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A passage through resonance in a catenary–vertical cable system with periodic external
excitation is analyzed. Due to the time-varying length of the vertical cable the natural
frequencies of the system vary slowly, and a transient resonance may occur when one of
the frequencies coincides with the frequency of an external excitation at some critical time.
A simplified model of the system with proportional damping is proposed. This model is
analyzed by using a combined perturbation and numerical technique. The method of
multiple scales is used to formulate a uniformly valid perturbation expansion for the
response near the resonance, and a system of first order ordinary differential equations for
the slowly varying amplitude and phase of the response results. This system is integrated
numerically on a slow time scale. A model example is discussed, and the behavior of the
essential dynamic properties of the system during the transition through resonance is
examined.
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1. INTRODUCTION

Cables are widely used to carry payloads in vertical and inclined transport systems. In
industrial hoisting arrangements a payload-carrying cable often consists of a horizontal
or inclined catenary section and of a vertical section. In the mining industry for example,
a typical design of a hoist system comprises a winder drum, a single cable and a
conveyance. In this design, the cable passes from the drum over a sheave mounted in a
headgear to the conveyance in a vertical shaft. Thus, the cable between the winder drum
and the sheave forms a catenary, and the remaining part hanging below the headsheave
forms the vertical rope. The entire cable translates axially and the vertical rope has a
time-varying length.

In such arrangements the cable, due to its flexibility, is susceptible to vibration. Three
major types of vibration may occur; namely, longitudinal, transverse, and torsional. These
vibrations are caused by various sources of excitation. A load due to the winding cycle
acceleration/deceleration profile is the most significant in the longitudinal transient
response. A mechanism applied on the winder drum surface in order to achieve a uniform
coiling pattern forms the primary source of stationary periodic excitation during the
constant velocity winding phase for both the longitudinal and the transverse response. The
torsional response is coupled with the longitudinal response, and occurs in triangle strand
rope, which is known to respond in torsion to applied axial loads. During the wind the
system parameters are changing due to the time-varying length of the cable. However, the
rate of variation of the length is slow, and the oscillations represent waves in a slowly
varying domain. Hence, the hoisting cable is essentially a nonstationary oscillatory system
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with slowly varying frequencies and mode shapes. Therefore, a passage through resonance
may occur during the wind when one of the slowly varying frequencies coincides with the
frequency of the periodic excitation at some critical time instant.

The study of vibration problems in hoisting cables has attracted wide attention. Savin
and Goroshko [1, 2] analyzed a motion of a hoisting cable with slowly varying length using
integro-differential equations, and taking into account a slip of the cable on the winder
drum. Kotera [3] considered the longitudinal dynamics of a lift model and proposed a
method to determine analytically a free and forced vibration response of a lift cable via
a suitable transformation of variables. Greenway [4] analyzed the influence of physical
parameters of a mine hoisting system on the dynamic longitudinal response using an
analytical approach. Mankowski [5] investigated the non-linear dynamic behavior of mine
hoisting cables, taking into account both longitudinal and lateral motions. Various
mathematical models were developed, and the system was studied through an extensive
computer simulation of the forced response of the system. The results of the simulation
were correlated with measurements made on industrial installations. Constancon [6]
extended this study by an analytical stationary analysis of the system stability, validated
by laboratory experiment. The non-linear coupling between the catenary and the vertical
system was accounted for in this analysis. An intensive numerical simulation of a
non-stationary model of the system, intended to be used as a final validation, was also
performed. Kumaniecka and Niziol [7] investigated the longitudinal–transverse vibration
of a hoisting cable. The cable material non-linearity was taken into account and unstable
regions were identified by applying the harmonic balance method.

Perturbation techniques can be used to study slowly varying oscillatory systems.
Mitropolsky [8] established fundamental concepts in this field and developed an asymptotic
method to analyze non-stationary oscillations in systems with slowly varying parameters.
This method was further developed and modified by Agrawal and Ewan-Iwanowski [9] and
Evan-Iwanowski [10]. Nayfeh [11] proposed the generalized multiple scales method to deal
with the problem. Kevorkian [12, 13] used the multiple scales method and averaging
techniques for systems with slowly varying parameters.

Perturbation methods present a useful tool in investigation of resonances. The
phenomenon of passage through resonance in a hoisting cable system, referred to as
transient resonance [14], is studied in this paper. A general mathematical model describing
vibrations of one-dimensional distributed systems with slowly varying length is presented.
A simplified longitudinal model of the catenary–vertical hoisting cable system with a
periodic excitation is formulated in order to analyze the passage through resonance during
the constant velocity winding phase. The first order approximation of the system response
is determined by a combined numerical and analytical technique. The generalized method
of multiple scales is applied to represent a uniformly valid perturbation expansion for the
response near the resonance. This leads to a system of first order autonomous ordinary
differential equations for the slowly varying amplitude and the phase of the response which
is solved numerically.

2. VIBRATIONS OF ONE-DIMENSIONAL DISTRIBUTED SYSTEMS WITH A SLOWLY
VARYING LENGTH

Forced oscillations of a one-dimensional distributed system with a time-varying length,
and carrying concentrated inertia elements at intermediate and end-points, can be
described by the equation

r(x)ü(s, t)+L[u(s, t)]+C[u̇(s, t)]=F(s, t, u), s$D(t), 0E tQa, (1)
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where u is a deflection, dots designate partial derivative with respect to time, L is a linear
spatial operator, C is a damping operator, F is a forcing function with a harmonic term
of frequency u� =V and r is a mass distribution function. The spatial domain D is
time-dependent, and is defined as

D(t)= {s: l1(t)Q sQ l2(t)}. (2)

The time-varying length of the system is given as L(t)= l2(t)− l1(t). When the variation
of L, and therefore also the variation of the parameters li , i=1, 2, is small over a time
interval corresponding to the fundamental frequency of the system considered at fixed
values of these parameters, the length is said to vary slowly with time [1]. The variation
of li is then observed on a slow time scale defined as t= oT, where T is a non-dimensional
fast time scale, and o is a small parameter. Therefore, the spatial domain is represented
as D=D(t), with li = li (t), i=1, 2. Consider the linear variation case when li = li0 + vit,
i=1, 2, where vi =constant denotes the slow rate of variation of li . In order to represent
the slow variability of li , one can introduce first a non-dimensional fast time scale T=v0t,
where v0 is the initial fundamental frequency of the system. Upon assuming that v1 Q v2,
the small parameter o can be defined then as

o= v1/v0L0, (3)

where L0 = l20 − l10 represents the initial length of the system, and 0Q oW 1. The
parameters li , i=1, 2, are then expressed in terms of a slow time t as

l1(t)= l10 +L0t, l2(t)= l20 +
v2

v1
L0t. (4)

The deflection u is subject to the homogeneous boundary conditions

B1[u(s, t)]=0, at s= l1(t), B2[u(s, t)]=0, at s= l2(t), (5)

where B1 and B2 are linear spatial differential operators. The concentrated inertia elements
can be accommodated in the equation of motion (1) as applied inertial loads so that the
mass distribution function is given as

r(s)=m+ s
p

i=1

Mi d(s−Li ), (6)

where m denotes the mass per unit length of the base structure, Mi is the magnitude of
the ith concentrated inertia element located at s=Li , and d is the Dirac delta function.

The Rayleigh–Ritz procedure can be used to analyze the response of non-stationary
systems with slowly varying parameters [2]. An approximate solution to the problem
defined by the system (1), (5) can be represented by the expansion

u= s
N

n=1

Yn (s, t)qn (t), (7)

where qn are generalized co-ordinates, and Yn are slowly varying normal free-oscillation
modes of the corresponding undamped stationary system with the inertia elements. They
are solutions of

L[Yn (s, l1, l2)]=v2
n (l1, l2)r(s)Yn (s, l1, l2), x$D,

B1[Yn (s, l1, l2)]=0, at s= l1, B2[Yn (s, l1, l2)]=0, at s= l2, (8)
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where vn are the natural frequencies of the system, considered at fixed values of l1 and l2.
By substituting the expansion (7) into equation (1), multiplying the result by Yk ,

integrating over the domain D, using the boundary conditions (5), a second order ordinary
differential equation system for the generalized co-ordinates is obtained. By using a fast
non-dimensional time scale T, and a slow time scale t, and noting also that l� i =v0o dli /dt,
i=1, 2, this system may be written in the form

d2qk /dT2 + ṽ2
k (t)qk = oGk (T, t, V, q1, . . . , qN , dq1/dT, . . . , dqN /dT)+Q(o2),

k=1, 2, . . . , N. (9)

where ṽk =vk /v0 and Gk are functions containing terms which represent the excitation due
to the non-stationary nature of the system, the external periodic excitation and the
damping in the system.

In order to generate an approximate solution, the slowly varying oscillatory second
order system of N equations (9) can be transformed into a Hamiltonian standard form
of 2N first order differential equations in terms of action-angle variables [13]. Later,
perturbation techniques, namely the method of averaging or the method of multiple scales,
can be applied to determine the solution. Alternatively, these techniques can be applied
directly to the second order model. By using the method of multiple scales a first order
system can be obtained to compute the amplitudes and the phases for the first
approximation of the response. In this procedure, the following form of the solution is
assumed [15],

qk = s
M

j=0

ojqkj (fk , t)+O(oM+1), (10)

where fk represents a fast scale and is defined as

fk =g
t

0

vk (oj) dj. (11)

By substituting the expansion (10) into equation (9) and equating coefficients of the same
power of o, one obtains a set of differential equations for the approximations qkj ,
j=0, 1, . . . , M. These equations are solved in succession by using the solvability
conditions that make the expansion (10) uniform.

The longitudinal dynamics of hoisting cable systems can be described by a differential
equation of the type given by equation (1), and analyzed as discussed above. The dynamic
model of a hoisting cable system with periodic excitation is presented in what follows.
Hamilton’s principle is applied to derive the equation of motion, with the cable damping
mechanism represented by an equivalent viscous damping model.

3. DYNAMIC MODEL OF A HOISTING CABLE SYSTEM

The model of a hoisting cable system is represented in Figure 1. In this model, the cable
is divided into a horizontal catenary of length OC=Lc passing over a sheave of radius
R, and of mass moment of inertia I, and into a vertical rope with a mass M, representing
the conveyance with payload, attached to its bottom end. The end O1 of the cable is moving
with a prescribed winding velocity v(t) due to the cable being coiled onto a rotating
cylindrical drum, so that the entire system translates axially, with the mass M being
constrained in a lateral direction. The section l=OO1 represents a varying length of this
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part of the cable that is already coiled onto the winder drum. The cable has a constant
effective cross-sectional area A, a constant mass per unit length m and effective Young’s
modulus E.

Upon assuming that the modulus E of the cable material is high the strain of the cable
wound around the drum can be neglected [2], and the length l is then given by

l(t)= l(0)2g
t

0

v(j) dj, (12)

where the signs + and − correspond to ascending and descending, respectively, and l(0)
is the initial length. The length l, and therefore also the length of the vertical rope, is
assumed to vary slowly, and its variation will be observed on a separate slow time scale
as discussed in the preceding section. It is assumed that there is no cable slip on the drum
or across the sheave. Only longitudinal motions of the cable are considered, with the lateral
and torsional displacements being ignored. The damping forces at the sheave and at the
conveyance are neglected.

In order to describe the longitudinal oscillations of the cable the classical moving frame
approach is applied [16]. Two frames of reference are established: a co-ordinate system
O1x̄ȳ attached to and moving with the upper end of the cable, and a stationary inertial
system OXY. The dynamic deformed position P of an arbitrary section of the cable during
its motion is defined in the inertial frame by the vector

X(s, t)=XO1(t)+ x̄(s, t), (13)

with

x̄(s, t)= x̄i(s)+U� (s, t), (14)

where XO1 = [−l(t), 0] defines the position of the origin O1 in the inertial frame, x̄i =[s, 0]
defines the initial position Pi of the cable section, U� =[ū(s, t), 0] represents the dynamic
displacement vector, and s denotes the Lagrangian (material) co-ordinate identifying the
cable section in the initial state, and measured from the origin O1. The upper bar denotes
vectors referred to the moving frame. In this formulation the axial transport motion is
treated as an overall rigid body translation, with the dynamic elastic deformations being
referred to the moving frame. The entire cable is therefore prestressed in its initial reference
(dynamically undeformed) state during its transport motion, with the mean catenary
tension slowly varying with time due to the slowly varying length of the vertical rope. All

Figure 1. The model of a catenary–vertical cable system.
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of the dynamic characteristics of the cable are functions of the independent variables (s, t),
where the material co-ordinate s is referred to the prestressed reference configuration, and
to the moving frame. With the dynamic deflection in the catenary and the vertical cable
denoted as uc and u, respectively, the deformed position vector X is given as

X=6Xc =[s+ uc (s, t)− l, 0], lE sEL1

Xv =[s+ u(s, t)− l, 0], L1 E sEL07, (15)

where L1 = l+Lc , and L0 denotes the total length of the cable in the reference state. The
continuity of deflection across the sheave requires uc (L1, t)= u(L1, t)= u1. The
co-ordinate u2 = u(L0, t) represents the dynamic elastic deflection at the cable bottom end.
The velocity vector of a cable particle P can be expressed as

V(s, t)=
dX
dt

=6Vc =[u̇c (s, t)− l� , 0], lE sEL1

Vv =[u̇(s, t)− l� , 0], L1 E sEL07, (16)

The equations governing the longitudinal response of the system can be derived by
applying the approach developed by Perkins and Mote [17] in their theory of travelling
elastic cables. In this approach, Hamilton’s principle is used, which requires

g
t2

t1

(dE− dPe − dPg + dWnc ) dt=0, (17)

where E, Pe , and Pg denote the system kinetic energy, the cable elastic strain energy, and
the system gravitational potential energy, respectively, and dWnc represent the virtual work
of the damping forces. Upon assuming that dynamic deflections of section OO1 of the cable
can be neglected, the kinetic energy of the system is expressed as

E(u̇c , u̇, u̇1, u̇2)= 1
2 g

L1

l

mVc · Vc ds+ 1
2 g

L0

L1

mVv · Vv ds+ 1
2

I
R2 q̇2

1 + 1
2Mq̇2

2 , (18)

where q̇1 = u̇(L1, t)− l� , and q̇2 = u(L0, t)− l� , with q1 and q2 representing the total
displacements at the sheave and at the conveyance, respectively.

The elastic strain energy of the cable is

Pe (oc , o)=Pi
e +g

L1

l

(Ti
c + 1

2EAoc )oc ds+g
L0

L1

(Ti + 1
2EAo)o ds, (19)

where oc and o represent the strain measure in the catenary section and the vertical section
of the cable respectively, Pi

e is the strain energy in the initial state, and Ti
c and Ti represent

the tension in the catenary and vertical rope in the initial state respectively. It is assumed
that both rotations and displacements in the catenary cable are small, and only
longitudinal motions result in the vertical cable. Hence, the strain measures are given in
the classical linear form, as for a straight bar, by

oc = uc,s , o= u,s , (20, 21)

where ( ),s denotes partial differentiation with respect to s.
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The gravitational potential energy of the cable expressed in terms of the dynamic
deflections is given by

Pg (u, u2)=Pi
g −g

L0

L1

mgu ds−Mgq2, (22)

where Pi
g is the gravitational potential energy in the initial equilibrium configuration.

The virtual work due to the damping forces can be expressed as

dWnc =g
L1

l

Fcduc ds+g
L0

L1

Fvdu ds, (23)

where Fc and Fv represent the catenary and the vertical cable distributed damping forces,
respectively.

Substituting equations (18–22) into Hamilton’s principle (17) yields the following system
of equations for the deflection:

m(üc − l� )−EAoc,s −Ti
c,s −Fc =0, lQ sQL1, (24)

m(ü− l� )−EAo,s −Ti
,s −Fv −mg=0, L1 Q sQL0, (25)

(I/R2)[ü(L1, t)+ u̇ ,s (L1, t)l� − l� ]+EAoc (L1, t)−EAo(L1, t)+Ti
c (L1)−Ti(L1)=0, (26)

M[ü(L0, t)− l� ]+EAo(L0, t)+Ti(L0)−Mg=0. (27)

In this system equations (24 and 25) describe the dynamics of the catenary and vertical
rope respectively, equation (26) represents the balance of forces across the sheave, and the
final equation (27) defines motion of the end mass.

The equations of the initial equilibrium can be extracted from the system (24–27) by
setting all time derivatives and the dynamic strain components to zero. The following
conditions result:

Ti
c,s =0, Ti

,s +mg=0, Ti
c (L1)=Ti(L1), Ti(L0)=Mg. (28)

Using the first equilibrium condition, and neglecting the inertia and the catenary
damping forces in (24) yields the relationship

uc,s = e(t), (29)

where e(t) represents the spatially uniform catenary longitudinal elastic strain. Equation
(29) can be integrated over the domain lQ sQL1, which yields

e(t)= (1/Lc )[u1 − uc (l, t)]. (30)

In order to define the boundary condition uc (l, t), it is relevant to consider a mechanism
employed to implement the coiling process. Typically, a repetitive coiling pattern during
a winding cycle in hoist systems is achieved via a symmetrical 180° Lebus liner [5]. In this
mechanism the winder drum surface is covered by parallel circular grooves with two
diametrically opposed crossover zones per drum circumference, as shown in Figure 2. Each
zone offsets the grooves by half a cable diameter and when the cable passes through a
crossover an additional axial displacement relative to the nominal transport motion occurs.
The magnitude of this displacement is calculated as the difference between the arc length
traversed through the crossover and the corresponding diametrical arc [6]

u0 =z(Rda)2 + d2/4−Rda, (31)
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Figure 2. The crossover zones of a Lebus liner.

where Rd is the drum radius, d represents the cable diameter and a is the angle defining
the diametrical arc corresponding to the crossover region. As the crossover occurs twice
per drum revolution, a periodic boundary excitation results that can be represented by the
boundary condition

uc(l, t)= u0 cos Vt, (32)

where V=2v/Rd .
Treating the sheave and the end mass M as additional inertial loads applied to the

system, and using the equilibrium conditions (28) yields the dynamic model of the hoisting
cable system,

r(s)ü−EAu,ss = r(s)l� −[MSu̇,si+EAe(t)] d(s−L1)+Fv , L−
1 Q sQL+

0 , 0E tQa,

(33)

with homogeneous boundary conditions

EAu,s (L−
1 , t)=0, EAu,s (L+

0 , t)=0, (34, 35)

where MS = I/R2 is the effective mass of the sheave, e(t) is given by equation (30) together
with equation (32), L−

1 denotes the point immediately to the left of MS , L+
0 is the point

immediately to the right of M, and the mass distribution function r is defined as

r(s)=m+MS d(s−L1)+M d(s−L0). (36)

Thus, in this formulation the system is essentially regarded as being free at the ends s=L−
1 ,

and s=L+
0 , respectively. The parameter l is time-dependent, and is assumed to vary slowly.

This condition agrees well with nominal parameters of a winding cycle in most industrial
hoist systems. Therefore, a separate slow time scale t can be chosen to observe the
parameter variation so that l= l(t), as indicated earlier.

4. DAMPING MODEL

Damping forces in hoisting cables, which are steel wire ropes, are complex, and would
likely arise from inter-strand viscous and Coulomb friction, and from internal friction in
separate wires. It is difficult to define correctly the exact damping mechanism in wire ropes.
However, it is a recognized practice to replace resisting forces of a complicated nature by
equivalent viscous damping for purposes of analysis [18]. The equivalent damping
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coefficient can be then determined through an experiment. For example, Vanderveldt
et al. [19] identified the equivalent viscous damping coefficient in a wire rope system from
measurements of the logarithmic decrement. This approach has been successfully applied
in the formulation of simulation models used in the mining industry [20].

The viscous damping distributed force in the cable can be given in the form

Fv =−C[u̇], (37)

where C is a linear operator. The special case of viscous damping known as proportional
damping has the advantage of being particularly convenient to analyze. In this case the
operator C is a linear combination of the stiffness operator L and of the mass distribution
function r, and is given as

C= m1L+ m2r, (38)

where m1 and m2 are coefficients of damping. For this particular model, when the modal
analysis is applied the modal damping ratio defined as

wn = 1
2(m1vn + m2/vn ), (39)

where vn is the nth natural frequency, represents the damping effect on the nth mode.
When m2 =0 the resulting damping model is referred to as relative damping. In this case
the damping ratio in each mode is proportional to the corresponding natural frequency,
which means that the responses of the higher modes will be more rapidly damped than
those of the lower modes. As in general the fundamental mode dominates the longitudinal
response of a hoisting cable, the relative damping model can be assumed as being
intuitively appropriate to represent the overall damping effect in the system. When this
approach is used the damping coefficient m1 is usually assumed to be a function of some
cable parameters, which must be established from an appropriate experiment. Savin and
Goroshko [2] assumed relative damping in their analysis of oscillations in mine hoist
cables. It was shown that the coefficient m1 is independent of the amplitude of oscillations
in the cable dynamic tension, but depends on the mean (static) value of the cable tension:
namely, m1 decreases with increasing mean tension. This effect was also observed by
Mankowski and Cox [21]. It can be argued that when the tension is increased, the wire
strands are more readily locked, and the inter-strand relative motion is constrained,
resulting in the coefficient m1 being decreased. This agrees with an earlier observation by
Vanderveldt and Gilheany [22] who found that the speed of propagation of a longitudinal
pulse in wire ropes increases with increasing applied tension load, and postulated that this
was due to the cable approaching the geometry of a solid bar due to a gradual tightening
together the wires and strands. Greenway [4] also proposed the relative damping model,
and extracted the damping coefficient from the measurement of the logarithmic
measurement of the fundamental longitudinal mode performed on a mine hoist
installation. It was shown that the damping coefficient increased in proportion to the rope
length. Constancon [6] analyzed the results of damping measurements via drop tests carried
out at Elandsrand Mine, RSA. In these tests a conveyance was clamped between the
guides, loaded with a dead weight, and released. The response was monitored with an
accelerometer, and the modal damping ratios were extracted from the measurements by
using standard parameter estimation procedures. A strong dependency of the fundamental
mode ratio on the mean rope tension was recorded. It was evident that the damping ratio
decreased approximately linearly with the tension. However, it was decided to adopt the
general proportional model and to determine the coefficients m1 and m2 by globally fitting
the fundamental mode ratio data to the model, thus ignoring the dependence on the mean
tension. In this approach the relative damping coefficient m1 was assumed to depend on
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the cable length, as proposed by Greenway. The coefficient m2 was taken as a constant
estimated from the global fit, in order to account for, in an average manner, the lower
damping in the higher modes.

In the present analysis the main concern is to formulate a simple but efficient model of
a hoisting cable system, and to use this model to simulate the passage through resonance
which may occur during the wind. This model is to adequately account for the fundamental
features of the real system, and is to be based on the assumption that the fundamental
mode dominates the longitudinal response of the system. Therefore, in this approach the
equivalent relative viscous damping model is adopted to represent the overall damping
effort in the system. In this model the dependency of the damping coefficient m1 on the mean
tension is accommodated, as proposed by Savin and Goroshko [2]. In this approach, based
on experimental data, the damping coefficient is defined as

m1 =10−400·5+
23 000

3500+0·75×10−5si1, (40)

where si denotes the mean stress in the cable in N/m2 and is given as

si =Ti/A, (41)

with the mean (static) tension in the vertical rope determined from the equilibrium
conditions (28) and given as

Ti =Mg+mg(L0 − s). (42)

Therefore, the coefficient m1 depends on the material co-ordinate s, and the damping
operator for the hoisting cable model is given by

C=−m1(s)EA 12/1s2. (43)

Substituting the damping operator (43) into equation (37), and using the result (33),
yields the equation governing the longitudinal response of the system:

r(s)ü−EAu,ss −EAm1(s)u̇,ss = r(s)l� −[MSu̇,si+EAe(t)] d(s−L1), L−
1 Q sQL+

0 ,

0E tQa. (44)

5. DISCRETE MODEL

The discrete model can be determined from equations (44, 34, and 35) through
application of the expansion defined by equation (7). When a single term is taken in this
expansion, the result is referred to as a single-mode approximation, and the system is
reduced to a single-degree-of-freedom model. This simple model has been used extensively
and successfully in the analysis of free and forced vibrations of structures [23]. The above
approach also can be applied to investigate the longitudinal vibration and resonance in
the hoisting cable system. This vibration is referred to, colloquially, as ‘‘yo-yo’’ type
oscillation of the vertical cable and the conveyance [24]. The resulting oscillation is of large
amplitude and of low frequency, and it is reasonable to conclude that the shape of the
vibration is close to the fundamental normal mode of the system. The resonance is then
understood as coincidence of the slowly varying natural fundamental frequency vr =vr (l)
with the forcing frequency V at some critical time instant.
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The single-mode approximation is assumed as

u=Yr (s, l)qr (t), (45)

where

Yr (s, l)= cos grz(s, l)− (MS /m)gr sin grz(s, l) (46)

is the fundamental elastic free oscillation mode of the corresponding unconstrained system
with l being fixed, as shown in Figure 3, with gr =vr (l)/c, where c=zEA/m , and
z= s−L1. The slowly varying parameter gr is determined from the frequency equation

MS

m
gr0cos grLv −

M
m

gr sin grLv1+
M
m

gr cos grLv +sin grLv =0, (47)

where Lv =L0 −L1. The details of the eigenvalue problem solution for the unconstrained
system of Figure 3 are given in Appendix D.

The representation (45) results in the following expressions for partial derivatives of u:

ü=((12Yr /1l2)l� 2 + (1Yr /1l)l� )qr +2(1Yr /1l)l� q̇r +Yrq̈r ,

u,ss =Yr,ssqr , u̇,s =(1Yr,s /1l)l� qr +Yr,sq̇r . (48)

By substituting equations (48) into equation (44), multiplying the result by Yr , integrating
from L1 to L0, accounting for the boundary conditions (34 and 35), using equation (30),
and noting that

Yr (L1, l)=1, Yr,s (L1, l)=−(MS /m)g2
r , (1Yr,s /1l)(L1, l)= gr0gr −2

MS

m
dgr

dl 1,
(49)

the following system results:

q̈r + v̄2
r (l)qr =

1
mr (l) $EAgrr (l)−2l� crr (l)+

M2
S

m
l� g2

r (l)%q̇r

−
1

mr (l) $l� crr (l)−EAl� brr (l)+ l� 2drr (l)+MSl� 2gr0gr −2MS
dgr

dl 1%qr

+
er (l)
mr (l)

l� +Kr (l) cos Vt, (50)

Figure 3. The unconstrained model of the hoisting system.
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where

v̄2
r =v2

r (l)+
1

mr (l)
EA
Lc

, Kr =
1

mr (l)
EA
Lc

u0, (51, 52)

with the coefficients mr , brr , crr , drr , er and grr being defined in Appendix A.
Two time scales are defined in order to seek the solution of equation (50). The first one,

a fast non-dimensional scale, is determined as

T= v̄0t, (53)

where v̄0 = v̄r (l(0)). The second scale is a slow scale, t= oT, and a variation of l is
observed on this scale. For example, during the ascending constant velocity winding phase,
following the relation (12), this length is given as

l= l(0)+ vct, (54)

where vc denotes the nominal winding velocity. Assuming l(0)=0, and defining the small
parameter o according to the relationship (3) as

o= vc /v̄0L0, (55)

yields

l=L0t. (56)

Using the fast and slow scales in (50), with o defined by (55), and assuming that the
damping is small, so that one may set m1 = om*1 , yields the equation

d2qr

dT2 + ṽ2
r (t)qr = ofr0t, dqr

dT1+Kr (t) cos V	 T+O(o2), (57)

where ṽr = v̄r /v̄0, V	 =V/v̄0, and

fr0t, dqr

dT1=
1

mr (t) $EA
L0

vc
grr (t)−2l'crr (t)+

M2
S

m
l'g2

r (t)% dqr

dT
, (58)

where the prime denotes the derivative with respect to t.

6. THE MULTIPLE SCALES SOLUTION

Following the expansion (10), the solution is sought in terms of the fast and slow scales
in the form

qr = qr0(fr , t)+ oqr1(fr , t)+O(o2), (59)

where

dfr /dT= ṽr (t). (60)

When V	 is away from ṽr (t) in the system (57) non-resonant oscillations occur, and the
effect of the external excitation is small unless its amplitude is large: that is, Kr =O(1).
However, one is more concerned with the resonant case, when values ṽr (t) are near V	 .



–    255

This nearness can be quantified by a slowly varying detuning parameter sr (t), introduced
as

V	 − ṽr (t)= osr (t). (61)

Therefore, when the relationship (60) is taken into account, one obtains from equation (61)

V	 T=fr + qr (t), (62)

where

qr (t)= o g
T

0

sr (oT) dT. (63)

When sr =0, unbounded oscillations would be predicted for a corresponding system with
constant parameters. In the actual system the oscillations are limited by the damping and
influenced by the non-stationary terms on the right side of equation (57), present as
components of the function (58). Therefore, the excitation needs to be ordered so that it
will appear when the damping and the non-stationary terms appear. Thus, in order to
determine the first approximation, one sets

Kr =2okr , (64)

so that Kr =O(o). Substituting equation (59) into equation (57) and equating the
coefficients of o0 and o on both sides, yields

ṽ2
r012qr0

1f2
r
+ qr01=0, (65)

ṽ2
r012qr1

1f2
r
+ qr11=−2ṽr

12qr0

1fr 1t
− ṽ'r

1qr0

1fr
+ fr0t, ṽr

1qr0

1fr1+2kr cos V	 T. (66)

The details of this procedure are given in Appendix B.
The general solution of equation (65) is found to be

qr0 =Ar (t) eifr +A� r (t) e−ifr, (67)

where A� r is the complex conjugate of Ar which is given by the polar form

Ar (t)= 1
2ar (t) eibr(t), (68)

where ar and br are real. Using equation (67) and (62) in equation (66), with
fr (t, ṽr 1qr0/1fr ) expanded in a Fourier series, one obtains

ṽ2
r012

qr1

1f2
r
+ qr11=−i(2ṽrA'r + ṽ'r A) eifr + s

a

n=−a

frn (Ar , A	 r , t) einfr + kr ei(fr + qr) + cc,

(69)

where

frn (Ar , A� r , t)=
1
2p g

2p

0

fr (Ar , A� r , t, fr ) e−infr dfr , (70)
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and cc denotes the complex conjugate of the preceding terms. The condition for the
elimination of the secular terms in equation (69) is

−i(2ṽrA'r + ṽ'r A)+ fr1(Ar , A� r , t)+ kr eiqr =0, (71)

where

fr1(Ar , A� r , t)=
1
2p g

2p

0

fr (Ar , A� r , t, fr ) e−ifr dfr . (72)

By expressing Ar in polar form, separating the result into its real and imaginary parts, and
also denoting

cr = qr − br , (73)

one obtains the set

a'r =−1
2

ṽ'r
ṽr

ar −
1

2pṽr g
2p

0

fr (t, −arṽr sin ur ) sin ur dur +
kr

ṽr
sin cr ,

c'r = sr (t)+
1

2pṽrar g
2p

0

fr (t, −arṽr sin ur ) cos ur dur +
kr

ṽrar
cos cr , (74)

where ur =fr + br . Using equation (58) in equations (74), leads to

a'r =−1
26ṽ'r

ṽr
−

1
mr (t) $EA

L0

vc
grr (t)−2l'crr (t)+

M2
S

m
l'g2

r (t)%7ar +
kr

ṽr
sin cr ,

c'r = sr (t)+
kr

ṽrar
cos cr , (75)

where ṽ'r , representing the derivative of the slowly varying frequency with respect to t,
is determined in Appendix C. Following the expansion (59), the first approximation to the
solution is obtained when equation (73) together with equation (62) are used in equation
(67). This results in

qr = ar cos (V	 T−cr )+O(o), (76)

with ar and cr given by equations (75).

7. NUMERICAL EXAMPLE AND RESULTS

The system evolution through resonance can be analyzed through solving the set of
equations (75). These are autonomous ordinary differential equations with variable
coefficients to be determined numerically. For this non-stationary system steady state,
solutions do not exist, and the response of the system is aperiodic. The equations (75) do
not easily lend themselves to an analytical solution, and a numerical solution for the
amplitude ar and the phase gr is sought. The following system parameters have been
assumed in calculations: M=17 584 kg, I=15 200 kg m2, m=8·4 kg/m, Lc =74·95 m,
L0 =2174·95 m, A=0·001028 m2, E=1·1×1011 N/m2, d=0·048 m, R=Rd =2·14 m
and a=0·2 rad. A transition through fundamental resonance is investigated during the
ascending cycle, when the frequency V of the excitation is near the slowly varying
frequency v̄r of the cable system, given by equation (51). The natural frequency vr is
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Figure 4. The slowly varying frequency v̄r versus the vertical length.

computed from the transcendental equation (47), and v̄r is plotted against the vertical
length Lv in Figure 4. During the ascending constant velocity phase the length parameter
l is given by equation (56), and the small parameter o is defined by equation (55).

In order to determine the amplitude ar and the phase cr , the system (75) is integrated
numerically by using MATLAB implementation of the Runge–Kutta method. The
dynamic displacements can be then found from equation (45), together with equations (46)
and (76). The time response plots at the sheave uS =Yr (L1, l)qr (t), and at the conveyance
uM =Yr (L0, l)qr (t), are shown in Figure 5 for the winding velocity vc =15 m/s. In these
plots the displacements are bounded by the envelopes formed by the amplitude curves.
These vibration envelopes are of primary interest, and the corresponding envelope curves
aS =Yr (L1, l)ar and aM =Yr (L0, l)ar for four winding velocities, namely vc1 =12 m/s,
vc2 =14 m/s, vc3 =16 m/s and vc4 =18 m/s, are presented in Figure 6. The non-stationary
frequency–response curves are shown in Figure 7, where the amplitude ar is plotted against
the detuning parameter sr . It can be seen that the resonance region is reached sooner for
lower values of the winding velocity, while the detuning parameter sr decreases when
making a single slow passage through zero. The amplitudes exhibit oscillatory behavior
before the resonance, and near the resonance (sr 1 0) the amplitudes increase rapidly and
decline afterwards due to damping, developing damped beat phenomena. The period of
the beats decreases with time. It can be noted that the lower the winding velocity, the higher
the maximum value of the corresponding amplitude. For instance, for the velocity of
12 m/s the sheave amplitude reaches the maximum value of approximately 0·07 m shortly
after the resonance, and for the velocities of 14, 16 and 18 m/s, the approximate maximum
values are 0·045, 0·042 and 0·033 m, respectively.

The plots of the total catenary tension Tc , and of the total vertical cable tension TS at
the sheave and TM at the conveyance against the vertical cable length Lv for the velocity
vc =15 m/s are shown in Figure 8. The total catenary tension is calculated as

Tc (t)=Ti
c +EAe(t), (77)
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Figure 5. The time response of the system (a) at the sheave and (b) at the conveyance, for the winding velocity
vc =15 m/s.

where Ti
c =(M+mLv )g is the initial equilibrium tension, and the strain e is given by

equation (30). The total vertical cable tensions are obtained from

Tv (s, t)=Ti +EAo(s, t), (78)

Figure 6. Vibration envelope curves (a) at the sheave and (b) at the conveyance, for the winding velocities
vc =12 (——), 14 (– –), 16 (–·–) and 18 (···) m/s.
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Figure 7. The non-stationary frequency–response curves for the winding velocities vc =12 (——), 14 (––), 16
(–·–) and 18 (···) m/s.

where Ti is given by equation (42), and the strain o is defined by equation (21), so that
TS =Tv (L1, t) and TM =Tv (L0, t). It can be observed that the dynamic tension oscillates
about the mean tension value, which for the catenary and at the sheave increases with the
vertical length. The largest total tension is recorded in the catenary. The smallest tension

Figure 8. The total cable tensions at the winding velocity vc =15 m/s: (a) the the catenary tension Tc ; (b) the
vertical rope tension at the headsheave, TS ; (c) the vertical rope tension at the conveyance, TM .
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Figure 9. The dynamic catenary tensions for various winding velocities vc : (a) 12, (b) 15, (c) 16 and (d) 18 m/s.

oscillations occur at the sheave, and the largest at the conveyance. As the tension
oscillations contribute to fatigue damage of the cable it is of interest to examine the
dynamic tension components in more detail. The dynamic catenary tension Tcd =EAe for
various values of the transport velocity are plotted against the vertical length in

Figure 10. The dynamic vertical rope tensions at the headsheave for various winding velocities vc : (a) 12, (b)
15, (c) 16 and (d) 18 m/s.
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Figure 11. The dynamic vertical rope tensions at the conveyance for various winding velocities vc : (a) 12, (b)
15, (c) 16 and (d) 18 m/s.

Figure 9. The highest tensions occur at the resonance region, declining slowly afterwards.
It can be seen that the more rapid the passage through resonance the smaller the maximum
amplitude of the tension oscillations. A different trend can be detected for the dynamic
tensions TSd =EAo(L1, t) and TMd =EAo(L0, t), at the sheave and at the conveyance

Figure 12. The sheave dynamic tension envelope curves for the winding velocities vc =12 (——), 15 (––), 16
(–·–) and 18 (···) m/s.
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Figure 13. The conveyance dynamic tension envelope curves for the winding velocities vc =12 (——), 15 (––),
16 (–·–) and 18 (···) m/s.

respectively, which are shown in Figures 10 and 11. These tensions increase rapidly
during the passage through resonance and continue to grow afterwards. It can be also
noted that the amplitudes of the tension oscillations show the tendency to reach higher
values for higher velocities, which can be better observed in Figures 12 and 13, where
the sheave tension and the conveyance tension upper envelopes, determined as
ES =EA(1Yr /1s)(L1, l)ar and EM =EA(1Yr /1s)(L0, l)ar respectively, are shown.

In order to integrate the equations (75) the initial conditions need to be specified. For
example, these initial conditions are assumed as ar (0)=0·005, and cr (0)=0 in the
computations discussed. It is explained in detail in Appendix E how these initial values
can be related to the initial conditions qr (0), (dqr /dT)(0), and to u(s, 0), and u̇(s, 0),
respectively. As the system (57) is essentially linear, with slowly varying parameters
however (therefore referred to as a quasi-linear system [10]), the initial conditions do not
play a crucial role in the stability of motions of the system. In general, they are responsible
for the transient part of the total response, and have little effect on the system behavior
and on the amplitude during the passage through the resonance. This is demonstrated in
Figure 14, where the amplitude–time curves for various initial values ar (0) are shown.

The accuracy of the first approximation (76), where ar and cr are given by equations
(75), can be verified by numerically integrating the original differential equation (57)
derived via the Rayleigh–Ritz procedure. The solution for qr with the winding velocity
vc =15 m/s, obtained through a numerical integration of equation (57), with superimposed
envelopes formed by the amplitude curves calculated from the multiple scales model (75)
is shown in Figure 15. It can be seen that the results correlate very well.

8. CONCLUSIONS

In slowly varying oscillatory systems, a transient resonance may take place if an external
periodic excitation is present. For example, in a hoisting cable system the natural
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Figure 14. The amplitude–time curves for various initial values ar (0)=0·01 (––), 0·005 (——) and 0·0005 (–·–),
with cr (0)=0.

frequencies and mode shapes vary slowly during a winding cycle, and when the frequency
of the excitation due to a coiling mechanism at the winding drum coincides with one of
the natural frequencies a passage through resonance occurs. Perturbation techniques can
be employed to analyze transient resonance in systems with slowly varying frequencies.

Figure 15. The numerical solution qr with superimposed amplitude envelope curves obtained from the multiple
scales system, at the winding velocity vc =15 m/s.
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When combined with standard numerical integration methods, these techniques yield
quick and accurate results even when long time intervals are involved.

This has been demonstrated for a single-mode model of a hoisting cable system. This
simplified model forms essentially a single-degree-of-freedom approximation of the system.
It accommodates the fundamental feature of the system, namely its non-stationary nature,
and adequately represents the main type of vibration occurring in the system. The multiple
scales method is used, which leads to a system of first order ordinary differential equations
for the amplitude and phase of the response. These are slowly varying functions and the
system can be solved numerically without difficulty. On the other hand, the direct
integration procedure of the original second order differential equations of motion is very
time-consuming. For example, to solve the problem for a typical industrial installation,
with the parameters defined in the preceding section, in the interval t$ [0·0, 0·75] for a value
of vc =14 m/s, with a corresponding value of the small parameter o=5·9112×10−4,
requires an integration to a time of 1268·8 on the non-dimensional fast time scale T, and
involves integrating a rapidly oscillating function that may yield inaccurate results.

The results obtained for the model example demonstrate the dynamic behavior of the
hoisting system during a passage through resonance. The amplitude time plots and the
non-stationary frequency–response curves for various winding velocities show that the
more rapid the passage through resonance is, the smaller are the maxima of the response
amplitudes, as for the shorter passage time intervals the development of resonance
phenomena is restricted. This would indicate that if at some stage of the wind resonance
is expected, higher winding velocities should be applied.

The highest maximum tension in the cable occurs in the catenary and at the sheave, when
the payload is hoisted from the bottom position. The mean values of the catenary and of
the sheave tension decrease during the ascent. In the resonance region substantial
oscillations in the catenary and at the conveyance tension are recorded. In the catenary
these oscillations decrease after the resonance, with decreasing vertical length. At the
conveyance the tension oscillations continue to grow after the resonance.

Higher winding velocities limit oscillations in the dynamic catenary tension. However,
it has been shown that the amplitudes of the vertical cable tension oscillations tend to reach
larger values for higher velocities. This fact cannot be ignored, as high amplitude
oscillations in the tension contribute directly to fatigue of the cable.
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APPENDIX A

The slowly varying coefficients appearing in the system (50) result from the application
of the Rayleigh–Ritz method, and are defined as follows:

mr (t)=g
L0

L1

r(s)Y2
r ds, brr (t)=g

L0

L1

m1(s)Yr
1Yr,ss

1l
ds, crr (t)=g

L0

L1

r(s)Yr
1Yr

1l
ds,

(A1–A3)

drr (t)=g
L0

L1

r(s)Yr
1Y2

r

1l2
ds, er (t)=g

L0

L1

r(s)Yr ds, grr (t)=g
L0

L1

m1(s)YrYr,ss ds, (A4–A6)

where the mode function Yr is defined by equation (46), and the partial derivatives of Yr

with respect to l are determined as follows:

1Yr

1l
=0gr −

dgr

dl
z1$sin grz+

Ms

m
gr cos grz%−

Ms

m
dgr

dl
sin grz, (A7)
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12Yr

1l2
=02 dgr

dl
−

d2gr

dl2
z1$sin grz+

Ms

m
gr cos grz%

+
Ms

m 0gr −
dgr

dl
z1$2 dgr

dl
cos grz− gr0dgr

dl
z− gr1 sin grz%

−0gr −
dgr

dl
z1

2

cos grz−
Ms

m
d2gr

dl2
sin grz. (A8)

The derivatives of the eigenvalue gr with respect to l are obtained through differentiation
of the frequency equation (47), which yields

dgr/dl=Nr (l)/Dr (l), (A9)

where

Nr = gr$01−
MsM
m2 g2

r1 cos grLv −
Ms +M

m
gr sin grLv%, (A10)

Dr =$Ms +M
m

+Lv01−
MsM
m2 g2

r1% cos grLv −02 MsM
m2 +Lv

Ms +M
m 1gr sin grLv ,

(A11)

and

d2gr

dl2
=

1
D2

r 0dNr

dl
Dr −Nr

dDr

dl 1. (A12)

APPENDIX B

The method of multiple scales is employed to find the solution of equation (57). This
solution is sought in the form of expansion (59) with the slow time scale t, and the fast
scale fr defined by equation (60). It follows that the derivatives of the generalized
co-ordinate qr with respect to T become expansions in terms of the partial derivatives with
respect to these variables:

dqr

dT
= ṽr

1qr

1fr
+ o

1pr

1t
, (B1)

d2qr

dT2 = ṽ2
r
12qr

1f2
r
+ o02ṽr

12qr

1fr 1t
+ ṽ'r

1qr

1fr1+ o2 12qr

12
t

, (B2)

where the prime denotes the derivative with respect to t. Hence equation (57) becomes

ṽ2
r
12qr

1f2
r
+ o02ṽr

12qr

1fr 1r
+ ṽ'r

1qr

1fr1+ o2 12qr

1t2 + ṽ2
r qr

= ofr0t, ṽr
1qr

1fr
+ o

1qr

1t 1+Kr cos V	 T+O(o2). (B3)
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Substituting (59) into (B3) with Kr represented by (64), and equating coefficients of like
powers of o, the system (65–66) is obtained.

APPENDIX C

The slowly varying frequency in the system (57) is given by

ṽr = v̄r /v̄0, (C1)

where

v̄r =Xv2
r (l(t))+

1
mr (l(t))

EA
Lc

. (C2)

Its derivative with respect to t is

ṽ'r =(l'/v̄0) dv̄r /dl, (C3)

where

dv̄r

dl
=

1

2Xv2
r +

1
mr

EA
Lc

02cvr
dgr

dl
−

EA
m2

r Lc
dmr /dl1, (C4)

with dgr /dl given by equation (A9), and with dmr /dl being determined from equation (A1)
as

dmr

dl
=m$2 g

L0

L1

Yr (s, l)
1Yr

1l
(s, l) ds−1%+2MYr (L0, l)

1Yr

1l
(L0, l), (C5)

where 1Yr /1l is given by equation (A7).

APPENDIX D

The differential equation for the stationary free longitudinal motion of the
unconstrained system shown in Figure 3 can be written as

ü− c2u,zz =0, (D1)

which must be satisfied over the domain 0 Q zQLv , and where z= s−L1. In addition,
u must satisfy the boundary conditions

MSü(0, t)−EAu,z (0, t)=0, Mü(Lv , t)+EAu,z (Lv , t)=0. (D2, D3)

By using the separation of variables method, the displacement u is expressed as

u(z, t)=Y(z)f(t), (D4)

where f is an harmonic function of time with the frequency v, so that ü=−v2Y(z)f(t).
The eigenvalue problem (D1–D3) is then reduced to

d2Y/dz2 + g2Y=0, (D5)



. 268

with the boundary conditions in the form

MSv
2Y(0)+EA

dY
dz

(0)=0, −MSv
2Y(Lv )+EA

dY
dz

(Lv )=0. (D6, D7)

The solution of equation (D5) is

Y(z)=C cos gz+D sin gz, (D8)

so that the conditions (D6 and D7) yield

$ −MSv
2

−(Mv2 cos gLv +EAg sin gLv )
−EAg

EAg cos gLv −Mv2 sin gLv%$CD%=0. (D9)

Therefore, a non-trivial solution is possible only if the determinant of the coefficient matrix
in equation (D9) vanishes, which results in the following:

MS

m
g0cos gLv −

M
m

g sin gLv1+
M
m

g cos gLv +sin gLv =0, (D10)

or g=0 (a rigid-body mode). For the non-zero eigenvalues g, the eigenfunction and
coefficients C and D can be obtained from equation (D9). Upon scaling C=1, the elastic
mode shapes are given as

Yn =cos gnz−(MS /m)gn sin gnz. (D11)

APPENDIX E

In order to integrate the system (75) to determine the slowly varying amplitude ar and
phase cr initial conditions have to be specified. It remains to show how the initial amplitude
ar (0) and the initial phase cr (0) are related to the initial conditions corresponding to the
original partial differential equation system (44). These initial conditions can be stated as

u(s, 0)=81(s), u̇(s, 0)=82(s), (E1)

where 81 and 82 are prescribed functions. Upon the representation (45), and assuming
l� (0)=0, these conditions result in the forms

Yr (s, l(0))qr (0)=81(s), Yr (s, l(0))q̇r (0)=82(s). (E2, E3)

Multiplying equations (E2) and (E3) by r(s)Yr (s, l(0)), and integrating the results from
L1(0) to L0 yields the initial values of qr and q̇r as

qr (0)=
1

mr (l(0)) g
L0

L1(0)

r(s)Yr (s, l(0))81(s) ds, (E4)

q̇r (0)=
1

mr (l(0)) g
L0

L1(0)

r(s)Yr (s, l(0))82(s) ds. (E5)

When the non-dimensional time scale T is introduced by (53), the initial value for dqr /dT
is given as

dqr

dT
(0)=

1
v̄0

q̇r (0). (E6)
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The first approximation to the solution of equation (57) is given by equation (67). This
approximation can also be written in the form

qr =Cr1(t) cos fr +Cr2 sin fr +O(o), (E7)

where the slowly varying parameters Cr1 and Cr2 are related to the amplitude ar and the
phase br by

ar =zC2
r1 +C2

r2, br =tan−1(−Cr2/Cr1). (E8)

Noting that fr = fT
0 v̄r (oj) dj, and taking into consideration that

dqr

dT
= v̄r (−Cr1 sin fr +Cr2 cos fr )+O(o), (E9)

yields the results

qr (0)=Cr1(0)+O(o),
dqr

dT
(0)= v̄0Cr2 +O(o). (E10)

Therefore, disregarding the terms O(o) and combining equations (E10) and (E8), yields
initial values for ar and br , to first order approximation:

ar (0)=Xq2
r (0)+$ 1

v̄0

dqr

dT
(0)%

2

, br (0)= tan−10 −1
v̄0qr (0)

dqr

dT
(0)1, (E11, E12)

where qr (0) and (dqr /dT)(0) are determined from equations (E4–E6). Using equation (73)
together with equation (63) yields the initial phase cr as

cr (0)=−br (0). (E13)

For example, it can be found from equations (E11–E13) that the initial conditions
ar (0)=0·005, cr (0)=0 correspond to qr (0)=0·005 and (dqr /dT)(0)=0. Therefore, for
the parameter set used in the model example of section 7, this would give the initial
displacements at the sheave, and at the conveyance as u1(0)=0·005 m, and
u2(0)=−0·0026 m, respectively, with u̇(s, 0)=0.


