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In the present paper the modelling and control of a high-Tc superconducting levitation
system are discussed. First, the analytical expressions for obtaining the non-linear levitation
force, given by the present author, are clarified; and then a vibration control method is
presented in which feedback currents involving frequency weights are used. In the method,
the square of the displacement in the frequency domain is taken as a cost function. Optimal
coefficients of the transfer function of the controller are obtained by minimizing the cost
function. Hence, the spillover instability due to the non-linear vibrations will be reduced.
Numerical calculations have been carried out for some typical problems. To validate the
present method, experimental tests have also been carried out.
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1. INTRODUCTION

Recently, large pieces of high-Tc superconductor bulk material with high critical currents
have been produced [1, 2]. Since the superconducting levitation system has a large pinning
force in comparison with its volume, the system is stable in both the horizontal and the
vertical directions, so that it has been applied to various fields [3]. Knowledge of the
levitation force is required in order to design a levitation system, and so a number of
studies for a static levitation force have been reported [4–8]. In the dynamic problem when
the superconductor vibrates in a magnetic field, there are two regions of flux creep and
flux flow, so the dynamic characteristic is different from the static one. For the dynamic
problem, Yoshida, Uesaka and Miya [9] have presented a numerical method. The present
author also gave an approximate analysis for obtaining the dynamic levitation force, and
it was clarified that the dynamic levitation force is dependent on the air gap, the vibration
amplitude and the vibration frequency [10]. A method of modelling for a thick circular
conductor also has been reported by the present author [11].

The vibration control problem of high-Tc superconducting levitation system is of
importance, and the present authors have discussed vibration isolation control
theoretically by using the PD control for a thin superconducting disc under low frequency
excitations [10]. However, since the system has non-linear behavior, the PD control is not
valid for controlling the levitation body in a large frequency region. In particular, the
calculation becomes significantly large when the equation in reference [10] is used, because
the equation of motion of the system is combined with the analysis of the non-linear
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levitation force. Hence it is difficult to obtain a frequency response by using this equation.
Owing to the background as mentioned above, although the present authors have
discussed the modelling of the system, the method has not been certified. Hence the present
paper discusses the validity of the modelling at the first step, then a vibration control
method for the levitated body is presented, with consideration of the non-linear behavior
over a wide frequency zone, including the subharmonic, harmonic and superharmonic
zones. Although the system is a single-degree-of-freedom system, a number of non-linear
modes will be generated, and so a spillover instability will be generated, which is often
observed in flexible structures when the controller is designed by using a linear system.

In the present paper, a vibration control method is set out in which feedback currents
involve frequency weights. In the method, the square of the displacement in a frequency
domain is taken as a cost function. Optimal coefficients of the transfer function of the
controller are obtained by minimizing the cost function. The spillover instability due to
the non-linear phenomena will then be reduced. Numerical calculations are carried out for
the response of the levitated body under the control. To validate the theoretical analysis,
experimental tests are also carried out.

2. THEORETICAL AND EXPERIMENTAL RESULTS FOR THE LEVITATION FORCE

2.1.   

The geometry of the high-Tc superconducting levitaton system treated in the present
paper is illustrated in Figure 1. A cylindrical permanent magnet attached to a circular
electromagnet is levitated by a pinning force of the superconductor which lies on the base.
In this system, when a current is applied in the coil of an electromagnet consisting of a
ferrite core with a coil, magnetic flux densities vary, and so the levitation forces vary. The
magnetic flux densities due to the permanent magnet with the electromagnet are reported
in reference [13] as

Br =Bpr (r, z)+Becr (r, z, I)+Besr (r, z, I), (1a)

Bz =Bpz (r, z)+Becz (r, z, I)+Besz (r, z, I), (1b)

where r and z denote the co-ordinates and I is the control current. A method of calculation
of a levitation force has been given in our previous report [11], but experimental tests have
not been previously carried out. In this paper, the authors’ analytical results are discussed
by comparing the theoretical results with the experimental data.

Figure 1. The analytical model.
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Figure 2. The geometry of the experimental apparatus.

The vector potential A(r, z) in the conductor is [11]

A(r, z)=
2m0
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where Dri is the element length in the r-direction, Dzj is the element length in the z-direction,
ri and zi are the co-ordinates at the ith circle and jth sections, respectively, Jji is the shield
current density at the ( j, i)th circle in the conductor, N' is the number of divisions in the
z-direction, N is the number of divisions in the r-direction, and the Dni (r) are given in
reference [11]. The current density Jji is obtained by the following equations:

fji (Jji )+6Asji (T)−Asji (T−Dt)
Dt 7=0, j=1, 2, . . . , N', i=1, 2, . . . , N, (3)

T 1

Dimensions of the superconductor and magnet

Radius of the permanent magnet 12 mm
Thickness of the permanent magnet 20 mm
Magnetization strength of the permanent magnet 0·88 T
Inner radius of the coil 12 mm
Outer radius of the coil 26·8 mm
Thickness of the coil 12·8 mm
Turn of the coil 155
Radius of the core 12 mm
Thickness of the core 14·8
Diameter of the high-Tc superconductor 49·3 mm
Thickness of the superconductor 13·8 mm
Pinning potential, U0 92×10−3 eV
Critical electric field, Ec = rcJc 0·1×10−3 V/m
Temperature, u 77 K
Initial air gap, d 2 mm
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Figure 3. A comparison between theoretical (—) and experimental (W) levitation forces.

T 2

Coefficient of the approximate equation for the levitaton force

a1 = 1·624068
a2 = 1·614288×10−2

a3 = −3.042525
a4 = 4.694524×10−2

a5 = 2·683826
a6 = 3·410975×10−3

Figure 4. A comparison between theoretical (—) and experimental (– –r– –) frequency response curves.
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Figure 5. Control forces versus control currents obtained by the experiment. —, W, A/d=0·1; · · · ·, Q,
A/d=0·5.

where T is the time, Dt is the incremental time from T, and Aji (T) is the vector potential
A(ri , zj ) on the (j, i)th circle at time T. In the calculation of equation (3), the following
constitutive equations are used:

f(J)=E=2rcJc sinh 0U0

ku

J
Jc1 exp 0−U0

ku1 for =J=E JC ,

f(J)=E=Ec + rfJc (J/Jc −1) for =J=q JC , (4)

where E is the electric field, u is the temperature (in K), U0 is the pinning potential, k is
the Boltzmann constant, rc is the flux creep resistance, rf is the flux flow resistance, Jc is
the critical current density and EC = rcJc . By using equations (1)–(4), the shield currents
Jji can be calculated. Then the levitation force is obtained from the following equation:

F= s
N'

j=1

s
N

i=1

2priJjiDriDziBrji . (5)

T 3

Optimal coefficients of the controller

Before After
Coefficients optimization optimization

c1 1·0 1·0
c2 1·0 1·1
d1 1.0×103 8·9×103

d2 1.0×103 5·9×103

e1 1·0 1·0
e2 1·0 1·2
g1 1·0×103 8·7×102

g2 1·0×103 7·3×102
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Figure 6. Theoretical frequency response curves with or without control. – · –, without control; · · · ·, before
optimization; —, after optimization.

2.2.   

An experimental set-up for obtaining the levitation force, in which a solid cylindrical
high-Tc superconductor lies on the base, and a cylindrical permanent magnet attached to
an electromagnet is levitated, is illustrated in Figure 2. To detect the displacement of the
magnet, a solid straight bar made of copper is attached to the electromagnet, which is
passing through the cryostat as shown in Figure 2. When the levitation force is measured,
an aluminum bar with the other end built-in is pin-joined to the top of a copper bar at
right-angles. A strain gauge attached to the surface of the aluminum bar detects strains
when the force is produced between the permanent magnet and the superconductor. The
superconductor and magnets are inserted in a cylindrical cryostat made of aluminum, and
cooled inside by liquid nitrogen. The cryostat lies on the oscillator, and so the levitation
force varies when the oscillation (u=A sin vt) is applied to the cryostat.

Figure 7. The block diagram of the present control system. w1 , Actuator; w2 , superconductor; w3 laser gap
sensor.
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Figure 8. Frequency response curves with (—R—) or without (– - –r– - –) control obtained by the experiment.

In this experimental set-up, both the superconductor and magnet lie in the cryostat, so
the superconductor is affected by the magnet. Strictly speaking, the conductor is cooled
in a magnetic field. The velocity of the magnet is important when the magnet is put on
the superconductor [9, 11], but it is difficult to move the magnet with the same velocity.
Hence, in the present experiment, the magnet is locked with a certain air gap, and the lock
is loosened after cooling. This implies that the magnet falls freely by the force of gravity,
and the condition of the levitation becomes always constant. When the lock is loosened
after cooling, the magnet is levitated to an equilibrium position in which the force of
gravity is equal to the levitation force. There are static shield currents inside the conductor
after levitating the magnet. In addition, there is the effect of the magnetic field cooling,
but this will be small when the air gap is large. When the magnet vibrates from the
equilibrium position, the total current inside the conductor is given by the addition of the
static current and the dynamic current. If the total current is less than the critical current,
the motion of the levitated body is in the flux creep region, but it is in the flux flow region
when the total current is greater than the critical current. Then, strictly speaking, the
levitation force of the system should be obtained by considering all routes from the cooled
position. In the calculation of the force, however, the calculation technique becomes
significantly complex, and the calculation error for the dynamic levitation force increases
when the static levitation force is large in comparison with the dynamic force. For the
reasons just mentioned, in the present paper the dynamic levitation force is considered only
from static equilibrium. In this case, the critical current should be varied with consideration
of the static shield current. The equivalent critical current and flux flow resistance during
vibration are determined by reference to the experimental data. The experimental tests
were carried out for the following case: mean air gap (air gap at the static equilibrium
position), d=2 mm; amplitudes of vibration displacements A=1·69 mm, 1·02 mm and
0·68 m (three cases); frequency v=8·8 rad/s. The dimensions of the superconductor and
the magnet are depicted in Table 1. The material constants of the superconductor were
assumed to have the same values as in reference [11], but the flux flow resistance and critical
current (without the effects of the magnetic flux) were determined in the same way as in
reference [11]. Those values were rf =2·5×10−10V m and Jc0 =1·5×106A/m2. A
comparison between the theoretical result and the experimental data for the restoring force
during vibration is shown in Figure 3. The theoretical result (the solid line in Figure 3)
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almost coincides with the experimental data (the black dot). This implies that our
approximate analysis seems to be valid for calculating the dynamic levitation force
(restoring force) in high-Tc superconducting levitation system.

The following approximation is applicable for the curve in Figure 3:

F= s
n

k=1

ak (A/d)k, (6)

where F is the levitation force, A is the amplitude, d is the initial air gap, and the ak are
the coefficients as shown in Table 2, which are determined by the least squares method,
by use of the theoretical curve in Figure 3. The restoring force also depends on the
frequency; the result involving the effect of frequency can be obtained by use of the
expression as just mentioned. However, it is difficult to give an approximate expression
involving both the effects of amplitude and frequency. Hence, hereafter, a simple
expression involving only the effect of amplitude given by equation (6) is used.

3. THEORETICAL AND EXPERIMENTAL RESULTS FOR FREQUENCY RESPONSE

When the base is excited by the displacement u(t), the equation of motion of the levitated
body is

m
d2w
dt2 + c0dw

dt
−

du
dt1+ s

n

k=1

ak0w− u
d 1

k

=0, (7)

where m is the mass of the levitated body, c is the damping coefficient, w is the displacement
of the levitated body and the third term in equation (7) the force between the
superconductor and the levitation magnet. Equation (7) is the typical non-linear equation,
and so it is difficult to solve it analytically. In the present paper, the numerical method
(Runge–Kutta–Gill method) is applied.

The dimensions of the system used in the numerical calculations are as follows: the mass
of the levitated body, m=0·12 kg; the damping coefficient, which was determined in the
experiment, c=5·5×10−2 Ns/m; the amplitude of the base displacement, u0 =0·2 mm;
and the initial air gap at static equilibrium, d=2 mm. The material constants and the
dimensions of the superconductor and the magnet are the same as mentioned above. The
time response curves are obtained by the Runge–Kutta–Gill method, and taking the
amplitude at the steady state, we have the frequency response curves for this non-linear
system. A solid line in Figure 4 shows the calculated frequency response curve. In the figure
a non-linear vibration (superharmonic motion) is observed at a frequency two times the
main resonance frequency.

Experimental tests were also carried out for the same model. In the experiment, the same
apparatus as in Figure 2 was applied, but the magnet was levitated freely without
constraint. The base of the cryostat was excited by the oscillator, and the displacement
of the levitated body was measured by a non-contact displacement sensor (laser gap
sensor). The results are plotted as open dots in Figure 4. The dynamic restoring force
(levitation force) increases with increasing values of the frequency, but it reduces to a
certain value when the frequencies become large. This implies that the resonance frequency
of the superconducting levitation system increases in comparison with the usual non-linear
system, which does not depend on the frequencies. For this reason, there are about ten
percent errors between the theoretical resonance frequency and the experimental one.
Hence the effects of the frequency on the restoring force should be considered in the design



 -   307

of the controller, as mentioned below. Although the theoretical resonance frequency is
somewhat smaller than the experimental one, the trends of both results are in good
agreement.

4. VIBRATION CONTROL WITH CONSIDERATION OF NON-LINEAR PHENOMENA

The following assumptions are used in the design of the controller.
(1) Since the amplitude of vibration is large in this system, the non-linear effects on the

restoring force are considered, and equation (6) is applied.
(2) Since the frequency depends on the restoring force, the resonance frequency in the

theory will be small in comparison with that of the real superconducting levitation system.
The controller is then designed with consideration of this phenomenon. In the present
paper, a transfer function with frequency weighting is applied.

(3) There are also non-linear relations between the control currents and the restoring
forces. The effect of non-linear phenomena between the amplitude and the restoring force
is then considered, but the effect of the frequency is considered in the design of the
controller. Strictly speaking, the levitation force involving the control current cannot be
obtained by the addition of the force due to the permanent magnet and that due to the
control current. In this system, however, the force due to the control current is small in
comparison with that due to the permanent magnet. Then the total force is obtained by
the addition of these two forces.

Under the assumptions just mentioned, the present system can be modelled as a
single-degree-of-freedom system. Hence the equation of motion is denoted as the following
non-linear equation:

m
d2w
dt2 + c0dw

dt
−

du
dt1+ s

n

k=1

ak0w− u
d 1

k

=−Q(A, d, I)+P, (8)

where u is the displacement (=u0 sin vt), w is the displacement of the levitated body, Q
is the control force, I is the control current and P is the load applied to the levitated body.

4.1.          

 

The amplitude at the resonance frequency decreases with the velocity feedback
coefficient, and the negative displacement feedback makes the system stiffness decrease,
leading to a decrease in vibration transmission. However, since the system stiffness
decreases, the system becomes unstable. For the reason just mentioned, the control is not
desirable, and the displacement of the levitated body becomes greater than the base
displacement in the low frequency region in the usual PID control. To decrease the
vibration transmission in the low frequency region, the disturbance cancellation technique
given by the present author [12] is straightforward to apply. The transmission can be
reduced significantly (by one-third to a tenth) by making use of only the feedback of the
base displacement in the disturbance cancellation method. Hence, in the present paper,
both the vibration of the levitated body and the base are fed to the actuator. Since the
system has non-linear behavior, as stated above, the theoretical resonance frequency will
be somewhat different from that of the real system. The following function having
frequency weighing is then used as a transfer function for the controller:

G1(s)=
d1s+ d2

c1s+ c2
, G2(s)=

g1s+ g2

e1s+ e2
, (9)
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where G1 is the transfer function for the base disturbance, and G2 is for the levitated body.
By using equation (9), the gain can be controlled to be flat near the resonance frequency.
Hence the current becomes

I�(s)=G1(s)ū(s)+G2(s)w̄(s). (10)

The equations of state are

ẏ1 = y2, ẏ2 =
1
m $−Q(A, d, I)− s

6

k=1

ak0y1 − u
d 1

k

− c(y2 − u̇)%,
ẏ3 =

1
c1

[d1u̇+ d2u− c2y3], ẏ4 =
1
e1

[g1y2 + g2y1 − e2y3], (11)

where y1 is the displacement of the levitated body, y2 is the velocity of the levitated body,
y3 is the control current (=I1) for the base disturbance, y4 is the control current (=I2) for
the vibration of the levitated body, and c1, c2, d1, d2, e1, e2, g1 and g2 are the coefficients
of the controller as shown in equation (9).

4.2.           

We consider a case in which a vibration force P=P0 sin vt applies to the levitated body.
Let the transfer function of the controller be

G3(s)=
p1s+ p2

q1s+ q2
(12)

and let the current be

I�(s)=G3(s)w̄(s) (13)

in the same way as previously. The equation of state also becomes the following non-linear
equations:

ẏ= y2, ẏ2 =
1
m $−Q(A, d, I)− s

6

k=1

ak0y1

d1
k

− cy2 +P0 sin vt%,
ẏ3 =

1
q1

[p1y2 + p2y1 − q2y3], (14)

where y1 is the displacement of the levitated body, y2 is the velocity, y3 is the control current
(=I3), and p1, p2, q1 and q2 are the coefficients of the transfer function, as shown in equation
(12).

4.3.        

The total control current applied to the coil is given by the addition of each current:

I= I1 + I2 + I3. (15)

Since there are many coefficients in the transfer functions shown in equation (9) and (12),
it is difficult to determine an appropriate controller directly. To obtain the optimal
controller, in the present paper the following cost function is presented:

J=g
V

0

[h1w(v)2] dv, (16)
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where h1 are the weights, and V are the upper values of the frequency considered in the
design of the controller. For vibration control, it is important to reduce the resonance
peaks in the frequency region. Equation (16) denotes the square of the displacement, so
if equation (16) is minimized, the frequency response curve becomes flat in the frequency
domain. This implies that the vibration can be controlled to be small in the wide frequency
zone. Since the equation of state is non-linear, as mentioned above, it is difficult to obtain
the optimal values of the coefficients analytically, so that a numerical scheme is applied.
The expression for obtaining the coefficient is

Xtm =Xtm−1 − h(1J/1Xt ) (m=1, 2, . . . , a), (17)

where the Xt are the coefficients of the controller: (X1 X2 X3 . . .)= (d1 d2 c1 . . .).
The coefficients can be obtained by repeating the calculation of equation (17) with
respect to m.

As an example, the optimal values of the coefficients are calculated for the vibration
isolation control in the following case: the mass of the levitated body, m=0·12 kg, the
amplitude of the base disturbance, u0 =0·2 mm; and the initial air gap, d=2 mm. The
calculations are carried out for the same conductor as mentioned above in the same cooling
condition. To design the controller, the relation between the control force and the current
in the coil is required. The relations were obtained by experiment. The control force
depends on the vibration amplitudes, so there is also the non-linear relationship between
the control force and the vibration amplitudes. An example of the relationship obtained
by the experiment is depicted in Figure 5. The non-linear relationship is expressed by the
polynomial equations by using the least squares method, as shown in the solid and dotted
lines in Figure 5. The expressions are used in the numerical calculation for obtaining the
control forces. Since the equations given in equations (8)–(15) are non-linear, as just
mentioned, the Runge–Kutta–Gill method is applied. The time response curves are
calculated by the method, and the frequency response curve is obtained by taking the
amplitudes in the steady state. Substituting the amplitudes versus frequencies into equation
(16), and repeating the calculation of equation (17), one obtains the optimal coefficients
of the controller. The maximum current is limited to within 5 A, corresponding to the
capacity of the power amplifier used in the experiment, so the calculations are carried out
under the limitation of the current being 5 A. In Table 3 are depicted optimal values of
the coefficients, but the values of c1 and c2 are taken as constant values (c1 = c2 =1) because
the values do not affect the transfer functions, as shown in equation (9). The initial values
for the coefficients before optimization are also depicted in Table 3. In the table, the
coefficients vary significantly from the initial values. It can be seen that the variations in
the coefficients d1, d2, g1 and g2 are large in comparison with c2 and e2. The theoretical
response curve with the present optimal control or without control is depicted in Figure
6. In the figure, the curve before optimization (dotted line in Figure 6) is almost the same
as that without control (chain line in Figure 6). However, when the optimal controller is
utilized, the vibration (solid line in Figure 6) is reduced significantly across the whole
frequency range. In particular, the vibration amplitude at low frequency is reduced
significantly, and this cannot be controlled by the PID control. It can also be seen that
the superharmonic peak due to non-linear vibration is reduced.

To validate the present control method, experimental tests were also carried out for the
same model as just mentioned. In the experiment, the displacement of the base u and that
of the levitated body w were detected by the non-contact displacement sensors (the laser
gap sensors). The signals of displacement were input to a digital signal processor (DSP),
and the velocities (u̇, ẇ) were calculated by the DSP. The control current I (=I1 + I2) was
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calculated by using the following equation corresponding to the transfer function as
mentioned above:

dI1

dt
=

1
c1

[d1u̇+ d2u− c2I1],

dI2

dt
=

1
e1

[g1ẇ2 + g2w1 − e2I2]. (18)

Real time calculation of equation (18) was performed for the short time Dt by use of Euler’s
method in the DSP, but in which u, u̇, w and ẇ were the signals obtained by the sensors.
The real time signal corresponding to the calculated current was created and input to the
coil as shown in the block diagram (Figure 7). The frequency response curves obtained
in the experiment are shown in Figure 8. The curve for the present control has a
significantly smaller resonance peak in comparison with that without control. The
vibration amplitudes are also smaller than those without control in a low frequency region
(v=10–100 rad/s). In addition, the non-linear superharmonic motion is also reduced and
is significantly small. Although there are a few discrepancies in the resonance frequencies,
the theoretical results (Figure 6) and the experimental data (Figure 8) are in good
agreement. Therefore, the present method and the analysis are applicable to the vibration
control of superconducting levitation systems.

5. CONCLUSIONS

The vibration control of a superconducting levitation system is discussed in this paper.
Since the system has non-linear phenomena, it is difficult to obtain the exact dynamic
behavior of the levitation system. Hence a method of modelling of the system has been
presented, and it is clarified that the modelling is valid for solving non-linear vibrations
of the system. A method of vibration control has also been presented, in which a feedback
current has frequency weighting. To optimize the feedback current, the square of the
displacement of the levitated body was taken as a cost function. The optimal coefficients
of the transfer function of the controller were obtained by minimizing the cost function.
As an example, a vibration isolation problem was discussed, and both theoretical and
experimental results were obtained. The vibration amplitudes of the levitated body with
the present control were significantly reduced as compared with those without the control.
Although the theoretical resonance frequency was somewhat smaller than the experimental
one, the experimental and theoretical results were in good agreement. Therefore the present
method has advantages for controlling non-linear systems such as the high-Tc
superconducting levitation system.
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