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EXTERNAL PRIMARY RESONANCE OF
SELF-EXCITED OSCILLATORS WITH 1:3
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The forced response of a class of weakly non-linear oscillators with self-excited
characteristics is investigated. The non-linearity is symmetric, the external forcing is
harmonic and the essential dynamics are described by a two-degree-of-freedom oscillator,
whose linear natural frequencies satisfy conditions of 1:3 internal resonance. Firstly, sets
of equations governing the slow time variation of the amplitudes and phases of
approximate solutions of the equations of motion are obtained by applying an asymptotic
analytical method. For primary resonance of the first mode, only mixed-mode response is
possible, since the second mode is always activated through the non-linearities. On the other
hand, when conditions of primary resonance of the second mode are met, single-mode
response is also possible. In both cases, a methodology is developed which reduces the
determination of constant solutions of the slow-flow equations to the solution of two
coupled polynomial equations. The stability analysis of these solutions is also provided.
Next, numerical results are presented for an example practical system, in the form of
response diagrams. These results show the effect of some system parameters on the existence
and interaction of various branches of constant solutions. Then, more numerical results
are presented, obtained by direct integration of the slow-flow equations in forcing frequency
ranges where these equations possess no stable constant solution. The results demonstrate
the existence of periodic and chaotic solutions of these equations.
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1. INTRODUCTION

Modal interactions occurring in the response of non-linear mechanical systems, in the
presence of an internal resonance, have been at the epicenter of intensive research work
over the last three decades. For such systems, some of the energy supplied to a mode of
the system by the excitation may be transferred and activate other modes, participating
in the same internal resonance. However, most of these studies analyzed systems with
non-linear restoring force only (see [1–8] and references therein). On the other hand, many
mechanical oscillators may exhibit significant damping nonlinearities, leading to
self-excited behavior (e.g., [9–16]). For such systems, vibration modes which are not excited
directly by external forcing may eventually get excited through the non-linearities and
mixed-mode response may arise, even in the absence of internal resonance [16, 17].

The main objective of this study is to present an analysis for the forced response of a
class of two-degree-of-freedom self-excited oscillators, in the presence of a one-to-three
internal resonance. The non-linearity is weak and consists of cubic combinations of
displacement and velocity terms. The normalized equations of motion are first presented
in a general form in the following section. Next, a perturbation method is applied and a

0022–460X/97/470211+14 $25.00/0/sv971145 7 1997 Academic Press Limited



k2

c2

m2

x2, F2

k0, k0

m1

x1, F1

k1

c1

ˆ

c0, c0ˆ

.   . 212

set of four ordinary differential equations is presented, governing the slow variation of the
amplitudes and phases of approximate solutions of the equations of motion for the case
of primary resonance of the first mode. A methodology leading to an efficient computation
of constant solutions of the averaged equations is then presented, together with an
appropriate stabilty analysis. The fourth section includes similar analyses for the case of
primary resonance of the second mode. Then, a specific practical example is considered
and a series of representative response diagrams is first presented, illustrating the effect of
some important system parameters on the existence and interaction of constant solution
branches. In the sixth section, results are presented, which are obtained by integrating the
slow-flow equations in forcing frequency ranges where these equations possess no stable
constant solution. In the final section, the most important conclusions of the study are
summarized.

2. DYNAMICAL SYSTEM

The dynamics of the mechanical systems examined in the present work can be described
adequately by a set of two coupled non-linear equations of motion, with normalized form:

ün +v2
nun = hn (t)+ oqn (u1, u2, u̇1, u̇2) (n=1, 2), (1)

where o is a small positive constant and

qn (u1, u2, u̇1, u̇2)= an1u̇1 + an2u̇2 + bn1u̇3
1 + bn2u̇2

1 u̇2 + bn3u̇1u̇2
2 + bn4u̇3

2

+ gn1u3
1 + gn2u2

1u2 + gn3u1u2
2 + gn4u3

2 . (2)

The coefficients of the coupling functions qn (u1, u2, u̇1, u̇2) are such that self-excited
response is possible. For instance, this is the case when the constants an1, an2 are positive.

When no internal resonance is activated, the response of this class of oscillators can be
analyzed according to the methodology presented in [17]. Here, that analysis is extended
to cover cases where the system examined exhibits one-to-three internal resonance. This
means that its undamped linear natural frequencies satisfy the relation

v2 =3v1 + os, (3)

where s is the natural frequency detuning parameter.
An example of a two-degree-of-freedom mechanical system, with equations of motion

that can be cast in the form (1) and (2), is shown in Figure 1. This oscillator presents a
simplified model of a metal cutting process [12]. The springs and dampers connecting the
masses of the model with the ground possess linear characteristics. On the other hand, the
spring and damper between the two masses are chosen to possess Duffing and Rayleigh
type characteristics, respectively. Therefore, if the relative displacement and velocity of the
two masses is x and v, then the force developed between them has the form
(k0x+ k
 0x3)+ (−c0v+ ĉ0v3). Finally, the external excitation consists of harmonic forces

Figure 1. Example of mechanical system model.
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F1 cos (Vt) and F2 cos (Vt+f), applied on the first and second mass of the model,
respectively.

The equations of motion of the example system can be brought into the general form
of equations (1) and (2) by first introducing the normalized time t= v̂1t and the absolute
displacements yn = xn =xc , (n=1, 2). The frequency v̂1, the characteristic length xc and the
other system parameters are defined in the Appendix. Then, the process is completed by
applying the co-ordinate transformation

y(t)=Yu(t), (4)

where Y is the modal matrix of the corresponding linear, undamped system and by
employing standard modal analysis techniques (see [17]). Anticipating conditions of
primary external resonance, the normalized forcing terms are also scaled in the form

hn (t)=2opn cos (vt+ un ),

with amplitudes and phases defined in the Appendix. Finally, the frequency condition (3)
is satisfied by proper choice of the parameter r.

3. PRIMARY RESONANCE OF THE FIRST MODE

In this section, it is assumed that the forcing frequency lies in the neighborhood of the
first undamped linear natural frequency of the dynamical system. This is expressed by the
relation

v=v1 + os1, (5)

where s1 is a frequency detuning parameter. For this case, approximate solutions of
equations (1) are obtained by applying the multiple time scales method. Namely, these
solutions are first expressed in the form:

un (t; o)= un0(t, t1)+ oun1(t, t1)+O(o2), (n=1, 2) (6)

where t1 = ot is the slow time scale of the problem. Then, following standard procedures
(see [3, 17]), the leading order solution is determined in the form:

un0 = an (t1) cos [vnt+fn (t1)], (7)

where the amplitudes an (t1) and phases fn (t1) satisfy the following autonomous system of
slow-flow equations:

a'1 = c1a1 + c2a
3
1 + c3a1a

2
2 + c4 sin g1 + (c7 sin g− c8 cos g)a2

1a2, (8)

a1g'1 = s1a1 + c5a
3
1 + c6a1a

2
2 + c4 cos g1 + (c7 cos g+ c8 sin g)a2

1a2, (9)

a'2 = e1a2 + e2a
2
1a2 + e3a

3
2 − (e7 sin g+ e8 cos g)a3

1 , (10)

a2g'2 = ŝ2a2 + e5a
2
1a2 + e6a

3
2 + (e7 cos g− e8 sin g)a3

1 . (11)

The constant coefficients appearing in the above set of first order ordinary differential
equations are defined in the Appendix, while

g=82 −381 + st1, g1 = s1t1 + u1 −81, g2 = ŝ2t1 −f2 (12a–c)

and ŝ2 is a constant that will be defined subsequently.
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It should be noted that the form of the slow-flow equations is not affected by addition
of the remaining possible combinations of cubic terms in the coupling functions expressed
by (2). Namely, addition of

mn1u̇2
1u1 + mn2u̇2

1u2 + mn3u̇1u̇2u1 + mn4u̇1u̇2u2 + mn5u̇2
2u1 + mn6u̇2

2u2

+ nn1u2
1 u̇1 + nn2u̇2

1u2 + nn3u1u2u̇1 + nn4u1u2u̇2 + nn5u2
2 u̇1 + nn6u2

2 u̇2

in qn introduces the terms d1 − d4 (which are defined in the Appendix) in equations (8)–(11),
respectively. Therefore, the coefficients of these extra terms play a similar role in those
equations with that of the coefficients gnm and bnm , respectively. Moreover, if (a1, a2, g1, g2)
is a solution of equations (8)–(11), then it can be shown that

(−a1, a2, p+ g1, g2), (a1, −a2, g2, p+ g2), (−a1, −a2, p+ g1, p+ g2),

are also solutions. Finally, it can easily be proved that only mixed-mode solutions (i.e.,
motions with a1a2 $ 0) are possible for the system (8)–(11), provided that at least one of
the coefficients e7 and e8 is not equal to zero.

Among other types of solutions, the slow-flow equations (8)–(11) are expected to possess
constant solutions (a10, a20, g10, g20), satisfying the conditions

a'10 = a'20 = g'10 = g'20 = g'0 =0. (13)

Then, by employing the definition (12) of the phases, it can be shown that the following
conditions must hold:

ŝ2 =3s1 − s, g0 =3g10 − g20 −3u1. (14a, b)

As a consequence, by combining condition (14a) with the frequency relations (3) and (5),
the approximate solutions expressed by (7) are finally determined in the form

u1 = a10 cos (vt+ u1 − g10)+O(o) (15)

and

u2 = a20 cos (3vt− g20)+O(o). (16)

From the last two equations it is clear that the constant mixed-mode solutions of the
averaged equations (8)–(11) correspond to periodic motions of the mechanical system, in
contrast to the non-resonant case [17], where the response is two-frequency quasiperiodic.
Therefore, in the presence of the 1:3 internal resonance, the non-linearity adjusts the
response frequencies of the system so that the three-frequency quasiperiodic response
(involving v, v1 and v2) is replaced by a two-frequency periodic response.

Determination of the constant mixed-mode solutions x0 = (a10 a20 g10 g20)T can be
reduced to solution of two polynomial equations. First, application of conditions (13) in
(8)–(11) yields a system of four algebraic equations for the four unknowns of the problem.
Solving the two algebraic equations resulting from (10) and (11) for cos g0 and sin g0 yields
expressions with the form:

cos g0 = (g1 + g2x1 + g3x2)a20/a3
10, sin g0 = (g4 + g5x1 + g6x2)a20/a3

10, (17, 18)

where x1 = a2
10, x2 = a2

20. Next, substituting (17) and (18) in the algebraic equations resulting
from (8) and (9) yields the quantities cos g10 and sin g10 in the form

cos g10 = (q1x1 + q2x2 + q3x2
1 + q4x1x2 + q5x2

2 )/a10, (19)

sin g10 = (q6x1 + q7x2 + q8x2
1 + q9x1x2 + q0x2

2 )/a10, (20)
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Therefore, eliminating the phase g0 from equations (17) and (18) results in an algebraic
condition with form

f1(x1, x2)0 g7x3
1 + g8x2

1x2 + g9x1x2
2 + g10x3

2 + g11x1x2 + g12x2
2 + g13x2 =0. (21)

Likewise, from the trigonometric identity cos2 g10 + sin2 g10 =1 and the equations (19) and
(20) it turns out that

f2(x1, x2)0 q10x4
1 + q11x3

1x2 + q12x2
1x2

2 + q13x1x3
2 + q14x4

2

+ q15x3
1 + q16x2

1x2 + q17x1x2
2 + q18x3

2 + q19x2
1 + q20x1x2 + q21x2

2 + q22x1 =0.

(22)

All the coefficients appearing in equations (17)–(22) are constants, depending on the
system parameters. Numerical solution of the last two algebraic equations provides the
amplitudes a10 and a20. Then, back substitution in (17) and (18) determines the
corresponding phase g0, while back substitution in (19) and (20) yields the value of g10.
Finally, the phase g20 is evaluated from (14b), which completes the process of determining
constant mixed-mode solutions of (8)–(11).

The stability properties of a constant mixed-mode solution of equations (8)–(11), say
x0 = (a10 a20 g10 g20)T, are investigated by applying the classical method of linearization [3].
Namely, a small perturbation is first introduced in that solution and a new solution
x= x0 + ox1 is considered. Substituting the above expression in (8)–(11), Taylor-expanding
around x0 and keeping only up to linear terms in o leads to a linear equation with form:

x'1 =Px1, (23)

governing the time evolution of the solution perturbation. Then, if the real parts of all the
eigenvalues of the constant Jacobian matrix P are negative, the solution examined is stable.
If at least one eigenvalue has positive real part the solution is unstable. Finally, for
parameter combinations leading to eigenvalues of matrix P with zero real part,
bifurcations occur [18].

4. PRIMARY RESONANCE OF THE SECOND MODE

When the forcing frequency is close to the linear natural frequency of the second mode
of vibration, namely when

v=v2 + os2, (24)

it can be shown, by applying the same asymptotic procedure as in the previous section,
that the amplitudes and phases of approximate solutions expressed by (7) are now
determined as solutions of the following set of slow-flow equations:

a'1 = c1a1 + c2a
3
1 + c3a1a

2
2 + (c7 sin g− c8 cos g)a2

1a2, (25)

a1g'1 = ŝ1a1 + c5a
3
1 + c6a1a

2
2 + (c7 cos g+ c8 sin g)a2

1a2, (26)

a'2 = e1a2 + e2a
2
1a2 + e3a

3
2 + e4 sin g2 − (e7 sin g+ e8 cos g)a3

1 , (27)

a2g'2 = s2a2 + e5a
2
1a2 + e6a

3
2 + e4 cos g2 + (e7 cos g− e8 sin g)a3

1 . (28)

Here,

g1 = ŝ1t1 −81, g2 = s2t1 + u2 −82, (29a, b)

while the phase g is defined by (12a) again.
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In the present case, it can be proved that equations (25)–(28) possess the same symmetry
properties as the averaged equations (8)–(11). However, single-mode solutions with

a1 =0, a2 $ 0,

are also possible here. These solutions satisfy equations (25) and (26) identically, while they
replace (27) and (28) by:

a'2 = e1a2 + e3a
3
2 + e4 sin g2, a2g'2 = s2a2 + e6a

3
2 + e4 cos g2. (30a, b)

Clearly, these equations are not affected by the presence of the 1:3 internal resonance. In
fact, their form is identical to that analyzed for single-mode non-resonant response in [17].

For constant mixed-mode solutions of the slow-flow equations (25)–(28), it can first be
shown through direct application of (12a) and (29) that

ŝ1 = (s+ s2)/3, g0 =3g10 − g20 + u2. (31a, b)

Then, by employing relations (3), (24), (29) and (31), the corresponding solutions of the
equations of motion (1) can be expressed in the form

u1 = a10 cos ([v/3]t− g10)+O(o) (32)

and

u2 = a20 cos (vt+ u2 − g20)+O(o). (33)

The methodology which leads to determination of the constant mixed-mode solutions
of (25)–(28) is similar to that applied in the previous section. Namely, the two algebraic
equations resulting from (25) and (26) are first solved for cos g0 and sin g0. This yields
expressions with form

cos g0 = (j1 + j2x1 + j3x2)/a10a20, sin g0 = (j4 + j5x1 + j6x2)/a10a20. (34, 35)

Then, substitution of the last two expressions in the equations arising from (27) and (28)
and solution with respect to cos g20 and sin g20, yields

cos g20 = (r1x1 + r2x2 + r3x2
1 + r4x1x2 + r5x2

2 )/a20, (36)

sin g20 = (r6x1 + r7x2 + r8x2
1 + r9x1x2 + r0x2

2 )/a20. (37)

Therefore, employing known trigonometric identities in conjunction with the last four
relations leads to a couple of algebraic equations with form

f3(x1, x2)0 j7x3
1 + j8x2

1x2 + j9x1x2
2 + j10x2

1 + j11x1x2 + j12x1 =0 (38)

and

f4(x1, x2)0 r10x4
1 + r11x3

1x2 + r12x2
1x2

2 + r13x1x3
2 + r14x4

2

+ r15x3
1 + r16x2

1x2 + r17x1x2
2 + r18x3

2 + r19x2
1 + r20x1x2 + r21x2

2 + r22x2 =0

(39)

for the two unknowns x1 = a2
10, x2 = a2

20. Again, the constant coefficients in equations
(34)–(39) are known functions of the system parameters. Numerical solution of the last
two algebraic equations determines the amplitudes a10 and a20. Then, the phases g0 and g20

are computed from (34), (35) and (36), (37), respectively, while the corresponding phase
g10 is evaluated from (31b). Finally, the stability analysis of these solutions is carried out
as in the case of primary resonance of the first mode.
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Figure 2. Frequency response diagram of a versus s1: (a) a1 at f=0·001; Key: free vibration ( f=0); w, stable
solutions; x, unstable solution; e, a1 =0 motion. (b) a2 at f=0·001; Key as for (a). (c) a1 at f=0·003; (d) a2

at f=0·003; (e) a1 at f=0·004; (f) a2 at f=0·004; (g) a1 at f=0·01; (h) a2 at f=0·01.

5. PARAMETRIC STUDY

In this section, numerical results are presented in the form of frequency–response
constant solutions. The solution amplitudes are plotted versus the frequency detuning
parameter s1. Solid lines represent stable solution branches while broken lines represent
unstable solution branches. According to relations (15), (16) and the co-ordinate
transformation (4), these solutions correspond to two-frequency periodic motions of the
mechanical oscillator.
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First, Figure 2 shows response diagrams for a system with parameters m=0·6, r0 =0·8,
z0 =0·01, z1 = z2 =0·001, s=0, k
 0 =0, 8=0 and four different values of the forcing
parameter f= f1 = f2. In particular, the isolated points shown in Figures 2(a) and 2(b)
correspond to solutions obtained by applying the analysis presented in [19], for the same
system but for free vibration (namely, for f=0). The small circles represent stable
solutions, the x’s correspond to unstable solutions, while the rhombus stands for a motion
with a1 =0. Clearly, as the forcing parameter starts increasing from zero, the original
isolated solutions are replaced by closed solution branches which increase in size gradually,
collide and merge in a very distinct sequence (Figures 2(c–h)). For values of f larger than
0·01, the form of the response diagrams remains qualitatively the same as that of Figures
2(g) and 2(h). The only significant change caused by a further increase in f is the gradual
expansion in the range of stable solutions.

All the response diagrams of Figure 2 appear to be symmetric with respect to the s1 =0
axis. Next, in obtaining the sequence of response diagrams of Figure 3, the values of the
parameters s and f are set to the constant values 2 and 0·01, respectively, while the value
of the stiffness nonlinearity parameter k
 0 is varied. In these cases, the symmetry with
respect to the s1 =0 axis is broken. Moreover, the most important interaction of the

Figure 3. Frequency-response diagram of a versus s1: (a) a1 at kx 0 =−2; (b) a2 at kx 0 =−2; (c) a1 at kx 0 =1;
(d) a2 at kx 0 =1; (e) a1 at kx 0 =5; (f) a2 at kx 0 =5.
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Figure 4. Frequency-response diagram of g versus s1: (a) g1 at kx 0 =5; (b) g2 at kx 0 =5.

constant solution branches takes place in the positive/negative range of the detuning s1

for positive/negative values of kx 0, respectively. Finally, for the sake of completeness, Figure
4 depicts the diagrams of the constant phases g1 and g2, corresponding to the same set of
parameters that led to the response diagrams of Figures 3(e) and 3(f).

The response diagrams of Figures 2–4 are typical. Namely, qualitatively similar
diagrams were obtained by varying the other technical parameters of the system. The
information extracted from such diagrams illustrates the mechanisms giving rise to
periodic motions of the dynamical system and provides the means to properly select the
system parameters in ways that avoid unwanted motions or reduce their amplitude, within
a specified range of interest. In addition, the results of the stability analysis can be used
as a guide in order to detect other possible types of motion. For instance, in places where
the stability of a branch of constant solutions of the slow-flow equations (8)–(11) is lost
through a Hopf bifurcation, these equations accept periodic solutions [18], corresponding
to amplitude and phase modulated motions of the mechanical system. This is verified and
analyzed further in the following section.

6. NUMERICAL INTEGRATION OF THE SLOW-FLOW EQUATIONS

The branch of stable solutions in Figures 3(e) and 3(f) extends over a relatively narrow
frequency range only. As is verified by the numerical results of the stability analysis, this
branch coalesces at its right end with a branch of unstable constant solutions, through a
saddle–node bifurcation. On the other hand, the stability at its left end is lost through a
Hopf bifurcation at about s1 =2·29. By direct integration of the slow-flow equations
(8)–(11) it is confirmed that these equations exhibit stable periodic solutions in the range
extending from s1 =2·32 to 1·42, showing that the Hopf bifurcation is subcritical. Within
that frequency range, the projections of the longtime response onto the (a1, a2) plane
appear in the forms shown in Figure 5.

In Figure 5(a), two different periodic solutions (obtained at s1 =1·55) are shown, which
are mirror images with respect to the a2 =0 axis. This is due to the symmetry property
(a1, a2, g1, g2):(a1, −a2, g1, p+ g2). These twin trajectories are known as Rossler attractors
[7]. By further decreasing the value of the forcing detuning parameter, the two twin
attractors of the (a1, a2) plane move closer to the a2 =0 axis and eventually collide at a
critical value of s1, forming a single Lorenz attractor. They then remain connected within
a forcing frequency range, as shown in Figures 5(b) and 5(c). Finally, for even smaller
values of s1 the Lorenz attractor separates and forms two new twin Rossler attractors, as
shown in Figure 5(d).
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The types of solutions shown in Figure 5 have also been observed in previous studies
of non-linear dynamical systems (e.g., [18–22]). In those studies, the existence of solutions
similar to those shown on Figure 5 was related to the satisfaction of some special
dynamical conditions, resulting in the so-called Silnikov phenomena. These conditions
ensure the existence of a saddle-focus constant solution of the slow-flow equations, which
possesses a bi-asymptotic homoclinic orbit [18, 20]. In the case examined, the eigenvalues
of the linear part of the averaged equations at s1 =1·504 are: l1,2 =0·0672 1·687i,
l3 =−0·683 and l4 =1·107. This provides numerical evidence for the existence of a
saddle-focus. Moreover, it indicates satisfaction of the condition for the occurrence of a
homoclinic explosion [21], providing justification for the existence of the motions of
Figure 5.

The frequency content of the solutions presented in Figure 5 is assessed by the
corresponding Fourier spectra, shown in Figure 6. First, Figure 6(a) verifies that the
response history a2(t) is periodic at s1 =1·55, before the merging of the two asymmetric
Rossler attractors. Following the collision of these attractors and the appearance of the
Lorenz attractor, the spectrum of a2(t) starts presenting a continuous distribution of the
response energy in the low frequency range (Figure 6(b)), which becomes pronouned
(Figure 6(c)), indicating chaotic response. Finally, for even smaller values of s1, the
response history of the solution amplitude a2 regains its periodicity, as verified by Figure
6(d).

In order to better understand the dynamics of the system within the frequency range
examined, Figure 7 presents the time histories of the phase g2 for exactly the same set of
values of s1. Following the Hopf bifurcation of the stable constant solutions, the phase
g2 (as well as the phase g1 and the solution amplitudes a1 and a2) is found to vary
periodically within the interval 1·51Q s1 Q 2·32, as shown in Figure 7(a). However, within
the range of s1 where the Lorenz attractor appears onto the (a1, a2) plane, the history of
phase g2 is characterized by sudden jumps. These jumps occur at a low frequency rate
originally (Figure 7(b)), which increases quickly (Figure 7(c)). The final result of these

Figure 5. Projection of long time response onto (a1, a2) plane, s1 values: (a) 1·55, (b) 1·506, (c) 1·504, (d) 1·45.
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Figure 6. Fourier spectrum of amplitude a2, s1 values: (a) 1·55, (b) 1·506, (c) 1·504, (d) 1·45.

changes is shown in Figure 7(d), where the phase g2 exhibits jumps continuously. These
results demonstrate that the phase-locked motion, corresponding to the stable constant
solutions of the slow-flow equations for s1 q 2·29, is originally replaced by entrained
motion, corresponding to periodic solutions of the slow-flow equations (see [15] for
relevant definitions). At the critical value of s1 where the two Rossler attractors collide
and form the Lorenz attractor onto the (a1, a2) plane, the phase g2 starts developing a drift,
which is completed when the Lorenz attractor splits apart again.

Figure 7. Long time history of phase g2, s1 values: (a) 1·55, (b) 1·506, (c) 1·504, (d) 1·45.
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Figure 8. Long time history of amplitude a2, s1 values: (a) 1·55, (b) 1·506, (c) 1·504, (d) 1·45.

Figure 8 shows the history diagrams of the solution amplitude a2, obtained for the same
set of values of the forcing frequency. Clearly, it appears that anytime there is a jump in
the history of phase g2, a sign change occurs in the history of a2, until the system has
reached the state of full drift. This result is in accordance with the aforementioned
symmetry property of the averaged equations. On the other hand, the corresponding
response histories a1(t2) and g1(t1) were found to remain periodic throughout the frequency
range considered, even when the history of amplitude a2 is chaotic. This curious result is
illustrated by Figure 9, obtained at s1 =1·504.

It should be pointed out that the solutions belonging to the same sequence with those
shown in Figure 5 become unstable eventually at about s=1·415, where the direct
integration converges to another coexisting periodic solution. This new solution is shown
in Figure 10 for two values of s1 and was found to exist in the interval extending from
s1 =1·8 to −20. A special characteristic of this solution is that both of its phases g1, g2

are in a condition of full drift.

Figure 9. Long time history of amplitude a1 with s1 =1·504; (a) a1, (b) g1.
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Figure 10. Projection of long time response onto (a1, a2) plane s1 values; (a) 1·41, (b) −5.

7. SUMMARY AND CONCLUSIONS

An analysis has been presented for predicting the dynamic behavior of two-degree-of-
freedom symmetric self-excited systems, in the presence of 1:3 internal resonance and the
simultaneous action of external primary resonances. First, sets of slow-flow equations were
obtained for the amplitudes and phases of approximate asymptotic motions of the system.
Determination of constant solutions of these equations was reduced to solution of two
coupled polynomial equations. These solutions were shown to correspond to periodic
motions of the system and their stability characteristics were investigated by the method
of linearization. Then, series of representative response diagrams were presented for
constant solutions, illustrating the dependence of their existence and stability properties
on the system parameters. Finally, a search was performed in forcing frequency ranges
where no stable constant solutions are possible. By performing numerical integration, a
scenario leading to a gradual transition from phase-locked to drift solutions of the
slow-flow equations was revealed, corresponding to a transition from periodic to
quasiperiodic response of the original system. This transition started with a subcritical
Hopf bifurcation and was reinforced by satisfaction of Silnikov conditions, leading to a
homoclinic explosion of the averaged equations. In addition, it involved the appearance
of chaotic response of the directly excited mode only, as was confirmed by phase-planes,
response histories and Fourier spectra. Finally, the direct integration showed the
coexistence of another solution branch of the slow-flow equations, having both of its
phases in a condition of full drift, over a forcing frequency interval.
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APPENDIX: DEFINITION OF SOME PARAMETERS

m=m2/m1, m0 =m2, v̂n =zkn /mn , zn = cn /(2zknmn ), (n=0, 1, 2)

r=
v̂2

v̂1
, r0 =

v̂0

v̂1
, o=2mr0z0, xc =Xm1c0

3k1ĉ0
, okx 0 =

k
 0
k1

x2
c , fn =

Fn

k1xc

2opn =z(y1n f1 + y2n f2 cos 8)2 + (y2n f2 sin 8)2, tan un =
y2n f2 sin 8

y1n f1 + y2n f2 cos 8
(n=1, 2)

c1 =
a11

2
, c2 =

3b11

8
v2

1 , c3 =
b13

4
v2

2 , c4 =
p1

v1
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3g11

8v1
,

c6 =
g13

4v1
, c7 =

g12

8v1
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b12

8
v1v2,

e1 =
a22

2
, e1 =

b22

4
v2

1 , e3 =
3b24

8
v2

2 , e4 =
p2

v2
, e5 =

g22

4v2
,

e6 =
3g24

8v2
, e7 =

g21

8v2
, e8 =

b21

8v2
v3

1

d1 = 1
8n11a

3
1 + 1

4n15a1a
2
2 + 1

8[v2m13 −v1m12) sin g+(n12v2/v1 − n13) cos g]a2
1a2,

d2 = 1
8v1m11a

3
1 + 1

4v
2
2 /v1m15a1a

2
2+1

8[(v2m13 −v1m12) cos g+(n13 −v2/v1n12) sin g]a2
1a2,

d3 = 1
4n22a

2
1a2 + 1

8n26a
3
2 +v1/(8v2)(v1m21 sin g+ n21 cos g)a3
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d4 = 1
4v

2
1 /v2m22a

2
1a2 + 1

8v2m26a
3
2 −v1/(8v2)(v1m21 cos g− n21 sin g)a3
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