
Journal of Sound and Vibration (1997) 208(1), 1–14

PARAMETER ESTIMATION IN IMBALANCED
NON-LINEAR ROTOR-BEARING SYSTEMS

FROM RANDOM RESPONSE

R. T  N. S. V

Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India

(Received 28 September 1995, and in final form 10 April 1997)

This study attempts to explore the possibility of estimation of linear and non-linear
stiffness parameters of rolling element bearings in rotor systems experiencing harmonic
excitation from unknown imbalance as well as random excitation from a variety of sources,
primarily the progressive random deterioration of the bearing surfaces and subsurfaces. The
random forces inflicted on the system are comparable to the harmonic imbalance forces,
if the imbalance is not very significant. In earlier studies, the authors addressed the inverse
problem of parameter estimation in non-linear rotor-bearing systems experiencing only
random excitations, under the assumption that the rotor is perfectly balanced. The problem
of parameter estimation, in a non-linear rotor-bearing system experiencing small residual
imbalance forces along with random forces, is transformed into one of slowly varying
parameters through the stochastic averaging procedure. The resulting equations are
modelled as an approximate Markovian process and a Fokker–Planck equation is derived
to describe it. The Fokker–Planck equation is solved and processed further, to obtain the
bearing stiffness parameters. The procedure has the advantage that it does not require an
estimate of the excitation forces (harmonic and random) and works directly on the
measured response signals of the system. The algorithm is illustrated for a laboratory rotor
rig and the results are compared with those obtained through an existing analytical model.
Estimates of the unknown imbalance of the rotor, its angular location and the damping
ratio are also obtained, as by-products of the procedure developed.
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1. INTRODUCTION

Expressions for linear stiffness of isolated rolling element bearings are derived by
establishing a relationship between the load carried by the bearing and its deformation,
commonly through the classical solution for the local stress and deformation of two elastic
bodies apparently contacting at a single point [1]. The early studies [2, 3] on bearings
concern vibrations caused due to geometric imperfections of contact surfaces. Procedures
[4, 5] are available for estimation of bearing stiffness under static loading conditions.
Rolling element bearings are known to possess highly non-linear stiffness characteristics.
The problem of identifying the non-linear stiffness characteristics was approached by
Kononenko and Plakhtienko [6] through the Krylov–Bogoliubov–Mitropolsky procedure.
Kraus et al. [7] presented a method for the extraction of rolling element bearing stiffness
and damping under operating conditions. The method is based on experimental modal
analysis combined with a mathematical model of the rotor-bearing support system. The
method is applied for investigation of the effect of speed, preload and free outer race
bearings on stiffness and damping. Muszynska [8] has developed a perturbation technique
for estimation of these parameters. The technique involves a controlled input excitation
to be given to the bearings. Goodwin [9] reviewed the experimental approaches to rotor
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support impedance measurement. Non-linear stochastic contact vibrations and friction at
a Hertzian contact have been studied by Hess et al. [10]. The experimentation involves
excitation of the bearings either externally by a white Gaussian random normal load or
within the contact region by a rough surface input and the analytical approach is based
on the solution of the Fokker–Planck equation.

A technique for estimation of non-linear stiffness in a rotor-bearing system, based on
analysis of its random response, has been developed by Tiwari and Vyas [11]. The
governing non-linear equation with a random excitation force, resulting from random
imperfections of the bearing surfaces and assembly is modelled through the Fokker–Planck
equation. The solution of the Fokker–Planck equation is further processed for linear and
non-linear bearing stiffness parameters. The analysis involved a rotor with a rigid shaft
carrying a single disc at its midspan. The study was extended by Tiwari and Vyas [12] for
the more involved problem of rotors with flexible shafts carrying more than one disc. The
procedures had the advantage that they do not require an estimate of the excitation forces
and work directly on the response signals from the bearing caps.

The above studies concerned single-degree-of-freedom and multi-degree-of-freedom
systems, where the rotor was assumed to be balanced. The present study explores the
possibility of estimation of linear and non-linear stiffness parameters of the bearing, from
the bearing cap signals, when the rotor is not balanced, and the imbalance is unknown.
The problem is formulated as a single-degree-of-freedom system, treating the rotor as rigid
rotor and bearings as non-linear flexible supports. The excitation to the system consists
of harmonic forces due to the imbalance and random forces due to arbitrary deviations,
of bearing contact surfaces and subsurfaces, from their ideal design and their progressive
deterioration during operation. These random forces can also be contributed from random
sources such as inaccuracies in the rotor-bearing housing assemblies, etc., and are
comparable to the harmonic excitation forces, if the imbalance is not significantly large.
The interaction effects between harmonic and random forces are ignored in the present
study. The parameter estimation procedure is based on the averaging technique of
Bogoliubov and Mitropolsky [13] for deterministic non-linear systems, extended by
Stratonovich [14] for stochastic differential equations. The governing equation of motion
is transformed from the rapidly varying variables, namely displacement and velocity, to
variables, amplitude and phase, varying slowly with time. Stochastic averaging is carried
out to take into account the effect of the random excitation multiplied by a correlated term,
so as to model the slowly varying amplitude as an approximate Markovian process. A
second order stochastic approximation is carried out and a one-dimensional
Fokker–Planck equation is derived to describe the Markovian amplitude process. The
response to the Fokker–Planck equation is derived and processed further for parameter
estimation. The procedure developed is illustrated for estimation of stiffness parameters
of the rolling element bearings of a laboratory rotor rig. The experimental results are
compared with those obtained through the analytical guidelines of Harris [5] and Ragulskis
et al. [4]. Estimates of the unknown imbalance of the rotor, its angular location and the
damping ratio are also obtained, as by-products of the procedure developed.

2. RANDOM RESPONSE OF IMBALANCED ROTORS

The study is restricted to rotors with the disc mounted on a rigid shaft and the non-linear
spring force being contributed by the bearings (Figure 1). The damping to the system is
taken to be linear and the disc carries an imbalance F0 . The governing equation for the
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system is written as

mẋ+ cẋ+ kLx+ kNLG(x)=F0 cos (vt+ u)+c(t). (1)

In the above kL and kNL are the linear and non-linear stiffness parameters of the bearings
and G(x) can be a polynomial in x. The rotor mass is m and v is its rotational speed.
The angular location of the imbalance with respect to a reference point on the shaft is
measured by u. The random excitation c(t) is contributed by the bearing surface
imperfections, caused by the random deviations from their standard theoretical design and
progressive surface and subsurface deterioration. In addition it can be contributed by
inaccuracies in the rotor-bearing housing assembly and other such sources.

The spring force non-linearity in rolling element bearings is generally taken to be cubic
in nature [4], i.e.,

G(x)= x3. (2)

The concept of averaging principle, developed by Bogoliubov and Mitropolsky [13] for
deterministic non-linear vibration transforms the equation, involving vibrations which are
rapidly varying with time, to a set of simple equations for slowly varying response
co-ordinates. This principle, extended by Stratonovich [14] for stochastic differential
equations, has been employed to analyse the rotor-bearing system governed by
equation (1).

Defining

l= kNL /kL (3)

and since (1/l) is a small quantity (rolling element bearings being highly non-linear),
equation (1) can be rewritten in terms of the small parameter o=(1/l) as

ẍ+v2x= of(x, ẋ, z(t))

where

f(x, ẋ, z(t))= [(F0l/m) cos (vt+ u)+ z(t)l−2vnljẋ−(v2
n −v2)lx−v2

n l
2x3], (4)

v2
n = kL /m, j= c/2mvn , z(t)=c(t)/m.

Because o is small, the response can be taken to be harmonic in time with frequency v

and with slowly varying amplitude, A(t) and phase 8(t), i.e.,

x(t)1A(t) cos [vt+8(t)], ẋ(t)1−vA(t) sin [vt+8(t)]. (5)

Figure 1. Rotor-bearing model.
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Equation (4) can now be expressed as a set of standard form equations in terms of the
slowly varying parameters A(t) and 8(t) as

A=[x2 + (ẋ2/v2)]1/2, 8=−arctan [ẋ/vx]−vt, (6)

or

A� = oG[A, 8, z(t)], 8� = oH[A, 8, z(t)], (7)

where

G[A, 8, z(t)]=Gav (A, 8)− {z(t)l/v} sin (vt+8),

H[A, 8, z(t)]=Hav (A, 8)− {z(t)l/vA} cos (vt+8), (8)

with

Gav (A, 8)= {−(vlA/2)+ (v2
n lA/2v)+ (v2

n l
2A3/4v)} sin 2(vt+8)

+ {vnljA} cos 2(vt+F)− (F0l/2mv) sin (2vt+8+ u)

+ (v2
n l

2A3/8v) sin 4(vt+8)− {(F0l/2mv) sin (8− u)+vnljA},

Hav (A, 8)=−(vnlj) sin 2(vt+8)+ {−(vl/2)+ (v2
n l/2v)

+ (v2
n l

2A2/2v)} cos 2(vt+8)− (F0l/2mvA) cos (2vt+8+ u)

+ (v2
n l

2A2/8v) cos 4(vt+8)+ {−vl/2)− (F0l/2mvA) cos (8− u)

+ (v2
n l/2v)+ (3v2

n l
2A2/8v)}. (9)

3. STOCHASTIC AVERAGING

It can be seen that the right side of equations (7) contain (employing the
terminology of Stratonovich [14]) ‘‘oscillatory’’ terms, i.e., harmonic functions of vt,
along with randomly ‘‘fluctuating’’ terms, i.e., −{z(t)l/v} sin (vt+8) and −{z(t)l/
vA} cos (vt+8), which contain the random force term z(t). However, due to the presence
of o in equation (4), the parameters A and 8 vary slowly with time and can be assumed
to remain constant over a cycle of oscillation. The averaging process for A and 8 can be
carried out in two stages—by stochastic averaging and elimination of the randomly
fluctuating terms involving random force term z(t) and then averaging over a cycle of
oscillation for the removal of the oscillating terms involving harmonic functions of vt.

The approach to obtaining the response of the system, including stochastic averaging,
can be simplified by providing arguments similar to those in the previous sections and
treating the random excitation to the system as ideal white noise with zero mean and
Gaussian distribution. For a zero mean random excitation z(t), the expressions (7) for A�
and 8̇ can be stochastically averaged to write the non-fluctuating amplitude term, A� nf and
the non-fluctuating phase term, 8̇nf as

A� nf = oGav (A, 8), 8̇nf = oHav (A, 8). (10)

Continuing the averaging process over a cycle, one gets the non-fluctuating,
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non-oscillatory amplitude and phase terms as

A� nf-no =
v

2p g
2p/v

0

oGav [A, 8] dt=−[(F0 /2mv) sin (8− u)+ (vnjA)],

8̇nf− no =
v

2p g
2p/v

0

oHav [A, 8] dt

=[−(v/2)− (F0 /2mvA) cos (8− u)+ (v2
n /2v)+ (3v2

n lA2/8v)]. (11)

Considering equations (7), (8) and (9) and putting the fluctuating terms back into the above
expressions, the non-oscillating approximations for the amplitude and phase are

A� no =−[(F0 /2mv) sin (8− u)+ (vnjA)]− {z(t)/v} sin (vt+8),

8̇no =[−(v/2)− (F0 /2mvA) cos (8− u)+ (v2
n /2v)+ (3v2

n lA2/8v)]

− {z(t)/vA} cos (vt+8). (12)

The equations (12) can be condensed as

A� no = oG1 [A, 8]− {z(t)/v} sin (vt+8), 8̇no = oH1 [A, 8]− {z(t)/vA} cos (vt+8),

with

G1 [A, 8]=−[(F0l/2mv) sin (8− u)+vnljA],

H1 [A, 8]= [−(vl/2)− (F0l/2mvA) cos (8− u)+ (v2
n l/2v)+ (3v2

n l
2A2/8v)]. (13)

The trucated equations (11), giving A� nf-no and 8̇nf-no or the truncated equations (12), giving
A� no and 8̇no can be taken as approximations of A� and 8̇. However, either approximation
does not, adequately, reflect the influence of non-linearity in the system, for while the
expression for 8̇nf-no (or 8̇no ) does involve the non-linearity parameter l, the one for A� nf-no

(or A� no ) does not. A higher order of approximation for A� and 8̇ is, therefore, essential
to represent adequately the effects of the non-linearity on the statistical characteristics of
the response.

4. SECOND ORDER AVERAGING

For a higher order approximation, instead of obtaining A� no and 8̇no as in equation (12),
the procedure of asymptotic method developed by Bogoliubov [14] can be employed,
whereby the non-fluctuating approximations A� nf and 8̇nf , of equation (10) are taken to have
the form

A� nf =A� *+ ou̇(A*, 8*), 8̇nf = 8̇*+ ov̇(A*, 8*), (14)

where A� * and 8̇* are expressed as

A� *= oG*av (A*, 8*)= oG*1 (A*, 8*)+ o2G*2 (A*, 8*)+ . . . ,

8̇*= oH*av (A*, 8*)= oH*1 (A*, 8*)+ o2H*2 (A*, 8*)+ . . . . (15)

Similarly the variations u̇ and v̇ are expressed in series form as

u̇(A*, 8*)= u̇1 (A*, 8*)+ ou̇2 (A*, 8*)+ . . . ,

v̇(A*, 8*)= v̇1 (A*, 8*)+ ov̇2 (A*, 8*)+ . . . . (16)
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Equations (14), along with the series expansions of equations (15) and (16) are substituted
into the stochastically averaged equations (10). Noting that

u̇=(1u/1A*)A� *+ (1u/18*) (v+ 8̇*), v̇=(1v/1A*)A� *+ (1v/18*) (v+ 8̇*), (17)

the terms with identical power of o are equated to obtain the equations governing the
successive approximations. The equation governing the terms involving the first
approximation (of order o1) is, thus, obtained as

G*1 (A*, 8*)+v(1u1 /18*)=G*av (A*, 8*),

H*1 (A*, 8*)+v(1v1 /18*)=H*av (A*, 8*). (18)

In the above equation, the term Gav (A, 8), of equation (10) has been transformed to
G*av (A*, 8*).

The right side of equations (18) involve G*av and H*av , which contain both the oscillatory
and the non-oscillatory terms. The functions u(A*, 8*) and v(A*, 8*) are now chosen in
such a way that G*1 (A*, 8*) and H*1 (A*, 8*) contain no oscillatory terms. Thus, terms
involving (1u/18*) and (1v/18*) are equated to the oscillatory parts of G*av and H*av , and
G*1 (A*, 8*) and H*1 (A*, 8*) are equated to the non-oscillatory parts, to obtain

G*1 (A*, 8*)=−[(F0l/2mv) sin (8*− u)+vnljA*],

H*1 (A*, 8*)= [−(vl/2)− (F0l/2mvA*) cos (8*− u)+ (v2
n l/2v)+ (3v2

n l2A*2/8v],

(19)

and

v(1u1 (A*, 8*)/18*)= {−(vlA*/2)+ (v2
n lA*/2v)+ (v2

n l
2A*3/4v)} sin 2(v+8*)

+ {vnljA*} cos 2(vt+8*)− (F0l/2mv) sin (2vt+8*+ u)

+ (v2
n l

2A3/8v) sin 4(vt+8),

v(1v1 (A*, 8*)/18*)=−(vnlj) sin 2(vt+8*)+ {−(vl/2)+ (v2
n l/2v)

+ (v2
n l

2A*2/2v)} cos 2(vt+8*)

− (F0l/2mvA*) cos (2vt+8*+ u)

+ (v2
n l

2A*2/8v) cos 4(vt+8*). (20)

Comparison of equations (19) and (13) reveals

G*1 (A*, 8*)=G1 (A, 8), H*1 (A*, 8*)=H1 (A, 8). (21)

Equations (20) give

u1 (A*, 8*)= {(lA*/4)− (v2
n l'A*/4v2)− (v2

n l
2A*3/8v2)} cos 2(vt+f*)

+ (vnljA*/2v) sin 2(vt+8*)+ (F0l/2mv2) cos (2vt+8*+ u)

+(v2
n l

2A*3/32v2) cos 4(vt+8*), (22)

v1 (A*, 8*)= (vnlj/2v) cos 2(vt+8*)+ {−(l/4)+ (v2
n l/4v2)

+ (v2
n l

2A*2/4v2)} sin 2(vt+8*)− (F0l/2mv2A*) sin (2vt+8*+ u)

+ (v2
n l

2A*2/32v2) sin 4(vt+8*). (23)
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For second approximation (of order o2), the governing equations are, similarly, obtained
as

G*2 +v(1u2 /18*)= (1G*av /1A*)u1 + (1G*av /18*)v1 − (1u1 /1A*)G*1 − (1u1 /18*)H*1 ,

H*2 +v(1v2 /18*)= (1H*av /1A*)u1 + (1H*av /18*)v1 − (1v1 /1A*)G*1 − (1v1 /18*)H*1 , (24)

from which the non-oscillatory G*2 (A*, 8*) and H*2 (A*, 8*) are obtained as

G*2 (A*, 8*)= (F0l/4mv2) {−(5vl/4)+ (5v2
n l/4v)+ (A*2v2

n l
2/v)} sin (8*− u)

+ (5vnljF0 /8mv2) cos (8*− u),

H*2 (A*, 8*)= {(3A*2v2
n l

3/8v)− (3A*2v4
n l

3/8v3)− (51A*4v4
n l

4/256v3)− (vl2/8)

− (v4
n l

2/8v3)}− {(F0l
2/4mvA*)− (F0v

2
n l

2/4mv3A*)

− (17A*F0v
2
n l

3/32mv3)} cos (8*− u)

− (F0vnl
2j/2mv2A*) sin (8*− u). (25)

Substitution from equations (19) and (25) into equation (15) gives

A� *=−o[(F0l/2mv) sin (8*− u)+vnljA*]+ o2[(F0l/4mv2) {−(5vl/4)

+ (5v2
n l/4v)+ (A*2v2

n l
2/v)} sin (8*− u)+ (5vnl

2jF0 /8mv2) cos (8*− u), (26)

8̇*= o[−(vl/2)− (F0l/2mvA*) cos (8*− u)+ (v2
n l/2v)+ (3v2

n l
2A*2/8v)]

+ o2[{(3A*2v2
n l

3/8v)− (3A*2v4
n l

3/8v3)− (51A*4v4
n l

4/256v3)− (vl2/8)

− (v4
n l

2/8v3)}− {(F0l
2/4mvA*)− (F0v

2
n l

2/4mv3A*)

− (17A*F0v
2
n l

3/32mv3)} cos (8*− u)− (F0vnl
2j/2mv2A*) sin (8*− u)]. (27)

Noting equation (14) and that the oscillatory terms are confined to the variables u and
v, the non-fluctuating, non-oscillatory amplitude term Anf-no becomes

A� nf-no =A� *, (28)

where A� * is given by equation (26).
Consideration of equations (28), (7) and (8) enables writing the non-oscillatory

amplitude term, Ano , as

A� no =A� nf-no − o[(z(t)l/v) sin (vt+8*)]

− o[(F0l/2mv) sin (8*− u)+vnljA*]+ o2[(F0l/4mv2) {−(5vl/4)

+ (5v2
n l/4v)+ (A*2v2

n l
2/v)} sin (8*− u)+ (5vnl

2jF0 /8mv2) cos (8*− u)]

− o[(z(t)l/v) sin (vt+8*)]. (29)

Similarly

8̇no = o[−(vl/2)− (F0l/2mvA*) cos (8*− u)+ (v2
n l/2v)+ (3v2

n l
2A*2/8v)]

+ o2[{(3A*2v2
n l

3/8v)− (3A*2v4
n l

3/8v3)− (51A*4v4
n l

4/256v3)− (vl2/8)

− (v4
n l

2/8v3)}− {(F0l
2/4mvA*)− (F0v

2
n l

2/4mv3A*)

− (17A*F0v
2
n l

3/32mv3)} cos (8*− u)− (F0vnl
2j/2mv2A*) sin (8*− u)]

− o[{z(t)l/vA*} cos (vt+8*)]. (30)
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The expressions in equations (29) and (30) are taken as approximations of the amplitude
and phase terms, A� and 8̇, i.e.,

A� *1A� no , 8̇*1 8̇no . (31)

The amplitude term, A* and phase term, 8* approximations are correlated with random
excitation force z(t). However, since z(t) is assumed to be a broad band random process,
its correlation time is much smaller than the time constant characterising the rate of change
of amplitude A* and phase 8*, which are slowly varying functions of time. It can be
assumed that the values of z(t) are statistically independent of the values of A*, i.e.,
amplitude A* can be approximated as a Markov process [14, 16–18]. In addition,
amplitude changes much more rapidly than the phase, and hence the amplitude manages
to establish an equilibrium amplitude distribution p(A* = 8*) for every value of phase 8*.

The Fokker–Planck equation for amplitude A*, from equation (31), can be formulated
as

− (1/1A*) [{−o(F0l/2mv) sin (8*− u)− o(vnljA*)+ o2(F0l/4mv2) {−(5vl/4)

+ (5v2
n l/4v)+ (A*2v2

n l
2/v)} sin (8*− u)+ o2(5vnl

2jF0 /8mv2) cos (8*− u)

+ o2{S(z; v)l2/8v2A*}}p]+ o2{S(z; v)l2/8v2} (12p/1A*2)= 1p(A*)/1t, (32)

where S(z; v) is spectral density of the random excitation z(t) at the frequency v. For
a stationary case equation (31) reduces to

−(1/1A*) [{−o(F0l/2mv) sin (8*− u)− o(vnljA*)+ o2(F0l/4mv2) {−(5vl/4)

+ (5v2
n l/4v)+ (A*2v2

n l
2/v)} sin (8*− u)+ o2(5vnl

2jF0 /8mv2) cos (8*− u)

+ o2{S(z; v)l2/8v2A*}}p]+ o2{S(z; v)l2/8v2} (12p/1A*2)=0. (33)

The solution to the stationary Fokker–Planck equation, (33), is

p(A*)= cA* exp [−{8v2/o2l2S(z, v)} {o(A*F0l/2mv) sin (8*− u)

+ o(A*2vnlj/2)− o2(F0l/4mv2) {−(5A*vl/4)+ (5A*v2
n l/4v)

+ (A*3v2
n l

2/3v)} sin (8*− u)− o2(5A*vnl
2jF0 /8mv2) cos (8*− u)}]. (34)

5. EXTRACTION OF ROTOR-BEARING PARAMETERS

The probability density function for any two values A*i and A*i+1 , of the amplitude (with
A*i+1 qA*i ), can be written from equation (34), as

p(A*i )= cA*i exp [−{8v2/o2l2S(z, v)} {o(A*i F0l/2mv) sin (8*− u)

+ o(A*2
i vnlj/2)− o2(F0l/4mv2) {−(5A*i vl/4)+ (5A*i v2

n l/4v)

+ (A*3
i v2

n l
2/3v)} sin (8*− u)− o2(5A*i vnl

2jF0 /8mv2) cos (8*− u)}], (35)

p(A*i+1 )= cA*i+1 exp [−{8v2/o2l2S(z, v)} {o(A*i+1F0l/2mv) sin (8*− u)

+ o(A*2
i+1vnlj/2)− o2(F0l/4mv2) {−(5A*i+1vl/4)+ (5A*i+1v

2
n l/4v)

+ (A*3
i+1v

2
n l

2/3v)} sin (8*− u)− o2(5A*i+1vnl
2jF0 /8mv2) cos (8*− u)}].

(36)
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Figure 2. Rotor-bearing set-up.

Defining, DA*i =(A*i+1 −A*i ), for small DA*i , one can write, from equations (35) and (36)

[p(A*i+1 )/p(A*i )]= (A*i+1 /A*i ) exp [−{8v2/o2l2S(z, v)} {o(DA*i F0l/2mv) sin (8*− u)

+ o(A*i DA*i vnlj)− o2(F0l/4mv2) {−(5DA*i vl/4)

+ (5DA*i v2
n l/4v)+ (A*2

i DA*i v2
n l

2/v)} sin (8*− u)

− o2(5DA*i vnl
2jF0 /8mv2) cos (8*− u)}]. (37)

Figure 3. Accelerometer mountings.
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Figure 4. Displacement, velocity and reference signals at 1800 r.p.m.

For N amplitude values, A*1 , A*2 , . . . , A*N , equation (37) is expressed as set of (N−1)
linear simultaneous algebraic equations,

[(1/8DA*i v2) ln {A*i+1p(A*i )/A*i p(A*i+1 )}] {S(z, v)/vnjF0 cos u}

+[13/16mv] {sin (8− u)/vnj cos u}−[5/16mv3] {vn sin (8*− u)/j cos u}

−[A*2
i /4mv3] {vnl sin (8*− u)/j cos u}+[A*i ] {1/F0 cos u}

+[5 sin 8*/8mv2] {tan u}

=−[5 cos 8(/8mv2] i=1, 2, . . . , (N−1). (38)

Equations (38) are used to estimate the parameters vn , l, F0 , j, S(z, v) and u using the
Least Squares procedure.

The amplitude displacement and velocity data (x and ẋ) is obtained experimentally, and
using equation (6), the amplitude A and phase 8 are computed along with the probability
function, p(A), to be fed into equation (38) for parameter estimation. However, equation
(38) involves A*, 8* and p(A*) and as an initial approximation the experimentally
obtained A, 8 and p(A) are taken as A*, 8* and p(A*) respectively.

The proposed method is illustrated for a laboratory rotor shown in Figures 2 and 3.
The rig consists of a disc of mass m=0·41 kg, centrally mounted on the shaft supported
in two identical bearings. The shaft is driven through a flexible coupling by a motor. The
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Figure 5. Amplitude variation of the measured response.

Figure 6. Phase variation of the measured response.

accelerometers are mounted on one of the bearing caps to pick up the vibration signals.
A reference signal can be picked up from the shaft by a non-contact eddy current proximity
probe. To reduce the noise level in the measured response outside the interest of the
frequency range, bandpass filter has been used along with the charge amplifier. The rotor
is dynamically balanced and then a known imbalance mass is attached at the disc. The
shaft is rotated at a particular speed and the signals are picked up. The experiment is
repeated for different set of known imbalance masses and for different speeds.

Experimentally obtained displacement and velocity signals along with the corresponding
reference signal are shown, for a rotor speed of 1800 r.p.m. in Figure 4. The amplitude
A and phase 8 signals computed from these measured data are shown in Figures 5 and 6.
The probability density function, p(A), of the amplitude is shown in Figure 7. The bearing
parameters estimated for initial approximation of using experimentally obtained A(t) as
A*(t) and 8(t) as 8*(t) in equations (38) are given in Table 1.

For a more accurate estimation of estimated parameters an iterative scheme is used. The
parameters estimated from the above initial approximation are substituted in equations
(22, 23), along with the initial assumption of taking the experimental A and 8 to be A*
and 8* respectively, to compute the variations u and v. These values of u and v and the
experimental A and 8 are employed in equation (14) to get new approximations for A*
and 8*. The new approximations, A* and 8*, are now employed in equation (38) for a
fresh parameter estimation and thus, the iterative cycle can be continued. The final set of
parameters estimated after such iteration is given in Table 2.

The closeness, between the known imbalance introduced in the rotor and its angular
location and the corresponding experimentally estimated values, is a measure of the
validity of the procedure developed. The estimated damping ratios also appear physically
reasonable.
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Figure 7. Probability density distribution of the response amplitude.

6. VALIDATION OF ESTIMATED STIFFNESS

The analytical formulations of Harris [5] and Ragulskis et al. [4], which are based on
Hertzian contact theory, are employed for comparison of the bearing stiffness parameters
kL and kNL , obtained by the procedure developed. The total elastic force at the points of
contact of the ith ball with the inner and outer races is expressed as [4]

Fi =Kn (g+ x cos hi + y sin hi )3/2, (39)

and its projection along the line of action of the applied force is

Fi =Kn (g+ x cos hi + y sin hi )3/2 cos hi, (40)

where g is the radial preload or pre-clearance between the ball and the races and x and
y are the displacements of the moving ring in the direction of the radial load and
perpendicular to the direction of the radial load respectively. hi is the angle between the
lines of action of the radial load (direction of displacement of the moving ring) and the
radius passing through the center of the ith ball. Kn is a coefficient of proportionality
depending on the geometric and material properties of the bearing. The specifications of
the test bearing are: Ball bearing type SKF 6200, Number of balls 6, Ball diameter 6 mm,
Bore diameter 10 mm, Outer diameter 30 mm, Pitch diameter 20 mm, Inner groove radius
3·09 mm, Outer groove radius 3·09 mm, Allowable pre-load 0–2 microns. The value of Kn ,
for the test bearing with the above specifications, is estimated by the method suggested
by Harris [5] as 2·82×105 N/mm1·5. The total elastic force in the direction of the applied
force is

F= s
n

i=1

Fi , (41)

where n is the total number of balls in the bearing. Using the condition of zero elastic force
in the direction perpendicular to the elastic load, the deformation, y, perpendicular to the
radial force line is expressed as

y= s
n

i=1

[g+ x cos (hi )]3/2 sin (hi )>s
n

i=1

[g+ x cos (hi )]1/2 sin2 (hi ). (42)
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T 1

Experimentally estimated parameters (after initial approximation)

Imbalance Estimated parameters
Speed me (gm cm) ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

v (r.p.m.) (at u=0°) 8 (°) u (°) me (gm cm) j k(x) (N/mm)

1800 10·5 0·7 0·1 16·80 0·062 1·21×104–0·58×1010x2

– 17·5 1·4 0·2 22·73 0·071 1·23×104–0·83×1010x2

– 24·5 6·9 0·1 30·64 0·022 1·39×104–1·06×1010x2

1400 10·5 3·0 0·3 17·24 0·083 0·86×104–0·84×1010x2

– 17·5 3·3 0·5 23·45 0·082 0·79×104–0·70×1010x2

– 24·5 4·6 0·2 16·56 0·042 1·12×104–0·63×1010x2

T 2

Experimentally estimated parameters (after iteration)

Imbalance Estimated parameters
Speed me (gm cm) ZXXXXXXXXXXXXXCXXXXXXXXXXXXXV

v (r.p.m.) (at u=0°) 8 (°) u (°) me (gm cm) j k(x) (N/mm)

1800 10·5 2·9 0·3 14·23 0·023 1·31×104–0·92×1010x2

– 17·5 1·6 0·1 20·32 0·036 1·41×104–1·10×1010x2

– 24·5 3·2 0·2 27·32 0·032 1·60×104–1·28×1010x2

1400 10·5 1·7 0·2 15·43 0·063 0·94×104–0·94×1010x2

– 17·5 3·2 0·4 21·40 0·063 0·93×104–1·01×1010x2

– 24·5 1·8 0·1 23·56 0·037 1·37×104–0·72×1010x2

Equations (40) and (42) are used in equation (41) and the bearing stiffness is determined
as a function of the deformation x as

k(x)= 1F/1x. (43)

It can be seen that the bearing stiffness is critically dependent on the preloading, g, of
the balls. While the manufacturer may, at times, provide the preload range, the exact value
of the preloading of the bearing balls in the shaft-casing assembly, especially during
operations which have involved wear and tear, would be difficult to determine. The stiffness
of the test bearing is listed in Table 3 as a function of the radial deformation, x, for various
allowable preload values, g. The bearing stiffnesses obtained experimentally, using the
procedure developed, Table 2, shows good resemblance to theoretically possible values.
It is to be noted that the theoretical stiffness calculations are based on formulations which
analyse the bearing in isolation of the shaft.

T 3

Experimental and theoretical [4, 5] bearing stiffness parameters

Preload (mm) Theroetical stiffness (Radial (N/mm))

0·0002 1·20×104–4·01×1010x2

0·0003 1·47×104–2·18×1010x2

0·0004 1·69×104–1·42×1010x2

0·0005 1·89×104–1·02×1010x2

0·0006 2·08×104–6·09×1010x2
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7. CONCLUSION

A procedure for the estimation of linear and non-linear stiffness parameters of rolling
element bearings supporting a rigid rotor having random excitation in addition to an
unknown imbalance, makes certain engineering approximations, including idealisation of
the excitations from bearing surface and assembly imperfections as white noise sources and
works directly on the response signals, which can be conveniently picked up at the
rotor-bearing caps. The procedure has the advantage that it does not require a knowledge
of the excitation forces. The procedure, in addition to the stiffness parameters, also
provides estimates of the magnitude and angular location of the imbalance and the
damping ratio.
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