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This paper presents a comparison of the active control strategies of minimizing the total
power supplied to a plate and maximizing the power absorbed by the secondary source.
Force and moment excitations of infinite and finite plates are considered. For an infinite
plate analytic solutions can be obtained for the total power supplied to the plate by the
primary and secondary actuator arrays when using the two control strategies. Minimizing
the power supplied by a primary force or moment with a secondary force or moment can
produce large attenuation provided that the two sources are close together compared with
a flexural wavelength. Minimizing the power supplied by a primary force with a secondary
moment can also give attenuation of up to 5 dB when the spacing between the sources is
about 0·3 times the flexural wavelength. In contrast to the acoustic case, for the infinite
plate the total power supplied is generally reduced when the power absorbed by the
secondary source is maximized. On a finite panel, however, maximizing the power absorbed
by the secondary source can significantly increase the total power supplied. The strategy
of minimizing the total power supplied can give considerably larger values of attenuation
for finite rather than infinite plates, particularly at higher frequencies. This is because the
structural modes can be actively controlled. A particularly efficient secondary actuator for
total power minimisation appears to be an independently adjustable, but collocated, force
and moment pair.
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1. INTRODUCTION

In the past three decades, researchers have started to describe the vibrations of flexible
structures by using power. Noiseaux [1], Pavic [2], Verheij [3] and Williams [4] provided
some preliminary studies on the measurement of structural power, while Goyder and
White [5–7] presented a detailed and systematic theoretical study of the structural power
in one- and two-dimensional flexible structures. It has been found that structural power
is a single parameter that can efficiently represent the main effects of the vibrations of a
structure and is particularly useful when multi-degree-of freedom vibrations occur. Power
has also been used to describe the action of various systems for the active control of
vibration. Miller et al. [8], Pan and Hansen [9], Schwenk et al. [10], Redman-White et al.
[11], Gibbs and Fuller [12], and Parakah-Asante and Craig [13] have investigated the
possibility of actively controlling the vibrations of a one-dimensional system by using
power as the minimized cost function. Koh and White [14], Nam et al. [15] and Pavic [16]
have considered the possibility of controlling vibrations of two-dimensional structures by
minimizing the power input to them. More recently, researchers have studied more
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complicated systems composed of several members; Pan et al. [17] and Gardonio et al.
[18, 19] have investigated the possibility and the advantages of using power as the cost
function in isolator systems with active mounts.

This paper is concerned with the physical limitations of using different strategies for
active vibration control on plates. It is assumed that an array of primary forces and
moments acting on a plate are to be controlled by another array of forces and
moments acting as secondary sources. In order to understand the complicated
behaviour of such multi-channel systems, it is important to have gained insight from
simpler systems with a limited number of primary and secondary inputs. A general
framework is presented for the calculation of the effect of minimizing the total power
into the plate and analytic results are obtained for some simple cases. Jenkins et al.
[20] considered the important case of minimizing the total input power supplied to an
infinite plate by a point force primary source and a point force secondary source. Total
power minimization is also considered in this paper for systems in which the primary
and/or the secondary inputs are moments. Whereas for point force inputs very large
attenuation can be achieved when the two forces are close together compared with a
flexural wavelength on the plate, controlling a primary point force with a secondary
moment is found to be most successful if the moment is placed about a third of a
flexural wavelength from the point force, in which case the total power input can be
reduced by about 5 dB.

Another strategy for active control is to maximize the power absorption of the secondary
source. For acoustic monopole sources, Elliott et al. [21] showed that this strategy
produces disastrous increases in total power output if the separation between the primary
and secondary source is small compared with the acoustic wavelength. Rather surprisingly,
this effect does not occur when the power absorption of a secondary force close to a
primary force is maximized on an infinite plate. The total power input is reduced by 6 dB
as the separation between the forces becomes small. This is thought to be due to the
absence of the strong near-field component in quadrature with the source strength, which
is present in the acoustic case.

Finally, the important practical case of a finite plate is considered, the response of which
is modelled by using a modal summation. The effect of power minimisation is generally
to suppress the modal resonances which the secondary force or moment can efficiently
couple into. Significant control can now be obtained at resonance for source separation
distances which are large compared with the flexural wavelength, provided that the
secondary source can effectively couple into the mode. The control strategy of maximizing
power absorbed by the secondary sources can, however, produce large increases in total
power input to the finite plate; which is consistent with the behaviour in beams [22] and
observed in finite acoustic systems using this control strategy [21].

2. MINIMIZING TOTAL POWER OUTPUT

2.1.            

In this section the case is considered of an infinite plate excited by a set of primary forces
and controlled by a set of secondary forces adjusted by using the strategy of total power
minimization.

For single frequency excitation a force vector can be defined which is made up of a set
of N complex forces applied on the plate f T = {f1, f2, . . . , fN} which are proportional to
exp (jvt). In a similar manner, one can define a velocity vector made up of a set of velocities
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at the points of application of the forces as vT = {v1, v2, . . . , vN}. Thus, the total power
output of the force array into the plate can be expressed as

WT = 1
2 Re{fHv}, (1)

where Re{} denotes the real part of a complex number and the superscript H denotes the
Hermitian, complex conjugate, transpose. Furthermore, it is possible, by using the mobility
matrix M=[Mij ], to express v as

v=Mf (2)

so that WT can be written as [5]

WT = 1
2 Re {fHMf}, (3)

or, equivalently [5],

WT = 1
2 Re {vHM−1v}= 1

2 Re {vHZv}, (4)

where Z is the impedance matrix defined by Z=M−1. In general, however, it is the forces
that can be controlled, and so equation (3) is most applicable here. Minimizing the
expression of the total power output, WT , leads to the optimal value of the secondary
source, fSopt [20]. Assuming reciprocity, one can show that M is symmetric. In this case
equation (3) can be written as

WT = 1
2 fHRe {M}f. (5)

Now, if one writes M=R+jX, where R and X are the real and imaginary parts of M,
then equation (5) becomes

WT = 1
2 fHRf. (6)

If one considers the total force vector as having components due to the primary and
secondary sources, f T = {f T

P f T
S }, it is possible to decompose R as

R=$RPP

RSP

RPS

RSS%, (7)

where RPP contains all terms due to the primary force distribution, and RSS contains all
terms due to the secondary force distribution, both of which are symmetric. RPS and RSP

represent interference terms between the two distributions and RSP =RT
PS due to

reciprocity. By using equation (6), the total power output can now be expressed by
[20, 23, 24]

WT = 1
2 [fH

P RPP fP + fH
P RPS fS + fH

S RSP fP + fH
S RSS fS ], (8)

which is a quadratic function of the real and imaginary parts of the elements of fS , and
minimizing this quadratic function one finds the optimal secondary force [20, 23, 24] to
be

fS = fSopt =−R−1
SS RSP fP . (9)

The minimum total power output is then

WT min = 1
2 [fH

P (RPP −RPS R−1
SS RSP )fP ]. (10)

The total power output of primary distribution without control is

WPP = 1
2 [fH

P RPP fP ], (11)
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so equation (8) can be written in terms of power reduction, which is the ratio of total power
with and without optimal secondary distribution:

WT min /WPP =1− fH
p RPS R−1

SS RSP fP /fH
P RPP fP . (12)

For the particular case of a single primary force controlled by a single secondary force,
a distance r away, one has fP = fP , fS = fS , RPS =RSP = b0 J0 (kr) [20], where k is the wave
number, b0 =v/8Bk2 and B is the bending stiffness of the plate, and RPP =RSS = b0.
Equation (9) then becomes

fSopt =−J0 (kr)fP , (13)

where J0 () is the zeroth order Bessel function of the first kind. The available power
reduction given by equation (12) is then [20]

WT min /WPP =1−J2
0 (kr0), (14)

which is plotted in Figure 1, and where WPP , defined by equation (11), becomes
WPP = 1

2 b0 f 2
P . It is important also to consider the analogous results for other kinds of

source excitation.

2.2.        , ,    

        

The first case studied consists of an infinite plate excited by a set of primary moments
mP with a given orientation. The goal is to control the power input due to a primary
moment array mP by a set of secondary forces fS applied on the plate. This is achieved
by considering the power supplied to the plate by both the force and moment arrays. For
the set of secondary forces fS , the power supplied to the plate can be written in the form

WG = 1
2 Re {fH

S vS}, (15)

Figure 1. Power reduction against kr in the case of a primary force controlled by a secondary force by using
total power minimization on an infinite plate.
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where vS is the linear velocity of the secondary force application points. For the set of
complex moments in the vector mP , the power input to the plate can also be written as

WM = 1
2 Re {mH

P wP}, (16)

where wP is the vector of complex angular velocities at the points at which the moments
are applied. The total power is simply the sum of the two power contributions

WT =WF +WM . (17)

It has been seen in section 2.1 that the velocity vS is related to the force fS by the ‘‘force’’
mobility matrix M. In the same manner, one can also define a ‘‘moment’’ mobility matrix
P which links the set of angular velocities wP and the set of moments mP . But one also
has to consider the case of an angular velocity induced by a point force, via the matrix
M'PS , and a linear velocity induced by a moment via the matrix P'SP . Hence, the vectors
of linear and angular velocities due to both force and moment vectors [25] can be written as

vS =MSS fS +P'SP mP and wP =M'PS fS +PPP mP . (18)

Then equation (17) becomes

WT = 1
2 Re {fH

S MSS fS + fH
S P'SP mP +mH

P M'PS fS +mH
P PPP mP}. (19)

At this stage, an important question arises about the assumption of reciprocity used in
the previous section. For an infinite plate, one can assume full reciprocity, i.e., between
the set of forces itself (MSS =MT

SS ), between the set of moments itself (PPP =PT
PP ), and,

because of the symmetry on the infinite plate, between the set of forces and the set of
moments (P'SP =P'TPS =M'TPS and M'TSP =M'TPS =P'TPS ). On a finite plate not all of these
assumptions generally hold. If, for generality, no assumption is made about reciprocity,
equation (19) can be written as

WT = 1
2 {fH

S RSS fS +mH
P SPP mH

P + 1
2 [(M'PS +P'HSP )fS + fH

S (M'HPS +P'SP )mP ]}, (20)

where MSS =RSS +jXSS , M'PS =R'PS + jX'PS , P'SP =S'SP +jY'SP , and PPP =SPP +jYPP . WT is
a quadratic function of fS and is minimized by setting

fS = fSopt =−1
2 R−1

SS ((M'HPS +P'SP )mP . (21)

Inserting the optimal solution given by equation (21) into equation (20) leads to the
expression for the maximum power reduction:

WT min

WPP
=1−

1
4

mH
P (M'PS +P'HSP )R−1

SS (M'HPS +P'SP )mP

mH
P SPP mP

. (22)

Even if full reciprocity is not assumed in equation (22), but P'SP =M'TPS and M'SP =P'TPS ,
which are valid for both the infinite and the finite case, equation (21) can be simplified
as

fS = fSopt =−R−1
SS S'SP mP , (23)

and the available power reduction given by equation (22) is reduced to

WT min /WPP =1−mH
P S'SP R−1

SS R'PS mP /mH
P SPP mP . (24)

Because of the symmetry of the equations, equation (24) also represents the reduction in
the total power input if a set of primary forces fP were optimally controlled with a set of
secondary moments with a given orientation on an infinite plate.

If one considers a single primary force on an infinite plate fP = fP controlled by a single
secondary moment a distance r away and oriented at an angle uS to the radial direction
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Figure 2. Power reduction against kr in the case of a primary force controlled by a secondary moment by
using total power minimization on an infinite plate.

ms =ms and, as is shown in Appendix A takes RPP = b0, and SSS = g0 = (k2/2)b0 and
S'SP =R'PS = kb0 J1 (kr) cos us , the maximum power reduction is found to be given by

WT min /WPP =1−2J2
1 (kr) cos2 uS , (25)

where WPP = b0 f 2
P is the power output of the primary moment without any control and

J1 () is the first order Bessel function of the first kind.
The attenuation in the total power transmitted to the plate, given by equation (25), is

plotted as a function of (kr) in Figure 2 for uS =0. It is clear that a maximum of about
5 dB reduction can be achieved when controlling a force with a secondary moment on an
infinite plate. This is not a large reduction compared with the control of a point force by
another force, for which greater than 60 dB reduction can, in principle, be achieved. No
reduction is obtained when the force and moment are collocated, because the secondary
moment cannot then affect the linear velocity at the position of the primary source.

It should be noted that when a set of primary forces is controlled by a set of secondary
moments the control performance is also dependent on the orientation of the control
moments. Thus, in general, better control performance can be achieved when a new cost
function which calculates both the optimal strength (amplitude and phase) and the optimal
orientation of the control moments is minimized. For the case plotted in Figure 2, it was clear
that the optimal alignment of the secondary moment was in the direction of the segment
jointing the points at which the primary force and control moment are applied. In fact, the
vibrations generated by the controlmoment have a dipole-line spatial distribution,which has
a maximum amplitude along the segment which aligns the moment with the primary force.

Most control actuators that produce a moment do so with a fixed orientation. By using
two collocated moment actuators oriented orthogonal to each other, it would be possible
to generate a moment with an arbitrary orientation. This can be achieved by driving the
two actuators in phase and by adjusting their amplitudes such that the resulting moment
has the required orientation and amplitude. Therefore, the three control parameters for
this type of actuator are the amplitudes of each moment source and the phase, which is
equal for both sources.
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2.3.            

The process of calculating the power input in this case is exactly the same as in Section
2.1. Considered here is an infinite plate excited by a set of primary moments mP with a
given orientation controlled by a set of secondary moments mS the orientation of which
is also given. Upon assuming reciprocity and replacing fS by mS , fP by mP and R by S,
the expression for the total power output of both arrays of moments becomes

WT = 1
2 [mH

P SPP mP +mH
S SSP mP +mH

P SPS mS +mH
S SSS mS ], (26)

where S is the real part of the angular mobility matrix (which is analogous to R, the real
part of the linear mobility matrix). If equation (26) is minimized with respect to the real
and imaginary parts of the elements of mS , the optimal set of secondary moments is found
to be

mS =mSopt =−S−1
SS SSP mP . (27)

The ratio of the total power output with and without control, which is also the attenuation
in the total power transmitted to the plate when the optimal set of secondary moments
is applied on the plate, is thus given by

WT min /WPP =1−mH
P SPS S−1

SS SSP mP /mH
P SPP mP . (28)

In the case of a single primary moment controlled by a single moment aligned in the source
direction on an infinite plate mS =mS , mP =mP , and for an infinite plate it is shown in
Appendix A that SSS =SPP = g0 and SSP =SPS =2g0 {J0 (kr)− (1/kr)J1 (kr)] (see equation
A16) so that equation (27) becomes

mSopt /mp =−2[J0 (kr)− (1/kr)J1 (kr)] (29)

and the power reduction given by equation (28) is thus

WT min /WPP =1−4[J0 (kr)− (1/kr)J1 (kr)]2 (30)

Figure 3. Power attenuation against kr in the case of a primary moment controlled by a secondary moment
by using total power minimization on an infinite plate.
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which is plotted in Figure 3. Note that reduction is again greatest for small separations,
as in Figure 1, but that somewhat larger attenuations than those shown in Figure 1 can
be achieved when kr1 2·4, 5·5, 8·6, . . . , etc.

2.4.           

 

It may be possible to design a secondary actuator which is able to produce independently
a control force fS and a control moment mS with a given orientation.

If these two collocated secondary sources fS and mS excite an infinite plate, then the
response of the plate at the point at which fS and mS are acting is characterized by both
linear velocity vS and angular velocity wS . The power input by the two sources is then given
by WfSmS =(1/2) Re (f*s vs +m*s ws ) and, by considering equation (18), it can be written as
WfSmS =(1/2) Re (f*S MSS fS + f*S P'SS mS +m*S M'SS fS +m*S PSS mS ). However, for the in-
finite plate there are no coupling terms in the point-mobility which link either the linear
velocity to a moment excitation (vS /mS =P'SS =0) or the angular velocity to a force
excitation (wS /fS =M'SS =0) [25]. The total power supplied by the two collocated sources
is thus given by the sum of the power supplied by the force and the moment when acting
alone so that WfSmS =1/2(f*S RSS fS +m*S SSS mS ). As a consequence of this it has been found
that the optimal control force and moment which simultaneously minimize the total power
input when acting together are the same as those calculated in section 2.1 for a secondary
force fS and in section 2.2 for a secondary moment mS , when acting alone. In other words,
the collocated control force and moment can be driven independently in order to achieve
the best control. The power reduction in total power supplied to the plate when the
secondary force and moment are acting together is given by WT min /WPP =1−DfPfS −DfPmS ,
where DfPfS = f*P RPS R−1

SS RSP fP /f*P RPP fP is the fractional reduction if the control force fS

is acting alone (equation (12)) and DfPmS = f*P R'PS R−1
SS S'SP fP /f*P RPP fP is the fractional

reduction if the control moment mS is acting alone (equation (24)). Because both fractional
reductions are positive for any value of kr, the power reduction of the collocated control
force and moment is always greater than or equal to that obtained for a single control
force or for a single control moment. Moreover, WT min /WPP must always be positive, even
when the total power input is minimized. This means that the action of the two collocated
control sources is inevitably matched, in such a way that when the control force is very
effective the control moment performs poorly and vice versa. In Figure 4 is shown the
power reduction when a collocated secondary force and moment, positioned in a vertical
plane oriented in the radial direction, are used.

2.5.              

   

The numerical results presented in previous sections were only for the particular cases
of controlling one primary source by using a single secondary source that could be either
a force, a moment or a collocated force and moment. In this section the control of one
primary force by using several secondary sources arranged in a ring around the primary
source is presented. A uniform distribution around the ring is assumed and two cases are
considered: the first is characterized by a set of control forces (Figures 5(a–c)), while the
second involves a set of collocated control forces and control moments (Figures 5(d–f)).
The control moments are positioned in vertical planes oriented in the radial direction. In
particular the control effectiveness of a single control source (Figures 5(a) and 5(d)) is
compared with the control efficacy of two and four control sources with a ring distribution
as shown in Figures 5(b), 5(c) and 5(e), 5(f).
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Figure 4. Power attenuation against kr in the case of a primary force controlled by a collocated secondary
force and a secondary moment by using total power minimization on an infinite plate.

The matrix equations of section 2.1 were used to study the control with a ring of forces,
while the analysis of the control with a ring of collocated forces and moments required
an appropriate matrix formulation. In this case the power input by the secondary forces
and moments cannot be calculated by considering each source acting independently, as has
been assumed in section 2.4 for a single collocated secondary force and moment. However,
no analytic expression for the power reduction is given here because of the complexity of
the solution.

In Figure 6 are shown the power reductions, respectively, when one, two, four or eight
secondary forces are used. This graph shows clearly that as the number of control sources
increases the control become more effective. With one control source it is possible to

Figure 5. Ring of secondary force (a–c) or collocated force and moment (d–f) control sources acting on an
infinite plate excited by a primary force.
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Figure 6. Power reduction against kr in the case of a primary force controlled by one (– · – · –), two (.....),
four (——) and eight (– – –) secondary forces by using total power minimization on an infinite plate.

achieve a power reduction higher than 20 dB for krE 0·15, while when considering two
or four control sources such a limit is achieved, respectively, for krE 0·75 and krE 1·81.
Nevertheless, it is still impossible to achieve any control when kr1 2·4, 5·5, 8·6, . . . . This
is because of the symmetry of the control sources. If the control forces were slightly moved
from the perfectly symmetric configuration some control can also be achieved for these
values of kr. The case of eight control forces has also been considered and the simulations
have shown that very large power reductions, of at least 20 dB, can be achieved at almost
all frequencies for which krE 5. In fact, the dashed line for this case in Figure 6 has a
dip in a very narrow band around kr1 2·4, which is not shown in the plot because for
reductions of below 35 dB this dip is narrower than the kr sampling used in the
simulations. This dip can again be removed by randomly altering the positions of the
secondary sources by a small amount to break the symmetry.

The results obtained for the structural case described above were compared with those
obtained for a similar acoustic system composed of a primary monopole excitation and
one, two, four or eight control monopoles placed at a fixed distance from the source (r)
and equally distant from each other [23]. Power reductions in the structural and acoustic
cases showed similar trends when one, two or four control sources were used, while the
simulation with eight control sources has shown that the acoustical system produces power
reductions of greater than 20 dB only up to kr1 2·3, where k is now the acoustic
wavenumber, which is much lower than the limit (krE 5) found for the structural case.

In Figure 7 are shown the power reductions, respectively, when one, two or four
secondary collocated forces and moments are acting. A power reduction greater than 20 dB
is achieved for krE 0·7 when one force and moment are acting or for krE 2 when two
pairs of force and moment are acting and finally for krE 4·8 when four pairs of force and
moment are used. The simultaneous action of the force and the moment produce the
benefit shown in section 2.4 since, as shown in Figure 6, the power reduction changes
smoothly apart from the singularity at kr1 3·3 which can again be avoided by perturbing
the positions of the secondary sources.
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The results shown in Figures 6 and 7 show that the use of collocated forces and moments
performs better than forces alone for the same number of independent secondary sources
(for example, four secondary forces and two pairs of collocated forces and moments). Both
approaches have a power reduction greater than 20 dB for krE 1·81, but, for krq 1·81,
the power reduction curve decreases smoothly for the collocated force and moment control
and produces a power reduction higher than 5 dB up to kr=3, while the power reduction
of the other control approach decreases drastically and reaches zero for kr1 2·4.

Several simulations were run in which different types of primary excitation were
considered. In particular, the case of a primary force applied some distance from the center
of the ring of control forces but still within it was considered. The simulations showed that
both the ring of forces or the ring of collocated forces and moments cannot perform as
well as in the symmetric case. Moreover, the control sources assume different amplitudes
and phases, while in the symmetric case they were all driven with the same strength. A
second interesting case was considered in which the primary source was a collocated point
force and moment oriented at 30° with respect to one of the axes of the four control
sources. Also in this case a lower active control performance, in comparison to the case
in which only a primary force excited the system, was achieved. Because the primary
moment was not aligned with any of the secondary moments each of the control sources
had a different amplitude and phase even with the primary source placed at the centre of
the ring of control sources.

3. MAXIMIZING POWER ABSORPTION

3.1.            

An alternative strategy for active control is the maximization of power absorption by
the set of secondary forces. This is equivalent to minimizing the power output of the set
of secondary forces fS alone. The power output of the set of secondary forces can be written
as

Figure 7. Power reduction against kr in the case of a primary force controlled by one (– · – · –), two (.....)
and four (——) secondary forces and moments by using total power minimization on an infinite plate.
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WS = 1
2 Re {fH

S vS}= 1
2 Re {fH

S MSS fS + fH
S MSP fP}, (31)

which in turn can be written, after some manipulation, as

WS = 1
2 fH

S RSS fS + 1
4 fH

S MSP fP + 1
4 fH

P MH
SP fS . (32)

Equation (32) is minimized by

fS = fSa =−1
2 R−1

SS MSP fP . (33)

Inserting this optimally absorbing solution into equation (32) leads to the minimum power
output of the set of secondary forces:

WSa =−1
8 fH

P MH
SP R−1

SS MSP fP . (34)

One knows that the total power output is given by

WT = 1
2 [fH

P RPP fP + fH
P RPS fS + fH

S RSP fP + fH
S RSS fS ]. (35)

By using WPP = 1
2 fH

P RPP fP as the power input to the plate before control the power
reduction due to the optimally absorbing solution can be calculated by substituting
equation (33) into equation (35) which leads to the following expression:

WTa

WPP
=1−

1
2

[fH
P RT

SP R−1
SS MSP fP + fH

P MH
SP R−1

SS RSP fP − 1
2 fH

P MH
SP R−1

SS MSP fP ]
fH

P RPP fP
. (36)

Consider first the simple case of a single primary force acting on an infinite plate and
controlled by a single secondary force by using the maximization of its power absorption.
One has fP = fP , fS = fS , and, from Appendix A, RPP =RSS = b0 and
MSP = b0 [J0 (kr)− j(Y0 (kr)+ (2/p)K0 (kr))]. From equation (36), with WPP = 1

2 b0 f 2
P ,

which is the total power without any control, the available power reduction can be written
in the form

WTa /WPP =1− 3
4 J2

0 (kr)+ 1
4 (Y0 (kr)+ (2/p)K0 (kr))2. (37)

The reduction in total power supplied to the plate when this strategy is implemented is
plotted in Figure 8.

It is very interesting to note that, even in the limit kr:0, the power supplied to the
receiving structure remains finite in this structural example and is even reduced by 6 dB.
In a three-dimensional free field acoustic example, the power output of a primary and
secondary monopole source adjusted to maximize the absorption of the secondary source
becomes infinite, as kr:0 [21]. This is due to the large reactive near field of acoustic
monopoles in free space. The point force acting on a plate does not have a reactive near
field (the mechanical point input impedance is entirely real) and so this singularity does
not occur.

3.2.        , ,    

        

In this case the plate is originally excited by a set of primary moments and one seeks
to maximize the power absorption of the set of secondary forces, which is equivalent to
minimizing the power output of the set of secondary forces fS alone. Using the formulation
of section 2.2 and considering the left side of equation (18) one has the following
formulation for the power output of fS ,

WS = 1
2 Re {fH

S MSS fS + fH
S P'SP mP}, (38)
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Figure 8. Power reduction against kr in the case of a primary force controlled by a secondary force by using
maximization of the secondary source power absorption on an infinite plate.

which can be written as in section 3.1 in the form

WS = 1
2 fH

S RSS fS + 1
4 fH

S P'SP mP + 1
4 mH

P P'HSP fS . (39)

Equation (39) is minimized by setting

fS = fSa =−1
2 R−1

SS P'SP mP . (40)

Inserting the solution given by equation (40) into equation (39) gives the minimum of the
power output of the set of secondary forces:

WSa =−1
8 mH

P P'HSP R−1
SS P'mP . (41)

The total power output is given by

WT = 1
2 [mH

P SPP mP +mH
P S'TSP fS + fH

S S'SP mP + fH
S RSS fS ]. (42)

The available power reduction is calculated by inserting the solution of equation (40) into
equation (42) and, since the power input before control is WPP = 1

2 mH
P SPP mP , one finds

WTa

WPP
=1−

1
2

[mH
P S'TSP R−1

SS P'SP mP +mH
P P'HSP R−1

SS S'SP mP − 1
2 mH

P P'HSP R−1
SS P'SP mP]

mH
P SPP mP

. (43)

The case of one primary force controlled by one secondary moment is not treated because
of the exact similarity with the present case. All of the results are the same except that
one exchanges mP with fP and fS with mS .

In the case of a single primary force controlled by a single secondary moment a distance
r away and positioned in a vertical plane oriented in the radial direction, one has ms =ms ,
fp = fp , and, from Appendix A, RPP = b0, SSS = g0 = (k2/2)b0 and P'PS = kb0 [J1 (kr)
− j(Y1 (kr)+ (2/p)K1 (kr))]. Hence, with WP = b0 f 2

P , equation (43) becomes

WTa /WPP =1− 3
2 J2

1 (kr)+ 1
2 (Y1 (kr)+ (2/p)K1 (kr))2. (44)

The reduction in total power supplied to the plate when this strategy is adopted is plotted
in Figure 9. Although small increases in total power are observed for certain separations,



.   .124

the effect of this control strategy on an infinite plate is generally to reduce the level of plate
excitation, by about half the amount which can be achieved by minimizing the power in
this case (see Figure 2).

3.3.            

The process is directly analogous to that in section 3.1. The control strategy here is to
maximize the power absorption of a set of secondary moments, which is equivalent to
minimizing the power output of the set of secondary moments. Consider first the case of
a set of moments mP for the primary excitation. The power output of the set of secondary
moments mS can be written as

WS = 1
2 Re {mH

S PSS mS +mH
S PSP mP}, (45)

which can also be written, after some manipulations, as

WS = 1
2 mH

S SSS mS + 1
4 mH

S PSP mP + 1
4 mH

P PH
SP mS , (46)

where S is defined in section 2.2. Equation (46) is minimized by setting

mS =mSa =−1
2 S−1

SS PSP mP , (47)

which gives the minimum of equation (46) as

WSa =−1
8 mH

P PH
SP S−1

SS PSP mP . (48)

One can then calculate the total power output:

WT = 1
2 [mH

P SPP mP +mH
P ST

SP mS +mH
S SSP mP +mH

S SSS mS ]. (49)

The available power reduction is calculated by inserting the optimal solution given by
equation (47) into equation (49). With WPP = 1

2 mH
P SPP mP , it is thus expressed by

WTa

WPP
=1−

1
2

[mH
P ST

SP S−1
SS PSP mP +mH

P PH
SP S−1

SS SSP mP − 1
2 mH

P PH
SP S−1

SS PSP mP ]
mH

P SPP mP
. (50)

Figure 9. Power reduction against kr in the case of a primary force controlled by a secondary force by using
maximization of the secondary source power absorption on an infinite plate.
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Figure 10. Power reduction against kr in the case of a primary force controlled by a secondary force by using
maximization of the secondary source power absorption on an infinite plate.

In the case of a single primary moment controlled by a single aligned moment on an infinite
plate, one has, mP =mP , mS =mS , SSS =SPP = g0 and PSP given by equation (A16). Hence
equation (50) becomes

WTa

WPP
=1−30J0 (kr)−

1
kr

J1 (kr)1
2

+0Y0 (kr)−
1
kr

Y1 (kr)−
2
p 0K0 (kr)+

1
kr

K1 (kr)11
2

.

(51)

Relation (51) is plotted on Figure 10. In this case, there is a singularity as kr:0 in which
case the total power supplied to the plate is enormously amplified. This is due to the large
reactive near field of the moment. The power supplied to the plate is only increased if kr
is less than about 0·2, however, which is only a very local effect, and generally this control
strategy appears beneficial even for two moments on an infinite plate, provided that their
separation is greater than about 0·03l.

3.4.            



As in section 2.4, the power reduction has also been calculated when using a secondary
collocated force and moment which is oriented in the radial direction, in this case acting
to maximize the power absorption of both the secondary force and moment. As seen in
section 2.4, the power inputs due to these two secondary actuators are independent of each
other and, as a consequence of this, the optimal control force and moment are the same
as those calculated in section 3.1 for a primary force and secondary force and in section
3.2 for a primary force and a secondary moment. The collocated control force and moment
can thus again be driven independently in order to achieve the best control. As a
consequence of this the total power absorbed by the two control sources is equal to the
sum of the power absorbed by the control force and the control moment when both are
acting individually. The power reduction when a collocated secondary force and moment,
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Figure 11. Power attenuation against kr in the case of a primary force controlled by a collocated secondary
force and a secondary moment by using maximization of the secondary source power absorption on an infinite
plate.

positioned in a vertical plane oriented in the radial direction, are used, is shown in
Figure 11.

4. ACTIVE CONTROL ON A FINITE PLATE

In this section the effect is considered of the strategies for active control analyzed in
sections 2 and 3 when the forces and moments act on a simply supported finite plate. In
Figure 12 is shown the geometry of the finite plate: the position of the primary and
secondary sources when the control action performs at a single point is shown in
Figure 12(a), while the ring distribution used to study the control action by using several
secondary sources is shown in Figure 12(b).

4.1   

The general solutions found in section 2 for the optimal set of secondary forces or
moments and power reduction are still valid for a plate of finite size, but the expressions
for the input and transfer mobilities are more complicated in this case. In order to derive

Figure 12. Geometry of the finite plate and primary and secondary sources positions: one pair of collocated
force and moment control sources; (b) ring of collocated force and moment control sources.
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the mobility expressions, one considers the case of a finite plate of given thickness h excited
by a single primary force fP located at (xP , yP ). One wants to calculate the velocity induced
by this excitation at any location (x, y) on the plate. The formulation for the velocity given
in reference by [25] can be used and, for a simply supported plate with a uniform mass
distribution m0, leads to

v(xS , yS )= jvfP s
a

n=1

8n (xs , ys )8n (xp , yp )
Ln [v2

n (1+ jh)−v2]
, (52)

where v is the excitation frequency, vn is the nth natural frequency given by
vn =zB'/m0[(n1 p/l1)2 + (n2 p/l2)2], where n represents the double subscript (n1, n2), l1 and
l2 represent the lengths of the plate in the x and y directions, B' is the flexural stiffness
of the plate and can be expressed by B'=Eh3/12(1− m2), where E is the modulus of
elasticity and m is the Poisson ratio, and m0 is the mass distribution. 8n is the nth
eigenfunction of the plate given by 8n (x, y)= sin (n1 px/l1) sin (n2 py/l2), Ln is a
normalization term given by Ln = 1

4 l1 l2 m0 and h is the hysteretic loss factor which is used
to characterise the damping in this case.

Consider the case of a single secondary force controlled by a single primary force. In
the mobility formulation the linear velocity vS induced, for example, by the primary force
fP at the location of the secondary force fS can be expressed as

vS =MSP fP . (53)

One can easily deduce from equations (52) and (53) that the linear mobility is given by

MSP =jv s
a

n=1

8n (xS , yS )8n (xP , yP )
Ln [v2

n (1+ jh)−v2]
. (54)

It can be noted that MSP =MPS , which allows the use of equation (12) in the particular
case of the total power minimization strategy, that takes into account only the real part
RSP of the mobility MSP and is given by

RSP =Re {MSP}= s
a

n=1

hvv2
n

8n (xS , yS )8n (xP , yP )
Ln [(v2

n −v2)2 +v4
n h2]

. (55)

Using the general equation for the optimal set of secondary forces in order to minimise
total power when a primary force is applied on the plate, equation (12) in section 2.1, leads
to the following expression for the power reduction:

WT min /WPP =1−R2
SP /RPP RSS . (56)

The following characteristics for the plate were chosen: the material used is steel, the
thickness h=1 mm, the lengths l1 = l2 =1 m (hence the plate is square), the damping loss
factor h=0·02, and the first 30×30 modes in equation (5.5) which have natural
frequencies up to 4·3 kHz were taken into account. The primary force was assumed to be
located on the diagonal of the plate and close to a corner at (xP =0.7, yP =0·7) as shown
in Figure 12(a). From equation (55), RSS can be calculated, which in this case is given by

RSS = s
a

n=1

hvv2
n

82
n (xS , yS )

Ln [(v2
n −v2)2 +v4

n h2]
, (57)
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Figure 13. Power reduction against kr in the case of a primary force and a secondary force by using total
power minimization on an infinite plate with xS =0·84, yS =0·84.

and RPP is
RPP = s

a

n=1

hvv2
n

82
n (xP , yP )

Ln [(v2
n −v2)2 +v4

n h2]
. (58)

With equations (55), (57) and (58), the power attenuation given by equation (56) can be
calculated: this is plotted in Figure 13 against normalized frequency for a particular
location of the secondary force, with the wavenumber k=(v2m0/B')1/4. For the same
secondary location one can also plot the total power input to the plate against the

Figure 14. Total power against frequency for a primary force controlled by a secondary force without (——)
and with (– · – · –) control by using total power minimization on an finite plate with xS =0·84, yS =0·84.
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Figure 15. Power reduction against kr for a primary moment force controlled by a secondary moment by using
total power minimization on a finite plate with xS =0·84, yS =0·84.

excitation frequency, in Hz, with and without control (see Figure 14), which shows how
most modes at the lower frequencies are controlled by the single secondary force, but that
other modes, for which the secondary source location lies near a nodal line, are not
significantly reduced.

Consider now the case of a single primary force controlled by a single secondary
moment. To estimate the available power reduction when using the total power
minimization strategy one needs to calculate the effect of a moment on the linear velocity.
This can be expressed in terms of the linear–angular mobility. In this case, as has been
seen in section 2.2, full reciprocity cannot be assumed and equation (23) must be used for
the optimal set of secondary forces in order to minimize total power when a set of primary
moments is applied on a finite plate. The power reduction can be expressed by analogy
with equation (24), with R'PS =S'SP where R'PS =Re {M'PS} and S'PS =Re {P'PS}, as

WTa /WPP =1−S2
PS /SSS RPP . (59)

In this case RPP is given by equation (58) and the following expressions are derived in
Appendix B

SPS =Re {P'PS}= s
a

n=1

hvv2
n

8n (xP , yP )cdS
n (xS , yS )

Ln [(v2
n −v2)2 +v4

n h2]
, (60)

SSS =Re {PSS ]= s
a

n=1

hvv2
n

cdS
n (xP , yP )2

Ln [(v2
n −v2)2 +v4

n h2]
. (61)

Here one takes dS =−135° in order to align the secondary moment with the diagonal of
the plate and with the secondary force as shown in Figure 12(a). The power reduction is
plotted in Figure 15 and the total power before and after control in Figure 16.

If a single primary moment is controlled by a single secondary moment one has to
calculate the angular velocity induced by a moment and thus to express the angular



.   .130

mobility. One can assume reciprocity in this case and equation (28) in section 2.3 leads
to the calculation of the power reduction, which is given by

WT min /WPP =1−S2
SP /SPP SSS . (62)

Equation (62) can be used to calculate the available power reduction when using the total
power minimization strategy, with SSS given by equation (61) and

SPP =Re {PPP}= s
a

n=1

hvv2
n

cdP
n (xP , yP )2

Ln [(v2
n −v2)2 +v4

n h2]
, (63)

SSP =Re {PSP}= s
a

n=1

hvv2
n

cdS
n (xS , yS )cdP

n (xP , yP )
Ln [(v2

n −v2)2 +v4
n h2]

, (64)

which are derived in Appendix B. Here one chooses dS =−135° and dP =45°, to align
both of the moments with the diagonal of the plate. The power reduction is plotted in
Figure 17 and the total power in Figure 18.

As has been seen in section 2.4, it may be possible to use a collocated secondary force
and moment to control, for instance, a single primary force. The main difference here is
that now, because of the finite nature of the plate, there are coupling point-mobility
terms [25] which link either the linear velocity to a collocated moment excitation
(vS /mS =P'SS ) or the angular velocity to a collocated force excitation (wS /fS =M'SS ).
Thus, when only the two collocated secondary sources fS and mS are exciting
the finite plate, the total power input by them is given by WfSmS =(1/2) Re
(f*S MSS fS + f*S P'SS mS +m*S M'SS fS +m*S PSS mS ). As a consequence of this, it has been
found that the optimal control force fS and moment mS which minimize the total power
input by the primary fP and secondary fS , mS sources cannot be calculated independently
by considering either the primary force fP controlled only by the secondary force fS (section
2.1) or the primary force fP controlled only by the secondary moment mS (section 2.2).

Figure 16. Total power against frequency for a primary force controlled by a secondary moment without
(——) and with (– · – · –) control by using total power minimization on a finite plate with xS=0·84, yS =0·84.
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Figure 17. Power reduction against kr for a primary moment controlled by a secondary moment by using total
power minimization on a finite plate with xS =0·84, yS =0·84.

Although an analytic expression for the optimal control sources and for the available
power reduction when using the total power minimization is not given in this case, because
of the complexity, the results of such a calculation are plotted for power reduction in
Figure 19 and total power in Figure 20. These results show the improvement in power
reduction compared with either that due to the single secondary force or that due to the
single secondary moment alone, particularly at higher excitation frequencies.

Figure 18. Total power against frequency for a primary moment controlled by a secondary moment without
(——) and with (– · – · –) control by using total power minimization on a finite plate with xS=0·84, yS =0·84.
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Figure 19. Power reduction against kr for a primary force controlled by a collocated secondary force and
moment by using total power minimization on a finite plate with xS =0·84, yS =0·84.

The effects of using several secondary sources arranged in a ring around a primary force
have also been considered for the finite plate. Two cases have been analyzed: the first being
a set of control forces, while for the second a set of collocated control forces and control
moments are used. A uniform distribution of secondary sources around the ring is assumed
and the control moments are positioned in vertical planes oriented in the radial direction
as is shown in Figure 12(b). The same matrix approach used for the multi-secondary

Figure 20. Total power against frequency for a primary force controlled by a collocated secondary force and
moment without (——) and with (– · – · –) control by using total power minimization on a finite plate with
xS =0·84, yS =0·84.
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Figure 21. Power reduction against kr for a primary force controlled by one (– · – · –), two (.....) and four
(——) secondary forces by using total power minimization on a finite plate with xS=0·84, yS =0·84.

sources control on an infinite plate was used, except that the mobility values derived in
Appendix B for the finite plate were used.

In Figure 21 are shown the power reductions, respectively, when one, two or four
secondary forces are acting. These graphs show that control is again more effective at
resonance, but as the number of control sources is increased the control becomes more
effective. For krE 2 the minimum power reduction achieved with one source is around
4 dB, while when using two or four secondary forces the minimum power reductions are

Figure 22. Total power against frequency for a primary force controlled by one secondary force without (——)
and with (– · – · –) control by using total power minimization on a finite plate with xS =0·84, yS =0·84.
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Figure 23. Total power against frequency for a primary force controlled by two secondary forces without
(——) and with (– · – · –) control by using total power minimization on a finite plate with xS=0·84, yS =0·84.

respectively around 6 dB and around 7·5 dB. When using one control force the first null
in the power reduction curve is for kr1 2·4, while when using two or four control sources
the first null is obtained, respectively, for kr1 2·6 and kr1 4·9. This behaviour is rather
different from that seen in section 2.5 for the infinite plate and it is due to the asymmetric
position of the ring with respect to the edge of the plate. The total power input in the three
control cases considered is shown in Figures 22–24.

Figure 24. Total power against frequency for a primary force controlled by four secondary forces without
(——) and with (– · – · –) control by using total power minimization on a finite plate with xS=0·84, yS =0·84.
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Figure 25. Power reduction against kr for a primary force controlled by one (– · – · –), two (.....) and four
(——) collocated secondary forces and moments by using total power minimization on a finite plate with
xS =0·84, yS =0·84.

For a ring of collocated secondary forces and moments which are distributed as shown
in Figure 12(b), in Figure 25 are shown the power reductions, respectively, when one, two
or four pairs of secondary sources are acting. The addition of control moments to the
control forces produces a large benefit, since the power reduction with two or four
collocated forces and moments never assumes null values for 0E krE 10 and the
minimum power reductions are, respectively, around 2 dB and around 4·5 dB within this
range of kr. Such improvement becomes more clear when considering the total power input
into the plate in the three cases, as shown in Figures 26–28. Upon comparing a case with
the same number of control sources, for example when the control is obtained by using
four secondary forces (Figure 24) and two pair of collocated forces and moments
(Figure 27), it is evident that the simultaneous action of the forces and moments gives a
more uniform reduction in input power.

4.2.     

In the case of a single primary force controlled by a single secondary force, one uses
equation (36) in section 3.1, which gives the power reduction in the case of maximization
of the power absorption of the secondary force. With MSP =MSP =RSP +jXSP given by
equation (54), RPP =RPP given by equation (58) and RSS =RSS given by equation (57), this
leads to the following expression for the power reduction when control is applied:

WTa /WPP =1−(3
4 R2

SP − 1
4 X2

SP )/RPP RSS . (65)

The available power reduction given by equation (65) is plotted against (kr) in Figure 29
and the total power against frequency with and without control in Figure 30.

For a single primary force controlled by a single secondary moment, equation (43) in
section 3.2 leads to the following expression for the power reduction when using the
maximization of the power absorption of the secondary force:

WTa /WPP =1− 3
4 (Y'2PS − 1

4 S'2PS )/RPP RSS . (66)
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Figure 26. Total power against frequency for a primary force controlled by one collocated secondary force
and moment without (——) and with (– · – · –) control by using total power minimization on a finite plate with
xS =0·84, yS =0·84.

One knows that S'PS =R'PS due to reciprocity, which is given by equation (60), RPP is given
by equation (58), SSS is given by equation (61) and Y'PS =Im {P'PS} is derived in Appendix
B as

Y'PS = s
a

n=1

v(v2
n −v2)

8n (xP , yP )cdS
n (xS , yS )

Ln [(v2
n −v2)2 +v4

n h2]
. (67)

Figure 27. Total power against frequency for a primary force controlled by two collocated secondary forces
and moments without (——) and with (– · – · –) control by using total power minimization on a finite plate with
xS =0·84, yS =0.84.
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Figure 28. Total power against frequency for a primary force controlled by four collocated secondary forces
and moments without (——) and with (– · – · –) control by using total power minimization on a finite plate with
xS =0·84, yS =0·84.

The choice dS =−135° is made in order to align the secondary moment on the diagonal
of the plate and with the primary force. Thus the available power reduction is given by
equation (66) and is plotted against kr in Figure 31, and the total power is plotted against
frequency in Figure 32.

Figure 29. Power reduction against kr for a primary force controlled by a secondary force by using
maximization of the secondary source power absorption on a finite plate with xS =0·84, yS =0·84.
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Figure 30. Total power against frequency for a primary force controlled by a secondary force without (——)
and with (– · – · –) control by using maximization of the secondary source power absorption on a finite plate
with xS =0·84, yS =0·84.

If one now considers the case of a single primary moment controlled by a single
secondary moment, equation (50) in section 3.3 allows one to calculate the power reduction
in the case of maximizing the power absorption. This leads to the expression

WTa /WPP =1−(3
4 S2

SP − 1
4 Y2

SP )/SPP SSS . (68)

Figure 31. Power reduction against kr for a primary force controlled by a secondary moment by using
maximization of the secondary source power absorption on a finite plate with xS =0·84, yS =0·84.
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Figure 32. Total power against frequency for a primary force controlled by a secondary moment without
(——) and with (– · – · –) control by using maximization of the secondary source power absorption on a finite
plate with xS =0·84, yS =0·84.

SSP is given by equation (64), SPP is given by equation (63), SSS is given by equation (61)
and YSP =Im {PSP} is derived in Appendix B as

YSP = s
a

n=1

v(v2
n −v2)

cdS
n (xS , yS )cdP

n (xP , yP )
Ln [(v2

n −v2)2 +v4
n h2]

. (69)

Again, one chooses dS =−135° and dP =45° in order to align both of the moments on
the diagonal of the plate. Thus equation (68) leads to the power reduction which is plotted
against kr in Figure 33, and the total power against frequency is plotted in Figure 34.

Finally, the use of a collocated secondary force and moment actuator is considered to
control a single primary force acting on a finite plate by using the maximization of the
power absorption of the secondary actuator. No analytic expression of the power
reduction is given here because of the complexity of the solution, but the results of such
a calculation are plotted in terms of power reduction in Figure 35 and the total power in
Figure 36.

It is clear from these results that a consequence of the finite nature of the plate is to
provide a strong coupling effect between the different actuators acting on the plate. Using
a control action based on maximizing the power absorption of the secondary source can
then lead to a substantial increase in the total power supplied to the plate, especially at
low frequency.

5. CONCLUSIONS

A description has been given in this paper of the performance of two possible strategies
that can be used to design an active vibration controller: total power minimization and
maximization of the power absorption of the secondary source. For both cases, finite and
infinite plates have been considered with force and moment actuators. Analytic solutions
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Figure 33. Power reduction against kr for a primary moment controlled by a secondary moment by using
secondary source power absorption maximization on a finite plate with xS =0·84, yS =0·84.

for the optimal secondary source and the corresponding power reductions have been
derived for each configuration of strategies and actuators.

Substantial reductions (q10 dB) in the power input to an infinite plate due to a primary
force can be obtained with secondary force adjusted to minimize total power input
provided that it is placed closer than about one-eighth of a flexural wavelength. A
secondary moment can also give reductions of up to about 5 dB in power input, but in

Figure 34. Total power against frequency for a primary moment controlled by a secondary moment without
(——) and with (– · – · –) control by using maximization of the secondary source power absorption on a finite
plate with xS =0·84, yS =0·84.



     141

Figure 35. Power reduction against kr for a primary force controlled by a collocated secondary force and
moment by using maximization of the secondary source power absorption on a finite plate with xS =0·84,
yS =0·84.

this case it must be placed about one-third of a flexural wavelength from the primary force.
A combined secondary force and moment acting at the same point on an infinite plate but
independently adjusted are able to give reductions, which are for any value of kr, greater
than or equal to those obtained either for a single control force or for a single control
moment.

Figure 36. Total power against frequency for a primary force controlled by a collocated secondary force and
moment without (——) and with (– · – · –) control by using maximization of the secondary source power
absorption on a finite plate with xS =0·84, yS =0·84.
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The use of multiple-secondary forces, or collocated forces and moments, arranged in a
ring around the primary source can give even better control than a single force or moment
or a collocated force and moment. In general, for an equal number of control sources, the
best result is achieved by using collocated forces and moments.

Maximization of the power absorption of the secondary source also generally reduces
the total power input from both primary and secondary sources on an infinite plate.
Reductions in total power of 6 dB can be obtained with a closely spaced secondary force
when controlling a primary force on an infinite plate by using this strategy. A secondary
moment also gives about 3 dB reduction in the total power input to the infinite plate when
placed about a third of a wavelength from the primary force. The large increases in total
power output of the sources observed with closely spaced acoustic monopoles when using
this control strategy does not appear to occur, except when a secondary moment is
positioned very close to a primary moment.

In the case of the finite plate considered here, reductions in total power input of up to
20 dB can be obtained with a single secondary force or moment adjusted to total minimized
input power, but only at the natural frequencies of modes with which these sources can
efficiently couple. Although for a finite panel the fractional reductions with both a
secondary force and moment are no longer equal to the sum of the fractional reductions
which could be obtained individually, the action of the two secondary sources is still
complementary. At higher frequencies (in particular, for kr=5–10) the two collocated
secondary sources work together to achieve reductions of at least 2 dB and give about 8 dB
on average, whereas the force or moment individually cannot achieve any significant
reductions at a number of frequencies one obtains an average reduction of only about 4 dB.
The use of several control forces or several collocated control forces and moments give
a better performance for the finite plate than that obtained by using a single control force
or moment or a collocated force and moment.

The control strategy of maximizing the power absorption of the secondary sources on
the finite plate can result in increases of up to 20 dB in the total power supplied to the
plate, particularly at low frequencies. This is true for both force and moment sources and
reflects the increased coupling which exists on a finite plate, not just between forces and
linear velocities, but also between moments and linear velocities. Similar results were
reported by Brennan et al. [22] for a finite beam.

As long as it is possible to have knowledge of all the power transmission paths, the total
power minimization strategy thus offers better results than maximizing the power
absorption of the secondary source. Although the strategy of maximizing the power
absorbed by the secondary sources should be avoided on structures with strong reflections,
it may be worthwhile on more anechoic structures and may be considerably simpler to
implement than total power minimization. Combining a force and moment in the design
of the secondary source appears to improve significantly the action of the controller,
particularly on a finite structure.
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Figure A1. The notation used for the force and moment and for the linear and angular velocities in an infinite
plate.

APPENDIX A: MOBILITY TERMS FOR AN INFINITE PLATE

In this appendix the analytic form of the terms of the mobility matrix are derived for
an infinite plate when one or both of the two main sources (primary source and secondary
source) are made up by forces or moments. The case of two force sources has already been
carried out by Jenkins et al. [20].

Considered here is an infinite plate excited first by a single primary force fP and
controlled by a single secondary moment mS . One wants to find the analytic expression
for the optimal solution of the secondary force in order to minimize, for example, the total
power output, which is given by

WT = 1
2 Re {m*S PSS mS +m*S M'SP fP + f*P P'PS mS + f*P MPP fP} (A1)

For this purpose one needs to calculate: first, the angular velocity induced by the primary
force at the location of the secondary moment (represented by P'SP , fP ); second, the linear
velocity induced by the secondary moment at the location of the primary force (represented
by M'SP fP ); and, finally, the angular velocity induced by the secondary moment at its own
location (represented by PSS mS ). The mobility PSS relating a moment mS with the angular
velocity at the same point wS has been derived from a general case in such a way to show
how to calculate the angular velocity at the location of the primary source (represented
by PPS mS ). In this way the formulation presented in this appendix gives the analytic
expression of the four transfer and input mobilities that are needed to study the cases
having a set of primary and secondary sources composed by both force and moment
excitations.

In Figure A1 is shown the notation used for the forces and moments and for the linear
and angular velocities at the primary source and secondary source positions. At each of
these two points a local system of reference composed of a right-handed triple of vectors
(x, y, z) is defined. The positive forces (fP and fS ) and linear velocities (vP and vS ) are
oriented in the z direction, while the positive moments (mP and mS ) and angular velocities
(wP and wS ) positioned in a vertical plane having a general orientation are determined by
the angles dP and dS that are positive with reference to the right-handed screw rule as shown
in Figure A1. The formulation of the transfer mobility PPS requires a second set of angles
oP and oS which are defined as the angles between the x axes and the segment joining the
primary source and the secondary source positions. Also these angles are defined as
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positive with reference to the right-handed screw rule. This notation has been introduced
for the particular case of a primary source and a secondary source, but can be assumed
in general also to find the relations between excitations and velocities at any pair of points
at which primary or secondary sources act.

.1.    '  '
In order to create the moment effect mS , one applies two similar forces with opposite

phases +f and −f a length 2e away and apart from the point P along the uS line; then
one reduces the distance between the two forces to zero. It is known that the complex
velocity v induced at a given location on an infinite plate by a force f is given by [25]

v= fb0 [H(2)
0 (kr)−H(2)

0 (−jkr)], (A2)

where r is the distance between the primary and the secondary sources, H(2)
0 () is the second

Hankel function of zeroth order and b0 =v/8Bk2. Moreover, for a real argument,
H(2)

0 (kr)= J0 (kr)− jY0 (kr), where J0 () is the first kind of Bessel function of order zero and
Y0 () is the second kind of Bessel function of order zero. For an imaginary argument one
can write H(2)

0 () in the form H(2)
0 (−jkr)= j(2/p)K0 (kr), where K0 () is the modified second

kind of Bessel function of order zero. Thus one can express the complex velocity v by

v= fb0 [J0 (kr)− j(Y0 (kr)+ (2/p)K0 (kr))]= fM(kr), (A3)

where M is the linear mobility and depends on kr. If one calls v+
P the complex linear velocity

generated at the location P by the point force +fS and v−
P the complex linear velocity

generated at the same location by the point force −fS , with reference to the notation shown
in Figure A2, one can express the total complex linear velocity VP at P as

VP = v+
P + v−

P = fS [M(k(r− e cos uS ))−M(k(r+ e cos uS ))], (A4)

where uS = oS − dS . Let now a:0 to create the moment effect and then calculate the total
complex velocity vP by taking the limit of VP , i.e., vP =lime:0 VP , which leads to

vP =−fS 0lime:0
[M(k(r+ e cos uS ))−M(k(r− e cos uS ))]1

=−mS cos uS 0lime:0

M(k(r+ e cos uS ))−M(k(r− e cos uS ))
2e cos uS 1

Figure A2. The linear velocity at position P induced by a moment aligned with the segment uS and applied
at position S.
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−mS cos uS 0lima:0

M(k(r+ a))−M(k(r− a))
2a 1, (A5)

where mS =2efS is the moment and a= e cos uS . The term in brackets is simply the
expression for the derivative of M with respect to r. Hence the expression for the linear
velocity is

vP =−mS cos uS 1M/1r. (A6)

With M= b0 [J0 (kr)− j(Y0 (kr)+ (2/p)K0 (kr)], equation (A6) becomes

vP = kb0 cos uS [J1 (kr)− j(Y1 (kr)+ (2/p)K1 (kr)]mS . (A7)

One can then deduce from equation (A7) that the angular–linear mobility P'PS is given by

P'PS = kb0 cos uS [J1 (kr)− j(Y1 (kr)+ (2/p)K1 (kr))]. (A8)

An equation of the same type as equation (A7) is obtained when the linear velocity at the
secondary source vS is due to a primary moment mP and then the equation of the
angular-linear mobility P'SP is given by

P'SP = kb0 cos uP [J1 (kr)− j(Y1 (kr)+ (2/p)K1 (kr))], (A9)

where uP = oP − dP . The formulation presented here for P'PS and P'SP is valid for any pair
of positions on which act moments and forces that interfere.

.2    '  '

The angular velocity wS induced by the primary force fP at the location of the secondary
moment mS is now calculated. The angular velocity wS is related to the linear velocity vS

by

wS =dvS /duS =−cos uS 1vS /1r=−fP cos uS 1M/1r, (A10)

where uS = oS − dS . Using equation (A3) for vS in equation (A10) yields

wS = kb0 cos uS [J1 (kr)− j(Y1 (kr)+ (2/p)K1 (kr))]fP . (A11)

Then from equation (A11) one deduces that the linear–angular mobility M'SP is given by

M'SP = kb0 cos uS [J1 (kr)− j(Y1 (kr)+ (2/p)K1 (kr))]. (A12)

It can be noted from equations (A8) and (A12) that the effect of the moment and the force
on each other is exactly the same.

The angular velocity at the primary source wP due to a secondary force fS is given by
an equation of the same type as equation (A11), so the equation for the linear-angular
mobility M'PS is

M'PS = kb0 cos uP [J1 (kr)− j(Y1 (kr)+ (2/p)K1 (kr)], (A13)

where uP = oP − dP . The formulation presented here for M'SP and M'PS is valid for any pair
of positions on which act moments and forces that interfere.
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.3.    , ,   

The angular mobility PSS involves the angular velocity induced at the secondary source
by the secondary moment itself. However it can be useful to calculate the angular velocity
induced at any point on the plate, by a moment when one is dealing with several primary
or (and) secondary moments. Thus, for example, the angular velocity at the primary source
due to the secondary moment is determined. By using equation (A7) and (A10), the angular
velocity at the primary source position wP induced by the secondary moment mS is found
to be

wP = {cos cP sin cP}$cos uS

sin uS

−(1/r) sin uS

(1/r) cos uS %6 1P'PS /1r
1P'PS /1uS7mS , (A14)

where cP = dS − dP and uS = oS − dS . Therefore, the angular mobility PPS is given by

PPS = {cos cP sin cP}$cos uS

sin uS

−(1/r) sin uS

(1/r) cos uS %6 1P'PS /1r
1P'PS /1uS7. (A15)

In the particular case of secondary moment mS and primary angular velocity wP being
aligned, equation (A15) assumes the form

PPS =2g0 $J0 (kr)−
1
kr

J1 (kr)− j0Y0 (kr)−
1
kr

Y1 (kr)−
2
p 0K0 (kr)+

1
kr

K1 (kr)11%,

(A16)

where g0 =v/16B=(k2/2)b0. The angular velocity at the secondary source wS due to a
primary moment mP is given by an equation of the same type as equation (A16), so the
equation of the angular mobility PSP is given by

PSP = {cos cS sin cS}$cos uP

sin uP

−(1/r) sin uP

(1/r) cos uP %6 1P'SP /1r
1P'SP /1uP7, (A17)

where cs = dP − dS and uP = oP − dP . With reference to the simplified equations (A16)
relating aligned angular velocity and moment that are valid also for the mobility PSP one
can deduce that PPP =PSS = g0.

Also in this case, the formulation presented for PPS and PSP is valid for any pair of
positions on which act moments and forces that interfere.

APPENDIX B: MOBILITY TERMS FOR A FINITE PLATE

Returning to equation (A1), one wants to calculate the different mobility terms but for
the case of a finite plate. Figure B1 shows the notation used for the forces and moments
and for the linear and angular velocities at the primary source and secondary source
positions. At each of these two points a local system of reference composed of a
right-handed triple of vectors (xP , yP , zP ) and (xS , yS , zS ) is defined. The positive forces (fP

and fS ) and linear velocities (vP and vS ) are oriented in the z1 direction, while the positive
moments (mP and mS ) and angular velocities (wP and wS ) positioned in a vertical plane
having a general orientation are determined by the angles dP and dS that are positive with
reference to the right-handed screw rule, as shown in figure A2. The formulation of the
mobility terms for a finite plate is a little different from that for the infinite case because
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Figure B1. The notation used for the force and moment and for the linear and angular velocities in a finite
plate.

it depends on the location of the excitation. For this reason a main system of reference
composed of a right-handed triple of vectors (x, y, z) has been fixed at the bottom
left-hand corner of the plate, as shown in Figure A2. Another important difference between
the infinite plate mobilities and the finite plate mobilities is due to the fact that an input
force or moment acting on a finite plate produces, respectively, an angular and a linear
velocity at the same point where the force or moment is located. Therefore, the mobility
terms M'PS , M'SP or P'PS , P'SP for a finite plate include not only a transfer mobility term but
a point mobility term as well. Such point mobility terms are indicated by M'PP , M'SS or P'PP ,
P'SS .

.1    ', ', '  '
The process is exactly the same as in the infinite case: i.e., as shown in Figure A2. One

applies on the plate two opposite forces a length 2r away which is reduced to zero in order
to create the secondary moment mS . A primary force fP is applied at the location (xP , yP )
on the plate in order to control mS . This allows one to calculate of the angular–linear and
linear–angular mobility terms as defined by equation (A1), P'PS and M'SP , respectively,
which represent, respectively, the linear velocity vP due to a unit moment mS and the
angular velocity wS due to a unit force fP .

One knows that the linear velocity vP induced at the location (xP , yP ) by a force fS located
at (xS , yS ) can be written as

vP = fS s
a

n=1

(hvv2
n +jv(v2

n −v2))
8n (xP , yP )8n (xS , yS )

Ln [(v2
n −v2)2 +v4

n h2]
. (B1)

Hence the total velocity VP , at the location (xP , yP ) induced by two opposite forces +fS

(which induces v+
P ) and −fS (which induces v−

P ) each a distance e away from (xS , yS ) along
the uS line, is

VP = v+
P + v−

P

= fS s
a

n=1

(hvv2
n +jv(v2

n −v2))
Ln [(v2

n −v2)2 +v4
n h2]

8n (xP , yP ) [8n (xS − a, yS − b)−8n (xS + a, yS + b)],

(B.2)
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with 8n (x, y)= sin (n1 px/l1) sin (n2 py/l2), a= e cos dS and b= e sin dS . One knows that
the secondary moment mS =2rfS and so one lets e:0 in equation (B2). After some
manipulations the following expression is obtained for the linear velocity vP at (xP , yP ):

vP =lim
e:0

VP =ms s
a

n=1

(hvv2
n +jv(v2

n −v2))
8n (xP , yP )cdS

n (xS , yS )
Ln [(v2

n −v2)2 +v4
n h2]

. (B3)

Here

cdS
n (x, y)=

n1 p

l1
cos dS cos 0n1 px

l1 1 sin 0n2 py
l2 1+

n2 p

l2
sin dS sin 0n1 px

l1 1 cos 0n2 py
l2 1. (B.4)

The linear velocity vP induced at (xP , yP ) by a moment mS located at (xS , yS ) is known
to be vP =P'PS mS . From equation (B3) one deduces the analytic expression for P'PS :

P'PS = s
a

n=1

(hvv2
n +jv(v2

n −v2))
8n (xP , yP )cdS

n (xS , yS )
Ln [(v2

n −v2)2 +v4
n h2]

. (B5)

The same procedure can be adopted to find the mobility term for the linear velocity vS

induced at (xS , yS ) by a moment mP located at (xP , yP ):

P'SP = s
a

n=1

(hvv2
n +jv(v2

n −v2))
8n (xS , yS )cdP

n (xP , yP )
Ln [(v2

n −v2)2 +v4
n h2]

. (B6)

It can be noted that P'SP $P'PS . The analytic expression for P'PP or P'SS is exactly the same
as in equations (B5) or (B6). The mobility P'PP will refer to 8n (xP , yP ) and cdP

n (xP , yP ) while
the mobility P'SS will refer to 8n (xS , yS ) and cdS

n (xS , yS ).
The formulation presented here for P'PS and P'SP is valid for any pair of positions on

which act moments and forces that interfere.

.2    ', ', '  '

One now wants to express now the linear–angular mobility M'SP for the angular velocity
induced at (xS , yS ) by the primary force fP located at (xP , yP ). The angular velocity ws can
be calculated from the linear velocity vs by differentiating the linear velocity at the location
(xS , yS ) with reference to the direction given by the line us , as shown in Figure B1:

ws =dvs /dus (B7)

The problem of the differentiation can be overcome by considering the following change
of variables. A new position S
 on the line uS corresponding to the orientation of the
moment mS is defined by

x̂S = xS + e cos dS and ŷS = ys + e sin dS . (B8)

The velocity vS
 at (x̂S , ŷS ) is given by

vS
 = fP s
a

n=1

(hvv2
n +jv(v2

n −v2))
8n (x̂S , ŷS )8n (xP , yP )

Ln [(v2
n −v2)2 +v4

n h2]
. (B9)
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Using equation (B9) and the foregoing change of variables defined by equations (B8) one
can deduce that the angular velocity wS at (xS , yS ) is

wS = fP s
a

n=1

(hvv2
n +jv(v2

n −v2))

d8n (xS + e cos dS , yS + e sin dS )
de

8n (sP , yP )

Ln [(v2
n −v2)2 +v4

n h2]
. (B10)

With 8n (xS + e cos dS , yS + e sin dS )= sin(n1 p(xS + e cos dS )/l1) sin (n2 p(yS + e sin dS )/l2)
and after some manipulations one finds that wS is at (xS , yS ), obtained by letting e:0, is

wS = fP s
a

n=1

(hvv2
n +jv(v2

n −v2))
cdS

n (xS , yS )8n (xP , yP )
Ln [(v2

n −v2)2 +v4
n h2]

, (B11)

where cdS
n is given by equation (B4). As the angular velocity induced at (xS , yS ) by a

primary force fP located at (xP , yP ) is given by wS =M'SP fP , one thus has

M'SP = s
a

n=1

(hvv2
n +jv(v2

n −v2))
cdS

n (xS , yS )8n (xP , yP )
Ln [(v2

n −v2)2 +v4
n h2]

, (B12)

which is exactly, as expected, the same expression as in equation (B5). By using the same
procedure the mobility term that for the angular velocity wP induced at (xP , yP ) by a
moment mS located at (xS , yS ) can be determined:

M'PS = s
a

n=1

(hvv2
n +jv(v2

n −v2))
cdP

n (xP , yP )8n (xS , yS )
Ln [(v2

n −v2)2 +v4
n h2]

. (B13)

It can be noted that M'PS $M'SP . The analytic expression for M'PP or M'SS is exactly the same
as, respectively, in equation (B12) or (B13). The mobility M'PP will refer to 8n (xP , yP ) and
cdP

n (xP , yP ), while the mobility M'SS will refer to 8n (xS , yS ) and cdS
n (xS , yS ).

The formulation presented here for M'SP and M'PS is valid for any pair of positions on
which act moments and forces that interfere.

.3    , ,   

One wants to find the analytic expression for the angular mobility PPS in the case of
primary and secondary moments, relevant to, for example, the angular velocity wP induced
at (xP , yP ) by the secondary moment mP located at (xS , yS ). The linear velocity induced
by a moment is given by equation (B3). Using equation (B6) and considering the
differentiation at (xP , yP ), one has immediately the expression for wP ,

wP =mS s
a

n=1

(hvv2
n +jv(v2

n −v2))
cdP

n (xP , yP )cdS
n (xS , yS )

Ln [(v2
n −v2)2 +v4

n h2]
, (B14)

where cdP
n is given by equation (B4) by using the orientation of the primary moment dP

and the co-ordinates (xP , yP ).
The angular velocity wP at (xP , yP ) induced by a secondary moment mS located at

(xS , yS ) is given by wP =PPS mS . From equation (B14) one deduces the analytic expression
for the angular mobility PPS :

PPS = s
a

n=1

(hvv2
n +jv(v2

n −v2))
cdP

n (xP , yP )cdS
n (xS , yS )

Ln [(v2
n −v2)2 +v4

n h2]
. (B15)
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The same procedure can be adopted to find the mobility term for the angular velocity
wS induced at (xS , yS ) by a moment mP located at (xP , yP ); it is

PSP = s
a

n=1

(hvv2
n +jv(v2

n −v2))
cdS

n (xS , yS )cdP
n (xP , yP )

Ln [(v2
n −v2)2 +v4

n h2]
. (B16)

It can be noted that in this case PSP =PPS . The analytic expression for PSS or PPP is exactly
the same as, respectively, in equations (B15) or (B16). The mobility PSS will refer to
cdS

n (xS , yS )2, while the mobility PPP will refer to cdP
n (xP , yP )2. It can be that PSP =PPS but

PPP $PSS .
Also, in this case, the formulation presented for PPS and PSP is valid for any pair of

positions on which act moments and forces that interfere.


