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1. 

The problem of free vibrations of beams and rods with various boundary conditions and
attached masses and springs has been investigated by many authors. A list of some of these
studies can be found in references [1, 2]. Recently, in the context of a project study, it was
necessary to derive the characteristic equation of a Bernoulli–Euler beam to which, in
addition to springs and heavy masses, viscous dampers are also attached. During the efforts
towards incorporation of the damping effect into the formulations, the present author
observed that this effect was not taken into account in the studies cited above. Therefore,
the aim of this note is to give a systematic formulation of the approximate characteristic
equation of a beam carrying heavy masses restrained by linear and rotational springs and
damped by linear viscous dampers, as shown in Figure 1.

2. 

The partial differential equation of the free bending vibrations of a uniform beam
according to Bernoulli–Euler theory, is the well known expression [3]

EI 14w(x, t)/1x4 +m 12w(x, t)/1t2 =F [w(x, t)] d(x− xj ) (1)

where EI and m denote the bending rigidity and mass per unit length respectively. The
operator F[w(x, t)] on the right side represents any attachments like point and/or heavy
masses, linear and/or rotational springs and dampers at the discrete points x= xj on the
beam.

An approximate series solution of equation (1) can be taken in the form

w(x, t)1 s
n

r=1

wr (x)hr (t) (2)

where the wr (x) are the orthogonal eigenfunctions of the beam without any appendages,
normalized with respect to the mass density. The hr (t) are unknown and time dependent
generalized co-ordinates.

After substitution of expression (2) into the differential equation (1) both sides of the
equation are multiplied by the sth eigenfunction ws (x) and integrated over the beam length.
By using the orthogonality property of the eigenfunctions, the system of modal equations,
i.e., the system of differential equations for the hr (t), is obtained. In the previous works
of the present author [1, 4] the attachments considered were point masses, linear, rotational
springs and heavy masses. By combining the results of those works, the modal equations
of the beam system in Figure 1 without the dampers can be given as

ḧr (t)+v2
r hr (t)=N*r (t)+N**r (t)+N***r (t)+N****r (t), (r=1, . . . , n). (3)
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Figure 1. Viscously damped Bernoulli–Euler beam carrying heavy masses restrained by linear and torsional
springs.

Here, vr denotes the rth eigenfrequency of the beam without any masses and springs,
N*r (t), . . . , N****r (t) are the generalized forces corresponding to the point masses, linear
or torsional springs and heavy masses, respectively:

N*r (t)=− s
p

l=1

ml wr (xl ) s
n

j=1

ḧj (t)wj (xl ),

N**r (t)=− s
q

k=1

kk wr (xk ) s
n

j=1

hj (t)wj (xk ),

N***r (t)=− s
y

s=1

k�s w'r (xs ) s
n

j=1

hj (t)w'j (xs ),

N****r (t)=− s
p

l=1

Jl w'r (xl ) s
n

j=1

ḧj (t)w'j (xl ). (4)

If it is assumed that the beam is additionally acted upon by v linear viscous dampers, it
can be shown that the right side of equation (3) has to be ammended by the generalized
force corresponding to the dampers, N*****r (t), which has the form

N*****r (t)=− s
n

u=1

cu wr (xu ) s
n

j=1

ḣj (t)wj (xu ). (5)

As can be seen from Figure 1, cu is the damping constant of the uth viscous damper and
wr (x) denotes the rth eigenfunction of the beam without any masses, springs and dampers.

Hence, the modal equations of the combined system in Figure 1 can be formulated as

ḧr (t)+v2
r hr (t)+ s

p

l=1

s
n

l=1

ml wr (xl )wj (xl )ḧj (t)+ s
q

k=1

s
n

j=1

kk wr (xk )wj (xk )hj (t)

+ s
y

s=1

s
n

j=1

k�s w'r (xs )w'j (xs )hj (t)+ s
p

l=1

s
n

j=1

Jl w'r (xl )w'j (xl )ḧj (t)

+ s
n

u=1

s
n

j=1

cu wr (xu )wj (xu )ḣj (t)=0, (r=1, . . . , n). (6)
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A solution of the form

hr (t)= h̄r elt, (r=1, . . . , n), (7)

where l denotes an eigenvalue of the combined system, yields the following system of
homogeneous equations:

l20h̄r + s
p

l=1

s
n

j=1

ml wr (xl )wj (xl )h̄j + s
p

l=1

s
n

j=1

Jl w'r (xl )w'j (xl )h̄j1
+ l s

v

u=1

s
n

j=1

cu wr (xu )wj (xu )h̄j

+v2
r h̄r + s

q

k=1

s
n

j=1

kk wr (xk )wj (xk )h̄j + s
n

s=1

s
n

j=1

k�s w'r (xs )w'j (xs )h̄j =0,

(r=1, . . . , n). (8)

In order to use the advantages of matrix notation, one can define

h̄=[h̄1, . . . , h̄n ]T, w(x)= [w1 (x), . . . , wn (x)]T, W(x)=w(x)wT(x),

W'(x)=w'(x)w'T(x), v2 = diag (v2
i ), A'= s

q

k=1

kk W(xk ), B'= s
p

l=1

ml W(xl ),

B0= s
p

l=1

Jl W'(xl ), C'= s
n

s=1

k�s W'(xs ), D= s
v

u=1

c'u W(xu ). (9)

As can be seen from the definitions of W(x) and W'(x), A', B', B0, C', and D are symmetric
matrices.

Furthermore, by introducing the abbreviations

A=A'+C'+v2, B=B'+B0+ I (10)

with I being the n-dimensional unit matrix and then starting with the system of equations
(8), the following general eigenvalue problem is obtained:

(l2B+ lD+A)h= 0. (11)

This means that the characteristic values l of the mechanical system are obtained as the
roots of the characteristic equation

det (l2B+ lD+A)=0. (12)

It is known [5] that the equation of motion of a damped linear discrete system,

Mẍ+Dẋ+Kx= 0, (13)

can be formulated in the state space as

ẏ=Ay, (14)
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where the system matrix A is defined as

A=$ 0
−M−1K

I
−M−1D%. (15)

The characteristic values l of the mechanical system (13) can either be determined as the
roots of the characteristic equation

det (l2M+ lD+K)=0 (16)

or as the eigenvalues of the matrix A. Hence, making use of the analogy between (12) and
(16), one is able to state that the characteristic values l of the present beam system can
also be obtained as the eigenvalues of the matrix A*, which is defined as

A*=$ 0
−B−1A

I
−B−1D%. (17)

After having obtained the characteristic equation for a beam which can be subject to
general boundary conditions, one now wishes to give the corresponding expressions for
a clamped–free beam in dimensionless form. To this end, following definitions are
introduced [6]:

x̄= x/L, a(x̄)= [a1 (x̄), . . . , an (x̄)]T,

ak (x̄)= ch b�k x̄−cos b�k x̄− h̄k sh b�k x̄−sin b�k x̄),

h̄k =(ch b�k +cos b�k )/(sh b�k +sin b�k ), b�1 =1·875104, b�2 =4·694091,

b�3 =7·854757, . . . ,

B�= diag (b�4
k ), v2

0 =EI/mL4, m̄l =ml /mL, J�l = J�l /mL3, c̄u = cu /mLv2
0 ,

k�k = kk /mLv2
0 , k��s = k�s /mL3v2

0 , l*= l/v0, ()'=d()/dx̄. (18)

With these definitions, one notes that the eigenfrequencies of the beam without any
attachments, i.e., the eigenfrequencies vk of the clamped–free beam can be represented in
terms of the dimensionless frequency parameters b�k as [3]

vk = b�2
k v0, (k=1, 2, . . .).

The characteristic equation (12) can be given as

det (l*2M*+ l*D*+K*)=0, (19)

with

M*= I+ s
p

l=1

m̄l a(x̄l )aT(x̄l )+ s
p

l=1

J�l a'(x̄l )a'T(x̄l ), D*= s
v

u=1

c̄u a(x̄u )aT(x̄u ),

K*=B�+ s
q

k=1

k� k a(x̄k )aT(x̄k )+ s
n

s=1

k��s a'(x̄s )a'T(x̄s ), (20)

where x̄= x/L.
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Figure 2. Viscously damped clamped–free Bernoulli–Euler beam.

The characteristic values l* of the system can also be determined as the eigenvalues of
the matrix A�, defined as

A�=$ 0
−M*−1K*

I
−M*−1D*%. (21)

3.     

One can take the system shown in Figure 2 as a simple application example. EI and m
are the bending rigidity and mass per unit length of the beam. In reference [7], the
sensitivity of the eigenvalues of this system with respect to small changes of the damping
constant and the location of the damper was investigated. The following characteristic
equation was obtained:

1+ cu l s
n

k=1

w2
k

l2 +v2
k
=0. (22)

Here wk denotes wk (xu ). It can be shown that equation [22] can be rewritten in the notation
of the present note as

1+ c̄u l* s
n

i=1

a2
i (x̄u )

l*2 + b�4
i
=0. (23)

T 1

Non-dimensional l* characteristic values; first column: eigenvalues
of the matrix A� in equation (21); second column: roots of equation

(23)

From equation (21) From equation (23)

−0·00822352 3·5160452i −0·00822352 3·5160452i
−0·18271522 22·036269i −0·18271522 22·036269i
−0·73696322 61·700122i −0·73696322 61·700122i
−1·14574092 120·88565i −1·14574092 120·88565i
−0·87670382 199·83633i −0·87670382 199·83633i
−0·22855082 298·55027i −0·22855082 298·55027i
−0·02105052 416·99053i −0·02105052 416·99053i
−0·49494052 555·16234i −0·49494052 555·16234i
−0·97647122 713·06949i −0·97647122 713·06949i
−0·79675462 890·71920i −0·79675462 890·71924i
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Consider now a system with the following physical data: x̄u =0·2, v2
0 =54·012345 rad2/s2,

c̄u =0·137143; these correspond to the mechanical system in reference [7].
The first column of Table 1 contains the non-dimensional l* values obtained as the

eigenvalues of the 2n dimensional square matrix defined by equation (21). In the second
column, those l* values are collected which are obtained as the roots of equation (23),
which is essentially taken from reference [7]. In both cases n=10 is taken. Inspection of
the complex numbers in both columns indicates clearly that their agreement is excellent.

4. 

In this note, an approximate characteristic equation of a Bernoulli-Euler beam carrying
heavy masses, restrained by linear and torsional springs and damped by linear viscous
dampers is derived. The resulting expressions are applied to a simple system.
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