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1. 

The study of the dynamical behavior of longitudinally vibrating rods has stimulated the
interest of researchers for a long time. In reference [1] Laura et al. investigated a system
consisting of a spring and a longitudinally vibrating rod with a mass attached at the other
end, moving axially with constant velocity. By following a one dimensional wave approach
they determined the resulting dynamic stress field if the free end of the spring is suddenly
stopped.

Recently, an interesting study by Kukla et al. [2] was published on the problem of the
natural longitudinal vibrations of two rods coupled by many translational springs, where
the Green’s function method was employed. Motivated by this publication, the study in
[3] dealt with a similar system which was made up of two clamped–free longitudinally
vibrating rods carrying tip masses to which a double spring–mass system was attached as
a secondary system across the span. After setting up the frequency equation of the system
using a boundary value problem formulation, the effects of the variation of some system
parameters upon the natural frequencies were investigated through numerical examples.

The present study is concerned essentially with the same mechanical system described
in reference [3], but here, the tip masses are ignored to simplify the formulations. That this
does not mean any restriction of the main idea of the present note, will be seen clearly
from the derivations in the next sections. The exact frequency equation of the system was
included in [3] as a special case. The attribute ‘exact’ will be used in the sense that the
frequency equation is obtained by means of a boundary value problem. The aim of the
present work is to give two other formulations of the frequency equation of the system
described above. Both formulations are based on the discretization of the elastic rods by
their first n eigenfunctions, according to the assumed modes method.

The system described can be viewed as an approximate model for the calculation of the
natural frequencies in the longitudinal direction of an industrial sewing machinery with
parallel needles on a single shaft or a stamping press with two parallel shafts where the
coupling stiffness and the mass can represent the effect of the material being sawn or
stamped.

2. 

The problem to be dealt with in the present note is the natural vibration problem of
the system shown in Figure 1. It consists of two clamped–free axially vibrating elastic rods
to which a double spring–mass secondary system is attached across the span. The length,
mass per unit length, location of the spring attachment point and axial rigidity of the ith
rod are Li , mi , hi Li and EiAi (i=1, 2), respectively. The secondary system consists of two
springs of stiffnesses k1 , k2 and the mass me .
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The kinetic and potential energies of the system are

T= 1
2m1 g

L1

0

u̇2
1 (x, t) dx+ 1

2m2 g
L2

0

u̇2
2 (x, t) dx+ 1

2me ż2
1 (1)

V= 1
2E1A1 g

L1

0

u'21 (x, t) dx+ 1
2E2A2 g

L2

0

u'22 (x, t) dx+ 1
2k1 (z1 − z0 )2 + 1

2k2 (z2 − z1 )2, (2)

where u1 (x, t) and u2 (x, t) represent the longitudinal displacement over the two rods and
z1 (t) denotes the displacement of the appended mass me . Finally, z0 (t) and z2 (t) are the
displacements of the attachment points of the springs k1 and k2 to the rods. Dots and
primes denote, as usually, partial derivates with respect to time t and position co-ordinate
x, respectively.

The longitudinal displacement of the rods at point x are assumed to be expressible in
the form of finite series

u1 (x, t)= s
n

i=1

Ui1 (x)hi1 (t), u2 (x, t)= s
n

i=1

Ui2 (x)hi2 (t), (3)

where

Ui1 (x)=z2/m1L1 sin (2i−1)p/2 x/L1 , Ui2 (x)=z2/m2L2 sin (2i−1)p/2 x/L2 (4)

are the mass orthonormalized eigenfunctions of a clamped–free elastic rod and hi1 (t), hi2 (t)
(i=1, . . . , n) denote generalized co-ordinates to be determined.

If the assumed series solutions (3) are substituted into the energy equations (1) and (2),
they can be expressed as

T=
1
2

s
n

i=1

ḣ2
i1 +

1
2

s
n

i=1

ḣ2
i2 +

1
2

me ż2
1 , (5)

Figure 1. Two clamped-free, longitudinally vibrating elastic rods to which a double spring–mass system is
attached across the span



    333

V=
1
2

s
n

i=1

v2
i1h

2
i1 +

1
2

s
n

i=1

v2
i2h

2
i2 +

1
2

k1 (z1 − z0 )2 +
1
2

k2 (z2 − z1 )2, (6)

where the orthonormalization properties of the eigenfunctions Ui1 (x) and Ui2 (x) are taken
into account. Henceforth, starting with the energy expressions above, two different
approaches will be used which lead to two alternative forms of the frequency equation of
the system.

The first alternative form of the frequency equation follows directly from the formalism
of the Langrange equations where the displacements of the attachment points of the double
spring–mass system to the rods are expressed in terms of the generalized co-ordinates [4].
The formulation leads to a standard eigenvalue problem, the solution of which gives the
eigenfrequency parameters of the system.

The second formulation uses the approach of Dowell [5] which is essentially based on
the assumed—modes method in conjunction with the Lagrange multipliers method. The
result is a simple analytical formula for the frequency equation of the system. Hence, the
eigenfrequency parameters of the system are determined by solving this non-linear
equation.

3.       

The kinetic and potential energies of the system, i.e., expressions (5) and (6) can be
written in matrix notation as

T= 1
2 ḣ

T
1 In ḣ1 + 1

2 ḣ
T
2 In ḣ2 + 1

2me ż2
1 . (7)

V= 1
2h

T
1 V2

1h1 + 1
2h

T
2 V2

2h2 + 1
2k1 (z1 − z0 )2 + 1

2k2 (z2 − z1 )2, (8)

where

hT
1 (t)= [h11 (t), . . . , hn1 (t)], hT

2 (t)= [h12 (t), . . . , hn2 (t)],

V2
1 = diag(v2

i1 ), V2
2 = diag(v2

i2 ) (i=1, . . . , n) (9)

In : n× n identity matrix

Here, vi1 and vi2 represent the ith eigenfrequency of the bare upper and lower rod,
respectively. The above energy expressions can be written in a more compact form as

T= 1
2 ḣ

TI2n ḣ+ 1
2me ż2

1 , V= 1
2h

TV2h+ 1
2k1 (z1 − z0 )2 + 1

2k2 (z2 − z1 )2, (10, 11)

where

hT =[hT
1 hT

2 ], V2 = diag(V2
1 , V2

2 ) (12)

and I2n denotes the 2n×2n identity matrix.
The idea behind this approach is to express the displacements of the spring attachment

points on to the rods, i.e., z0 (t) and z2 (t) in terms of the generalized co-ordinate vector
h(t):

z0 (t)= IT
1 h(t), z2 (t)= IT

2 h(t). (13, 14)

where the 2n×1 vectors I1 and I2 are introduced as

IT
1 = [UT

1 (h1L1 ), 0T], IT
2 = [0T, UT

2 (h2L2 )]. (15, 16)

Here, the n×1 vectors U1 (x) and U2 (x) are defined as

UT
1 (x)= [U11 (x), . . . , Un1 (x)], UT

2 (x)= [U12 (x), . . . , Un2 (x)]. (17, 18)
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Starting with the energy expressions (10) and (11), along with (13) to (18) the following
matrix differential equation is obtained, by using the Lagrange equation formalism:

.... . . . . . . . . . . . . . . . . . . . . . . . . . . .& I2n

· · · ·
0T

0
· · · ·
me '& ḧ

· · · ·
z̈1 '+ &V

2 + k1 l1 lT1 + k2 l2 lT2

−(k1 lT1 + k2 lT2 )

−(k1 l1 + k2 l2 )

k1 + k2 '& h

· · · ·
z1 '= 0. (19)...

It is worth nothing that in obtaining the above form, extensive use is made of the formulas
regarding the partial derivatives of bilinear forms, quadratic forms and vectors with respect
to algebraic vectors [6].

By means of the transformation

.... . . . . . . . . . .& h

· · · ·
z1 '= &T0T

0

1/zme'& p
· · · ·

y ', (20)...

where T= I2n , the equations of motion in (19) can be written as

.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .& p̈
· · · ·

ÿ '+ & V2 + k1e1eT
1 + k2e2eT

2

−(1/zme)(k1eT
1 + k2eT

2 )

−(1/zme)(k1e1 + k2e2 )

v2
e '& p

· · · ·
y '= 0. (21)...

Here, the following abbreviations are introduced

e1 =TTl1 = l1 , e2 =TTl2 = l2 , v2
e =(k1 + k2 )/me (22)

Harmonic solutions of the form

$py%=$p̄ȳ% eivt (23)

results in a set of homogeneous equations for the amplitude vector p̄ and ȳ. A non-trivial
solution of this set is possible only if the determinant of the coefficient matrix vanishes.
This condition leads to the following form of the frequency equation of the mechanical
system.

.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n V
2 + k1e1eT

1 + k2e2eT
2 −v2I2n

−(1/zme)(k1eT
1 + k2eT

2 )

−(1/zme)(k1e1 + k2e2 )

v2
e −v2 n= 0. (24)...

This determinantal equation can be reformulated as

.L� +2ak1 ē1 ēT
1 +2

xak2

ama2
L

ē2 ēT
2 − b�2I2n −z2/ame0ak1 ē1 +

xak2

aLzamaL

ē21..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =0, (25)
...

G
G

G

G

G −z2/ame0ak1 ēT
1 +

xak2

aLzamaL

ēT
21 ak1

ame
+

xak2

ameaL
− b�2

G
G

G

G

G..
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where

b�= bL1 , lk = b�2
k , v2 = b�2(E1A1 )/m1L2

1 , aki =sin (2k−1)p/2 hi ,

aki = ki /(EiAi /Li ), (i=1, 2), ame =me /m1L1 , am =m2 /m1 ,

aL =L2 /L1 , x=E2A2 /E1A1 , d2 = ama2
L /x, (26)

L= diag(li ) (i=1, . . . , n); L� = diag(L, (1/d2)L),

are introduced. Here the 2n×1 vectors ē1 and ē2 are defined as,

ēT
1 = [a11 , . . . , an1 ; 0, . . . , 0], ēT

2 = [0, . . . , 0; a12 , . . . , an2 ]. (27)

The result above can be restated also such that the non-dimensional frequency parameters
b� of the mechanical system in Figure 1 can be obtained as the square roots of the
eigenvalues of the following matrix A:

..L� +2ak1 ē1 ēT
1 +2

xak2

ama2
L

ē2 ēT
2 −z2/ame0ak1 ē1 +

xak2

aLzamaL

ē21.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A=G
G

G

G

G

K

k

G
G

G

G

G

L

l

. (28)
...−z2/ame0ak1 ēT

1 +
xak2

aLzamaL

ēT
21 ak1

ame
+

xak2

ameaL
..

4.       

The equation of the motion of the system in Figure 1 can also be established by means
of the Lagrange’s equations in connection with Lagrange’s multipliers [5], which when
considered for a system with n degrees of freedom where v redundant co-ordinates are used,
as follows [7].

d
dt 01L

1q̇k1−
1L
1qk

= s
v

l=1

l1
1f1

1qk
(k=1, . . . , n+ v), (29)

with the kinetic potential

L=T−V (30)

and v constraint equations

f1 (t; q1 , . . . , qn+ v )=0 (l=1, . . . , v). (31)

Here, l1 denotes the lth Lagrangian multiplier.
In the present case, there are two constraint equations

f1 = s
n

k=1

Uk1 (h1L1 )hk1 (t)− z0 (t)=0; f2 = s
n

k=1

Uk2 (h2L2 )hk2 (t)− z2 (t)=0. (32)

The evaluation of the Lagrange’s equations (29) by considering the expressions (5), (6),
(30) and (32) results in a set of 2n+3 equations. The substitution of the harmonic
solutions

hk1 = h̄k1 eivt, hk2 = h̄k2 eivt, (k=1, . . . , n), z0 = z̄0 eivt

z1 = z̄1 eivt, z2 = z̄2 eivt, l1 = l�1 eivt, l2 = l�2 eivt (33)
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into equations (32) and those 2n+3 equations yield a set of 2n+5 equations for the
amplitudes of the harmonic functions. It can be shown that these equations result in a set
of two homogeneous equations for l�1 and l�2 . A non-trivial solution of this set is possible
only if the determinant of the coefficient matrix vanishes. This condition in turn leads to
the following frequency equation of the mechanical system shown in Figure 1:

$ s
n

k=1

U2
k1 (h1L1 )

v2
k1 −v2 −

k1 −mev
2

k1mev
2 %$ s

n

k=1

U2
k2 (h2L2 )

v2
k2 −v2 −

k2 −mev
2

k2mev
2 %−

1
m2

e v
4 =0, (34)

Here, v represents the eigenfrequency of the combined system. For further investigations,
it is more suitable to rewrite the frequency equation above in terms of non-dimensional
quantities as

$ s
n

k=1

2a2
k1

lk − b�2 −
ak1 − ameb�2

ameak1b�2 %$ s
n

k=1

2a2
k2

amaL (lk /d2 − b�2)
−

ak2 − (ameaL /x)b�2

ak2ameb�2 %−
1

a2
meb�4 =0 (35)

where the non-dimensional parameters are used, defined previously by (26).
After having obtained also the second form of the frequency equation of the mechanical

system, it is worth emphasizing the following point. These two forms are obtained on the
basis of the physical considerations. From the mathematical point of view, the focal point
here is that the characteristic equation of a matrix of order 2n+1 can be represented in
the form of an analytical expression.

It is the authors belief that this is not uninteresting. Perhaps, mathematicians can prove
mathematically as well that the expansion of the determinant in (25) can actually be given
by (35).

5.  

This section is devoted to the numerical evaluation of the formulae established in the
preceding sections. For the numerical applications, following values are chosen for the
physical data of the mechanical system in Figure 1: h1 =0·25, h2 =1·0, ak1 =1·0, ak2 =1·0,
am =1·0, ame =1·0, aL =1·5, x=1, d=1·5.

The first 21 dimensionless eigenfrequency parameters b�= b1L are collected in Table 1.
The figures in the first column are the values obtained from the exact frequency equation
given in (A1). For the numerical solution of this equation on a digital computer, first the
value of the determinant is obtained by the method of pivotal condensation and then, the
Regula–Falsi method is applied to find the roots of equation (A1), that is, the
dimensionless eigenfrequency parameters b�.

The second and third columns of Table 1 contain b� values obtained from (28) and
equation (35) for n=10. In other words, the figures in the second column are the
eigenvalues of the matrix A given by (28), whereas those of the third column are the roots
of the non-linear equation in b� given by (35). Both the eigenvalues and the roots are
obtained by using MATLAB version 3.5 k for MS-DOS on a PC 386.

In order to keep the dimensions of Table 1 small, n is chosen as 10. Despite small n,
it is seen from the comparison of the values from the first column with those of the second
and third columns, that alternative forms of the frequency equation yield very precise
approximations to the exact values. It is reasonable to expect that the dimensionless
eigenfrequencies b� obtained from (28) and (35) converge to those from the exact equation
if n goes to infinity. On the other side, the b� values from the second and third column are
practically the same. This is nothing else but the numerical justification of the fact that
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T 1

The dimensionless eigenfrequency parameters b� of the mechanical system in Figure 1

Solution of equation (A1) Result from equation (28) Solution of equation (35)

0·939349 0·941567 0·941567
1·473541 1·479536 1·479536
1·708197 1·710926 1·710926
3·284418 3·287373 3·287373
4·887227 4·888971 4·888971
5·321156 5·322953 5·322953
7·391101 7·392411 7·392412
7·965150 7·966345 7·966345
9·471977 9·473028 9·473028

11·009205 11·009356 11·009360
11·557778 11·558677 11·558680
13·646229 13·647037 13·647040
14·147440 14·147554 14·147550
15·736266 15·737029 15·737030
17·327662 17·328226 17·328230
17·827330 17·828097 17·828100
19·919095 19·919977 19·919980
20·462517 20·463045 20·463050
23·568217 23·568303 23·568300
26·708992 26·709077 26·709080
29·873562 29·874158 29·874160

both alternative forms of the frequency equation are actually identical. Thus, the argument
proposed in the present note has been confirmed.

6. 

This note is concerned with the natural vibration problem of a mechanical system,
consisting of two clamped–free axially vibrating elastic rods to which a double spring–mass
system is attached across the span. In addition to the exact equation in a previous study,
established by a boundary value problem formulation, two new alternative forms of the
frequency equation are derived, starting with the discretized system. The first alternative
enables one to determine the eigenfrequency parameters via the eigenvalues of a special
matrix, whereas the second alternative yields the eigenfrequency parameters as the roots
of a simple non-linear equation.
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