where i=z−1 and besides each vector are indicated its dimensions. The notation
adopted for the co-ordinates leads to a complex co-ordinate formulation of the
corresponding equations of motion. Assuming that no external force acts on the element,
the equations of motion are:

[Maxltrs ]{Q� axltrs}+([Kaxltrs ]+v2[Kaxltrsv ]−v2[Mniaxltrs ]){Qaxltrs}= {0}

[Minp ]{Q� inp}−iv[Ginp ]{Q� inp}+([Kinp ]+v2[Kinpv ]−v2[Mniinp ]){Qinp}= {0}

[Moutp ]{Q� outp}−iv[Goutp ]{Q� outp}+([Koutp ]+v2[Koutpv ]−v2[Mnioutp ]){Qoutp}= {0}

(32)
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As in the case of the disc element [14], the terms v2[Mnij ]{Qj} account for the inertial
forces acting on the element due to its deformation. They are due to the choice of referring
the deformations of the element to a non-inertial frame.

Matrix [Ginp ] accounts for the Coriolis forces acting on the blades when they are moving
with speed {Q� inp} on the plane of the array while matrix [Goutp ] accounts for the gyroscopic
forces due a motion of the inertial axes of the array with angular speed {Q� outp}.

Based on the partition of degrees of freedom of vectors (31) the explicit form of the
element mass [Mi ], gyroscopic [Gi ] and non inertial matrices [Mnii ] are:

m [maxl1] 0 [0]

[maxl1]T [maxl2] [0] [0]
G
G

G

K

k

G
G

G

L

l

[Maxltrs ]= 0 [0] Jp [mtrs1]
;

[0] [0] [mtrs1]T [mtrs2]

[Moutp ]=$ Jt

−[moutp1]T
−[moutp1]
[moutp2] %;

[Minp ]= & m
[minp4]T

[minp5]T

[minp4]
[minp1]
[0]

[minp5]
[0]

[minp2]'; [Goutp ]=2$ Jp /2
−[moutp1]T

−[moutp1]
[moutp2] %;

0 [0] 0 [0]
0 [0] [0]

[0] [0] [0] [0]
G
G

G

K

k
G
G

G

L

l
G
G

G

K

k

G
G

G

L

l

[Ginp ]=2 [0] [minp1] −[minp3] ; [Mniaxltrs ]= 0 [0] 0 [0]
;

[0] −[minp3]T [minp2] [0] [0] [0] [mtrs2]

[Mniinp ]=2 & 0
[0]
[0]

[0]
[minp2]

−[minp3]T

[0]
−[minp3]
[minp2] '; [Mnioutp ]=$ 0

[0]
[0]

[moutp2]%. (33)

The tangential displacements {qv0} induce a change in the radius while the axial ones
{qw0} do not, this explains the term [mtrs2} affecting only the torsional degree of freedom
and not the tangential one in matrix [Mniaxltrs ].

The stiffness matrices of equations (32) are partitioned as:

0 [0] 0 [0]

[0] [keaxltrs1] [0] [keaxltrs3] 0 [0]
G
G

G

K

k

G
G

G

L

l

G
K

k
G
L

l
[Kaxltrs ]= 0 [0] 0 [0]

; [Koutp ]= [0] [keoutp ]
;

[0] [keaxltrs3]T [0] [keaxltrs3]
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Figure 2. Element outline; 0=central node common to all elements of the array, 1=node at the inner radius
of the element 2=node at the outer radius.

[Kinp ]= & 0
[0]
[0]

[0]
[keinp1]
[0]

[0]
[0]

[keinp2]'; [Kinpv ]= & 0
[0]
[0]

[0]
[0]
[0]

[0]
[0]

[kginpv ]';
0 [0] 0 [0]

[0] [kgax1v ] [0] [0] 0 [0]
G
G

G

K

k

G
G

G

L

l

G
K

k
G
L

l
[Kax1trsv ]=

0 [0] 0 [0]
; [Koutpv ]=

[0] [kgoutpv ]
.

(34)
[0] [0] [0] [kgtrsv ]

All square matrices of equations (33) and (34) are real and symmetric; their number of
rows (and columns) is consistent with the dimensions of the vectors of the degrees of
freedom which multiply them in the dynamic equation (32).

The expressions of the terms of these matrices are quite intricate and the analytical
integration is difficult, particularly for what the geometric matrices are concerned. The
element was implemented with a numeric integration routine, based on a four point Gauss
procedure. Operating in this way the integration of the geometric matrices is
straightforward.

5. DISC-ARRAY OF BLADES TRANSITION ELEMENT

The displacement field within the array of the blades element has been assumed to be
due to the rigid body motion of its midplane and to the deviations from it. The co-ordinates
employed to describe the deviations from the rigid body configuration include the
displacements and rotations of nodes 1 and 2 of the element in-plane and out-of-plane of
the array. These displacements are not compatible with the displacements of the beam
elements that are used to model the shaft, as the formulation of these elements usually
assumes that the sections remain plane during the deformation. Even if the displacements
within the array of blades are very similar to those of the disc element [14], different kinds
of shape functions have been adopted for the two, for the tangential displacements,
i.e., linear shape functions have been chosen for the disc element while cubic ones for
the array of blades. Two transition elements should then be developed to insure the
compatibility of the displacement fields at the shaft-array of blades and at the disc-array
of blades interfaces. Taking into account that the blades are seldom connected directly to
a shaft, just the disc-array of blades transition element has been developed. This choice
does not preclude the possibility of connecting an array to a shaft through a disc with a
very small radial extension or, as a limiting case, to the outer node of a shaft–disc transition
element with a vanishingly small radial extension.
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The disc-array of blades transition element is provided with three nodes: nodes 0 and
2 are of the same type of node 0 and node 2 of the array of blades (Figure 2). The node
at the center is connected directly with the shaft elements and coincides with the central
node of all disc and blade elements used to model a disc-array subsystem at a given axial
location.

Node 0 has two complex degrees of freedom for flexural behavior, one real degree of
freedom for torsional and one for axial behavior. Node 2 has five complex degrees of
freedom for flexural behavior, two real degrees of freedom for the torsional behavior and
two real axial degrees of freedom.

The interface between the disc and the array is given by node 1 with four complex
degrees of freedom for flexural behavior, one real degree of freedom for the torsional
behavior and two real for the axial one. Its matrices have been obtained from those valid
for the array of blade element by constraining the rotation about the tangential direction
at node 1. Making reference to the symbols of equation (9) and taking into account of
the assembly of the complex degrees of freedom of the element (31):

bvy1 − ibvx1 =0 (35)

This is equivalent to the assumption that the blades remain perpendicular to the disc outer
radius even if it is subject to a tangential displacement field.

In addition to the constraint equation (35) compatibility conditions must be included
to make the degree of freedom of the node 1 of the transition element consistent with those
of node 2 of the disc element. Taking into account that the out-of-plane deflections of the
disc element at its node 2 are described in terms of complex rotation, 8y2 − i8x2 about the
y- and x-axis and that the tangential displacement are given in terms of rotation 8z2 about
the z-axis, the compatibility conditions at the interface node between the disc and the
transition element can be written as:

8y2 − i8x2 = (wy1 − iwx1)/ri , 8z2 = v01/ri (36)

where ri is the inner radius of the transition element. The degrees of freedom to the left
side of the equation (36) are relative to the outer node (2) of the disc element while those
to the right are relative to the inner radius (1) of the transition element.

6. EXAMPLES

6.1.  1:  

A rotating pendulum is a limit example for testing the inertial and centrifugal stiffening
matrices of the present element. The natural frequencies of a rotating pendulum whose
length is l, attached on a disc with radius r rotating at a speed v are [14]

l1 =vz1+ r/l, l2 =vzr/l (37)

respectively for oscillation in a plane for the axis of rotation and oscillation in a plane
perpendicular to it.

A rotating pendulum is a good example of the symmetry breaking occurring in a
reference frame rotating about a fixed axis. A heuristic explanation of this fact is shown
in Figure 3: the linearized restoring force is mv2(r+ l)u2 in the case of Figure 3a
(oscillations in a plane containing the rotation axis) and mv2(r+ l)(u1 −f)1mv2ru1 in
the case of Figure 3b (oscillations in a plane perpendicular to the rotation axis). It is also
a good test of the present element in the sense that it implies using the element in conditions
at the limits of its applicability: a mathematical pendulum, with a concentrated mass is
badly modelled as a number of beam elements.
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Figure 3. (a) In-plane and (b) out-of-plane oscillations of a rotating pendulum. Centrifugal force decomposed
in its restoring and tensional components.

Owing to the last consideration, a fine mesh is required. A model consisting of two shaft
elements, one shaft–disc transition element and one disc element, all of them very stiff, was
built. The ends of the shaft element were constrained by rigid supports and also the axial
displacement and the torsional rotation at one end were constrained. A row of 10 blades
was then added, modelled by one transition element and 9 beam elements. The blades were
assumed to be prismatic, with a cross-sectional area of 100 mm2, and a Young’s modulus
of 2·1×1011 N/m2 was assumed for all elements. A vanishingly small density of 0·01 kg/m3

was assumed for all elements but the last one, for which a value of 4000 was used. The
last element constitutes then the bob of the pendulum.

The inner radius of the transition element and the outer radius of the last blade element
were assumed to be 200 and 402·5 mm respectively. The transition element was assumed
to be very short, only 2 mm long, with area moments of inertia of 1×10−35 m4: it
constitutes then a sort of infinitely soft elastic point hinge. The last element is 5 mm long,
its center of mass being located at a radius of 400 mm. The other elements are all equal,
filling the space between the transition and the last element, their area moments of inertia
are 1×10−9 m4, angle c=0. The resulting pendulum has then a length of 200 mm and
a mass of 2 g. The computation was performed at a speed of 1000 rad/s. The exact
frequencies of the pendulum are l1 =1000 rad/s, l2 =1414 rad/s, respectively for in-plane
and out-of-plane oscillations.

By using a reduction scheme with 33 master degrees of freedom for the flexural behavior,
11 for the torsional and 11 for the axial behavior, the results shown in Table 1 have been

T 1

Rotating pendulum. Torsional, axial and flexural natural frequencies at v=1000 rad/s
computed through the present model and the closed form solution

Harmonic Present (rad/s) Exact (rad/s) Error (%)

in-plane 0 1012·67 1000·00 1·2
out-of-plane 0 1423·23 1414·21 0·6

in-plane 1 BWD −12·67 0·00 –
FWD 2012·67 2000·00 0·6

out-of-plane 1 BWD −423·23 −414·21 2·2
FWD 2423·23 2410·00 0·4
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T 2

Prismatic blade: first five natural frequencies when stationary; in-plane vibrations of the blade
with larger dimension in axial direction. The error is referred to the present model 2 compared
with the closed form solution (the number of degrees of freedom is referred only to the master

degrees of freedom)

Frequency FEM Present model 1 Present model 2 Error
(Hz) Closed form (22 d.o.f) (7 d.o.f) (14 d.o.f) (%)

l1 399·93 399·98 399·98 399·98 0·013
l2 2506·53 2506·63 2507·52 2506·67 0·0056
l3 7019·06 7018·74 7039·79 7019·57 0·0073
l4 13754·86 13754·57 13948·69 13761·21 0·046
l5 22735·87 22739·62 22840·96 22771·99 0·16

obtained. The zero-harmonic component of the row of blades, i.e., the torsional and axial
components, corresponds to the in-plane and out-of-plane oscillations of all pendulums
occurring in phase. The first harmonic components are seen as flexural oscillations of the
row, again corresponding to the in-plane and out-of-plane oscillations of all pendulums
occurring out of phase. As seen in the case of the disc element [13], each oscillation mode
generates two flexural modes, one backward and one forward, with frequencies l−v and
l+v.

The natural frequencies were computed at other values of the speed, obtaining a linear
dependence as predicted by the theory. The present model yields results which are very
close to the correct ones, particularly in the case of the out-of-plane modes, even in a case
which is outside its immediate application limits.

6.2.  2:   

A model consisting of a very stiff shaft (two shaft elements, as in the previous model)
and a very stiff disc (one disc–shaft transition element and one disc element) was built.
On the outer surface of the disc a row of 20 prismatic, untwisted blades with rectangular
cross-section was added. The data for the blades are: inner radius 66 mm, length 64 mm,
area and area moments of inertia of the cross section respectively 16 mm2, 85·333 mm4 and
5·333 mm4, Young’s modulus of 72×109 N/m2, density 2800 kg/m3, Poisson ratio 0·3. The
row of blades was modelled using one blade–disc transition element and five blade elements
(model 1). A second model with 12 blade elements was also built.

The blades were both located with the longer side in the axial and circumferential
direction. The results obtained when stationary were compared with the closed form
solution obtained in the literature for the Euler–Bernoulli beam. A conventional FEM
model consisting of 10 Euler–Bernoulli beam elements was also computed in which the
centrifugal force due to rotation was added using the geometric matrix approach. Note
that this allows only computation of the out-of-plane zero-harmonic solution, i.e., the axial
oscillations of the blade row.

The results obtained for the first five modes when stationary are reported in Tables 2
and 3. Note that even in the case of the fifth natural frequency the difference between the
results obtained with the present model 2, using a reduction scheme with 14 master degrees
of freedom, and the closed form solution is as small as 0·16%. The solution for the zero
order harmonic (axial and torsional vibrations) coincides with that related to the first
harmonic (lateral vibrations) with all the figures here reported.
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T 3

Prismatic blade: Result for out-of-plane vibrations; details as for Table 1

Frequency FEM Present Model 1 Present model 2 Error
(Hz) Closed form (22 d.o.f) (7 d.o.f) (14 d.o.f) (%)

l1 1599·74 1599·92 1599·93 1599·92 0·000
l2 10026·12 10026·53 10030·01 10026·68 0·0056
l3 28076·25 28074·98 28159·28 28078·41 0·0080
l4 55019·45 55018·29 55795·26 55045·36 0·047
l5 90943·48 90958·90 95365·14 91089·45 0·16

When the rotation of the bladed disc is accounted for, no closed form solution is
available to compare the present results. It is however possible to compare the zero order
harmonic out-of-plane frequencies (axial mode), with those computed using a standard
FEM model based on beam elements in which centrifugal stiffening is accounted for using
the geometric matrix (4). The results at 1500 and at 3000 rad/s for blades with the larger
dimension laying in circumferential and axial direction are shown in Figure 4 and in Tables
4 and 5 respectively.

The fact that the error grows when the effect of the centrifugal stiffening is larger can
be ascribed to the fact that in the control solution the centrifugal loading on the blade
is accounted for in a rough way. To minimize these errors a very large number of beam
elements have been used (100) but an even larger number would have given better results.

6.3.  3:      

The simple rotor studied by Chun and Lee as model 1 in [3] was dealt with as a first
bench-mark test. The rotor is the assembly of a shaft with circular cross-section and a
bladed disc and is radially supported at its ends by rigid bearings. The eight untwisted
blades have a constant rectangular cross-section with the longer side in circumferential
direction. The shaft and the disc hub have been modelled using 12 beam elements with
constant cross-section while one disc–shaft transition element and 4 disc elements have
been used for the disc. The blades have been modelled using one disc-array transition
element and 4 equally spaced blade elements. Displacement constraints have been
introduced at the nodes were the bearings are located.

Figure 4. Natural frequencies of a row of blades with rectangular cross-section with the longer side in
circumferential (a) and axial (b) direction as functions of the speed. Comparison between the present solution
(——) and that obtained using beam elements (– – –).
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T 4

Prismatic blade: first five natural frequencies at two different speeds; out-of-plane vibrations
of the blade with larger dimension in circumferential direction. The error is referred to the
present model 2 compared with the beam-element FEM solution (the number of degrees of

freedom is referred only to the master degrees of freedom)

v=1500 rad/s v=3000 rad/s
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

Frequency FEM Present model 2 Error FEM Present model 2 Error
(Hz) (202 d.o.f) (14 d.o.f) [%] (202 d.o.f) (14 d.o.f) [%]

l1 567·12 565·18 0·34 893·48 888·86 0·52
l2 2678·87 2675·80 0·11 3138·00 3127·12 0·35
l3 7195·76 7194·06 0·024 7699·53 7690·33 0·12
l4 13939·39 13944·49 0·037 14479·73 14477·50 0·015
l5 22927·00 22960·95 0·15 23489·43 23515·81 0·11

A Guyan reduction has been applied to decrease the dimensions of the model; 89 degrees
of freedom describe the flexural behavior, 35 the torsional and 42 the axial behavior.

6.3.1. Natural frequencies at standstill
The first two natural frequencies computed with the present model at standstill are

compared in Table 6 to the results reported in [3] and [15]. The higher discrepancies are
related to the case of the assumed modes method. In all cases the results given by the present
FEM model is within the same range of the FEM model of reference [15].

6.3.2. Campbell diagram
The Campbell’s diagram for the first two forward and backward natural frequencies of

the rotor is reported in Figure 5 as obtained by the present model along with the same

T 5

Prismatic blade: details as for Table 4 but results for larger dimensions in axial direction

v=1500 rad/s v=3000 rad/s
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

Frequency FEM Present model 2 Error FEM Present model 2 Error
(Hz) (202 d.o.f) (14 d.o.f) [%] (22 d.o.f) (14 d.o.f) [%]

l1 1649·92 1649·24 0·041 1791·39 1788·88 0·14
l2 10070·98 10070·33 0·006 10203·21 10200·13 0·030
l3 28119·40 28122·60 0·011 28253·55 28254·70 0·004
l4 55061·62 55091·47 0·054 55201·63 55229·53 0·051
l5 90991·52 91136·78 0·16 91135·33 91278·61 0·16

T 6

First two natural frequencies at standstill and critical speeds

Frequency Assumed modes method FEM
(Hz) Present FEM Ref. [3] Ref. [15]

l1 46·2 47·17 46·00
l2 61·6 59·92 60·15

Critical speed 47·59 47·78 46·11
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diagram as reported by [3]. Although both methods give very close results where the first
forward and second backward modes are concerned, the first backward and second
forward modes obtained by the present model show a smaller (higher) dependence from
the rotating speed than the assumed mode method in reference [3]. This can be ascribed
to a larger centrifugal stiffening effect.

The last row of Table 6 shows that the values of the critical speed as computed by the
present method are close to those computed by [3] and [15].

6.4.  4:         

To show how the row-of-blades element performs when used in an actual environment,
together with beam and disc elements, consider the case of a rotor of a turbomolecular
pump running on magnetic bearings. The rotor has quite a complex geometry, as it
includes 11 bladed discs plus a non-bladed one and a long shaft on which the laminations
of the electric motor and of the bearing actuators and sensors are press-fit. A sketch of
the model is shown in Figure 6. The statistics of the model are reported in Table 7, model
2. As the stagger angle of the blades is not vanishingly small (the blades are however not
twisted), the axial behavior is coupled with the torsional one.

It must be explicitly noted that the previous examples were related to comparison
between different numerical results while in the present case the comparison is with
experimental ones in a very complex case. As a consequence of the uncertainty of
many parameters and of many of the features of the model, the numerical results are
expected to be far less close to the control ones than in the previous cases. Among the
points which can detract from the precision of the results are the exact values of the
Young’s moduli, geometrical tolerances and the impossibility of accounting for complex
interface conditions between the shaft and the laminations of the bearings, the sensors and
the motor.

As the experimental values of the natural frequencies when stationary were available for
the freely-suspended rotor, the computations were performed for the same condition. The
results from a simpler model (Table 7, model 1) in which the discs and blades were
modelled as rigid bodies were also available.

Figure 5. Example 3. Natural frequencies of model 1 (***) and Reference [3] (——).
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Figure 6. Example 4. Sketch of the model of the turbo molecular pump rotor.

The experimental tests were conducted using DIFA Measuring Systems dynamic signal
analyzer DSA220-C, a PCB 086-B01 440 N instrumented hammer and PCB 353-B02
accelerometers. The flexural natural frequencies were measured by hanging the complete
rotor with its axis held in a vertical direction using a thin steel wire. Five accelerometers
were located at the sensor and actuator locations and between the first and second discs
(A and B). For measuring the axial natural frequencies the rotor has been installed on the
machine and magnetically levitated. An accelerometer was located at one end of the shaft,
which was excited with the instrumented hammer at the opposite end.

6.4.1. Natural frequencies when stationary
The first 35 flexural natural frequencies (not included the two rigid-body modes) are

reported in Table 8. The values obtained from the complete and simplified models are
compared with the experimental ones. In the first case Guyan reduction was applied and
a total of 249 master degrees of freedom was used.

T 7
Statistics of the models for the turbomolecular pump rotor (model 1, simplified model; model

2, complete model)

Elements D.o.f.
ZXXXXXXXXXXCXXXXXXXXXXV ZXXXXCXXXXV

beam–disc disc–blade
Model Nodes beam mass transition disc transition blade flexural axial torsional

1 33 32 16 – – – – 66 33 33
zXXcXXv

2 188 66 – 12 57 11 53 697 567
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T 8

Flexural natural frequencies when stationary. Simplified model (1), complete model (2) and
experimental values (3). The relative errors of the numerical results have been also reported

v=0 r.p.m.
ZXXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXXV
(1) (Hz) (2) (Hz) (3) (Hz) D 1−3 (%) D 2−3 (%) Mode type

– 377 380 – −0·8 first mode blades D, E
– 377 380 – −0·8 first mode blades D, E
– 377 380 – −0·8 first mode blades D, E
– 377 380 – −0·8 first mode blades D, E
– 378 380 – −0·5 first mode blades D, E
– 396 400 – −1·0 first mode blades A, B
– 398 400 – −0·5 first mode blades A, B
– 399 400 – −0·3 first mode blades A, B
– 440 430 – +2·3 first mode blades C
– 448 430 – +4·2 first mode blades C
– 448 430 – +4·2 first mode blades C
569 644 653 −12·9 −1·4 first mode rotor shaft
– 903 950 – −4·9 first mode discs D, E
– 910 950 – −4·2 first mode discs D, E
– 910 950 – −4·2 first mode discs D, E
– 912 950 – −4·0 first mode discs D, E
– 915 950 – −3·7 first mode discs D, E
– 950 1059 – −10·3 first mode discs C
– 951 1059 – −10·2 first mode discs C
– 990 1059 – −6·5 first mode discs C

1208 1275 1234 −2·1 +3·3 second mode rotor shaft
– 1445 1400 – +3·2 first mode discs A, B
– 1452 1550 – −6·3 first mode discs A, B
– – 1659 – – first mode discs A, B

1948 1693 1744 10·5 −2·9 third mode rotor shaft
2851 2304 2222 28·3 −3·9 fourth mode rotor shaft

– 2695 2550 – +5·7 second mode blades A, B
– 2706 2550 – +6·1 second mode blades A, B
– 2759 2550 – +8·2 second mode blades A, B
– 2864 2978 – −3·8 second mode blades D, E
– 2866 2978 – −3·8 second mode blades D, E
– 2866 2978 – −3·7 second mode blades D, E
– 2867 2978 – −3·7 second mode blades D, E
– 2868 2978 – −3·7 second mode blades D, E

3844 3273 3125 23 +4·7 fifth mode rotor shaft

The first 32 coupled axial-torsional natural frequencies (not including the two rigid-body
modes) are reported in Table 9. The values obtained from the complete model (with 376
master degrees of freedom) are compared with both the experimental ones and those
obtained by modelling only the blades as beams clamped at one end.

The model based on rigid-body modelling of the bladed discs allows one to find only
a limited number of the actual frequencies of the rotor, and even then leads to
approximations which can be unacceptable. The precision with which the present model
allows one to obtain the frequency of the first shaft mode is very remarkable (error of 1.4%
against 13% of the simpler model). A very good accuracy is maintained also for the higher
order modes.
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The complexity of the model and the presence of several rows of identical blades leads
to the presence of almost identical eigenvalues; the numerical model spreads out some of
them, with a number of natural frequencies larger than those identified experimentally.
However, the values obtained are very close to the measured ones. In the case of the
coupled torsional–axial response, two of the numerical values could not be readily
identified and do not correspond to any experimental value. Some difficulties can be due
to the disc–shaft interface conditions: in some cases, e.g., the first disc B or the last disc
D, the diameter at which the disc can be assumed to be clamped are different on the two
sides, leading to modelling uncertainties. However, this seems not to affect the results as
those for discs A and B are not worse than the others.

As a last remark, the mode shape for the seventh mode (the fifth if the rigid body modes
are not included) for the coupled torsional–axial response is reported in Figure 7. The

T 9

Coupled axial–torsional natural frequencies when stationary computed by modelling the
single blades as clamped beams (1), from the complete model (2) and measured experimentally

(3). The relative errors of the numerical results have been also reported

v=0 r.p.m.
ZXXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXXV
(1) (Hz) (2) (Hz) (3) (Hz) D 1−3 (%) D 2−3 (%) Mode type

429 378 380 12·9 −0·5 first mode blades D, E
429 378 380 12·9 −0·5 first mode blades D, E
429 378 380 12·9 −0·5 first mode blades D, E
429 378 380 12·9 −0·5 first mode blades D, E
429 382 380 12·9 +0·5 first mode blades D, E
406 391 400 1·5 −2·3 first mode blades A, B
406 391 400 1·5 −2·3 first mode blades A, B
406 403 400 1·5 +0·8 first mode blades A, B
541 447 430 25·8 +4·0 first mode blades C
541 447 430 25·8 +4·0 first mode blades C
541 460 430 25·8 +7·0 first mode blades C
– 932 940 – −0·8 first mode dics D, E
– 943 940 – +0·3 first mode discs D, E
– 943 940 – +0·3 first mode discs D, E
– 944 940 – +0·4 first mode discs D, E
– 945 940 – +0·5 first mode discs D, E
– 971 1059 – −8·3 first mode discs C
– 974 1059 – −8·0 first mode discs C
– 1022 1059 – −3·5 first mode discs C
– 1341 1537 – −12·8 first mode discs A, B
– 1353 1537 – −12·0 first mode discs A, B
– 1603 1659 – −3·1 first mode discs A, B
– 2061 – – – –
– 2335 – – – –

2541 2422 2556 −0·6 −5·2 second mode blades A, B
2541 2446 2556 −0·6 −4·3 second mode blades A, B
2541 2517 2556 −0·6 −1·5 second mode blades A, B
2688 2655 2991 −10·1 −11·2 second mode blades D, E
2688 2721 2991 −10·1 −9·0 second mode blades D, E
2688 2744 2991 −10·1 −8·3 second mode blades D, E
2688 2757 2991 −10·1 −7·8 second mode blades D, E
2688 2775 2991 −10·1 −7·2 second mode blades D, E
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Figure 7. Example 4. Free–free mode shape for the seventh mode (the fifth if the rigid body modes are not
included) for the coupled torsional–axial response: natural frequency 2405 rad/s (382·8 Hz) at v=0.

mode was labelled as interesting as the blades of discs D and E, but from the figure it is
clear that also those of discs A and B are affected.

6.4.2. Critical speeds and Campbell diagram
The first four critical speeds are reported in Table 10. The values obtained from the

complete model (with 376 master degrees of freedom) are compared only with those
obtained from the simplified model, as no experimental results were available.

The deformation of the discs and blades lowers the first critical speeds, although the
effect on the first one is reasonably small, but does not introduce new critical speeds at
rotational frequencies close to the natural frequencies of the blades at standstill. This is
clearly to be ascribed to the strong centrifugal stiffening and to the gyroscopic effect, as
also clear from the Campbell diagram for flexural modes shown in Figure 8.

T 10

First four critical speeds computed from the complete model (2)
and the simplified model (1). The relative errors of simplified

versus the complete model are also reported

vcr

ZXXXXXXXCXXXXXXXV
(1) (r.p.m.) (2) (r.p.m.) D 1−2 (%)

53 600 48 274 11·0
134 090 111 930 19·8
276 170 202 905 36·1
441 199 289 384 52·5
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Figure 8. Example 4. Campbell diagram for flexural modes extended to the operating speed range.

7. CONCLUSIONS

A finite element aimed at modeling an array of blades for the study of their axial,
torsional and flexural behavior has been developed. The displacement field within the
element is approximated by trigonometrical expansion of the displacement field along the
tangential direction and a polynomial expansion along the radius. Only the harmonics
giving zero and one nodal diameter have been taken into account in the expansion as they
are the only ones coupled to the dynamic behavior of the rotor. The element is provided
with three nodes: two of them are located at the element inner and outer radii, their degrees
of freedom are used to account for the deflections of the array out of the rigid body
configuration while the degrees of freedom of the node lying on the element axis describe
the rigid body motion.

The formulation has been obtained by following a Lagrangian approach which accounts
for Coriolis and gyroscopic effects and stress stiffening. A constant stress contribution has
not been considered as the blades are assumed to be unconstrained in the radial direction
at their tip. This is consistent with the assumption that no connection exists between
contiguous blades at the outer diameter such as shrouds, lacing wires or hoops.

As with the case of the disc element [13], the motion in the plane of the array and that
out of it is shown to be decoupled while the axial and torsional motions are elastically
coupled by the stagger and pretwist angles.

The element equations of motion are formulated in a complex co-ordinate formalism,
which is consistent with the formulation of the FEM code (DYNROT) in which the
element has been implemented. This allows an extension of the field of application of the
DYNROT code to more complicated rotors which include bladed discs.

A disc-array of blades transition element has been developed to link the array of blades
to the disc finite elements developed in [13]. It is based on the assumption that the blades
are clamped to the disc at the inner radius of the array.
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The analytical results that can be obtained in the cases of a rotating pendulum and
rotating untwisted blades connected to a rigid disc and a rigid shaft have been compared
to those given by the array of blades finite element showing in both cases a good agreement.

The experimental validation of the array of blades and of the disc finite element has been
carried out on the rotor of a turbomolecular pump including 11 disc-array of blades
assemblies. The values of the axial and the flexural natural frequencies predicted by the
finite element model are shown to be in good agreement with the experimental results
obtained when stationary, particularly when the modelling and general data uncertainty
are considered. Compared to the geometric complexity of the rotor, its finite element model
requires a reasonably small number of degrees of freedom while still preserving its
accuracy.
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APPENDIX: NOMENCLATURE

Jp inertia moment about the z-axis
Jt inertia moment about the x- or y-axes
[kei,j ], [kgi,v ] i= axl, trs, inp, outp, j=1, 2 stiffness sub-matrices
l length of rotating pendulum
[mi,j ] i= axl, trs, inp, outp, j=1, 2 mass sub-matrices
[nu (x)] shape functions for radial displacements
[nv (x)] shape functions for tangential displacements
[nw (x)] shape functions for axial displacements
{qv0}, {qw0} torsional and axial degrees of freedom
{qux (t)}, {quy (t)} element radial degrees of freedom
{qvx (t)}, {qvy (t)} element tangential degrees of freedom
{qwx (t)}, {qwy (t)} element axial degrees of freedom
{r} undeformed location of point Pi in rotating polar co-ordinates
{s} displacement of point Pi in rotating polar co-ordinates
r radial co-ordinate
ri , ro inner and outer radii of the element
t time
u, v, w radial, tangential and axial displacements
u1, u2, u3 principal area inertial axes of a blade section
w0 zero harmonic coefficient function (axial)
v0 zero harmonic coefficient function (tangential)
ux , uy first harmonic coefficient functions (radial)
wx , wy first harmonic coefficient functions (axial)
vx , vy first harmonic coefficient functions (tangential)
A, B, C, D components of [nv (x)] and [nw (x)] shape functions
A(x) area of blade cross-section at non-dimensional radius x
{C} co-ordinate vector of point C
Fr radial force
[Gi ] gyroscopic matrices
I2, I3 area moments of inertia of a blade about u2 and u3 directions
[Ki ] stiffness matrices
[Kvi ] geometric stiffness matrices
L Lagrangian function
[Mi ] i=axl, trs, inp, outp mass matrices
[Mnii ] i=inp, outp non inertial mass matrices
N number of blades
Prv radial force per unit v
{Pi} co-ordinate vector of a point P
{Qi} element complex degrees of freedom
[Ri ] rigid body rotation matrices
T kinetic energy
U potential energy
Ue , Ug elastic and geometric potential energies
bv,w radial derivatives of w and v displacements
x non-dimensional radial co-ordinate
l1,2 natural frequencies of a rotating pendulum
f0 torsional deformation
qi angular location of a cross-section of the ith blade
c angle between the w and u2 directions
r mass density
v rotating speed of the shaft
Dr Dr= ro + ri

FX' rigid body rotation of the disc about X'-axis
Fy rigid body rotation of the disc about y-axis
Fz rigid body torsional co-ordinate

Subscript
inp in the plane of the disc
outp out of the plane of the disc
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axl axial component
trs torsional component
e elastic component
g geometric component
r radial
i ith-blade
c circumferential
0, 1, 2 zero, first and second order contributions


