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FREE VIBRATION OF SYMMETRICALLY
LAMINATED SKEW PLATES
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(Received 22 July 1996, and in final form 30 May 1997)

A Ritz approach, developed for the analysis of the vibration of thin, laminated,
rectangular plates, is extended to apply to symmetrically laminated, composite, skew plates.
There is relatively little information available on the vibration of such skew plates, despite
their increasing use in the aerospace industry. A convergence study and comparisons with
results available from the literature indicate that the approach presented is reliable and
accurate. A fairly extensive set of numerical results is given in graphical form, illustrating
the influence of different lamination lay-ups, skew angles and edge conditions on the natural
frequencies and nodal patterns of a selection of plates.
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1. INTRODUCTION

The problem of the free vibration of plates has received a great amount of attention and
several hundred papers have appeared on the subject, as may be seen by inspection of the
excellent review articles by Leissa [1–7] and Yamada and Irie [8]. A significant number
of these papers have dealt with the vibration of thin, skew, isotropic plates, examples of
which are those by Barton [9], Nair and Durvasula [10], Bardell [11], Liew and Wang [12]
and by McGee and Leissa and their co-workers [13–17]. Laminated, composite, skew plates
have received relatively little attention, despite the increasing use of such components in
aircraft [18]. Krishnan and Despande [19] studied the free vibration of single layer and
cross ply, cantilever, skew plates by using the finite element method. Hosokawa et al. [20]
used a Green’s function approach to treat symmetrically laminated, fully clamped,
skew plates. The Ritz method was used by Kapania and Singhvi [21] to study the vibration
of tapered thickness, skew, laminated plates and by Kapania and Lovejoy [22] for
the analysis of thick cantilevered quadrilateral plates. Singh and Kumar [23] also used the
Ritz method to treat four-layer, angle ply, cantilever shallow shells of quadrangular
planform, including, as one case, a rhombic shell of zero curvature (a flat plate). Numerical
results are given in each of these papers for particular examples but a reasonably
comprehensive study of the influences of the boundary conditions, lay-ups and skew angles
on the vibration frequencies and mode shapes of plates has not been, substantially,
conducted.

In the present work, a Ritz approach, previously described as a hierarchical finite
element approach and applied to the free vibration analysis of isotropic rectangular [24]
and skew [11] plates by Bardell and to the free [25] and forced vibration [26] of laminated,
composite, rectangular plates by Han and Petyt, is extended to apply to the analysis of
symmetrically laminated, composite, skew plates. In order to establish the validity of the
approach, numerical results were computed for several plates for which results are

0022–460X/97/480367+24 $25.00/0/sv971198 7 1997 Academic Press Limited



a

b

y'

η

y

ξ

x, x'

c
β

α

o

.   . . 368

available in the literature. These include the cantilevered, isotropic plate, for which very
accurate results are available from the work of McGee et al. [13], in which special corner
functions are included in a Ritz solution to accommodate the stress singularity that occurs
at the re-entrant corner of the skew plate. The presence of the stress singularity significantly
reduces the rate of convergence of the solution in the absence of the corner functions,
as is discussed in detail in references [13–17]. The present approach does not include
corner functions but it is demonstrated that, even for highly skewed plates, where the
effect is most pronounced, high accuracy is still achieved. Fairly extensive results
were then generated for symmetrically laminated, composite, skew plates with various
boundary conditions, aspect ratios, skew angles and lamination lay-ups. It is not
feasible nor appropriate in an article of this type to present an exhaustive set of
results; the number of variables is too high and several of the parameters may be varied
infinitely. Consequently, an attempt has been made to provide a representative set of
results which serve to illustrate trends of behaviour of the plates with the variation
of certain parameters.

2. NUMERICAL APPROACH

The approach used in references [11, 24–26] is here generalized to apply to the vibration
analysis of symmetrically laminated, composite, skew plates. Consider a thin,
symmetrically laminated, skew plate with side lengths a and b as shown in Figure 1, x-o-y
is the skew or oblique co-ordinate system, while the rectangular one is x'-o-y'. j-c-h is the
non-dimensional, skew co-ordinate system, with c at the centre of the plate. Within the
skew system (x-o-y), the plate is bounded by the lines of x=0, x= a and y=0, y= b.
With the non-dimensional definition of

j=2x/a−1, h=2y/b−1, (1)

the edges of the plate in the skew co-ordinate system (j-c-h) are defined by j=−1,
j=1 and h=−1, h=1. For the linear, small amplitude, flexural vibration of
symmetrically laminated plates, there is no coupling between the out-of-plane and in-plane
displacements, thus only out-of-plane displacement w need be considered. This is taken
in the form

w= s
po

r

s
po

s

Wrs fr (j)fs (h), −1E j, hE 1, (2)

where Wrs are the generalized displacements, po is the number of the displacement
shape functions used in the j and h directions, respectively, and fs and fr are displacement
shape functions which each comprise two sets of polynomials. The first consists of four
cubic polynomials which are commonly used in the ordinary finite element method.

Figure 1. Skew plate and the co-ordinate systems.
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They are

f1 (j)=1/2−3j/4+ j3/4, f2 (j)=1/8− j/8− j2/8+ j3/8,

f3 (j)=1/2+3j/4− j3/4, f4 (j)=−1/8− j/8+ j2/8+ j3/8. (3)

The functions fr (h) (r=1, 2, 3 and 4) are the same with h replacing j. The second set
is Rodrigues’s form of the Legendre polynomials [27] and is generated from

fr(j or h)= s
r/2

n=0

(−1)n(2r−2n−7)!!
2nn!(r−2n−1)!

(j or h)r−2n−1, rq 4, (4)

where r!!= r(r−2) . . . (2 or 1), 0!!= (−1)!!=1, r/2 takes its integer part, and j

and h=−1 to 1. It can be seen that the order of the polynomials fr (j or h) generated
from equation (4) is (r−1). The first twenty functions are tabulated in the work by
Bardell [11].

It should be noted that the polynomials generated by equation (4) have both zero
displacement and zero slope at the two ends (j and h=−1 and 1) and hence contribute
only internally to the displacement field of the plate. The non-zero boundary displacements
of the element are controlled only by the first four displacement shape functions (3). This
feature provides significant convenience for the treatment of the various boundary
conditions.

The relationship of stress {sx sy txy}T and strain {ox oy gxy}T in the skew system for
the kth layer of the laminated plate is given by

8sx

sy

txy9=[Hk ]8 ox

oy

gxy9 (5)

where

[Hk ]= &sin a

0
0

cos a cot a

cosec a

−cot a

−2 cos a

0
1 '[Qk ]& 1

cot2 a

−2 cot a

0
cosec2 a

0

0
−cot a cosec a

cosec a ', (6)

in which the [Hk ] is the reduced stiffness matrix for the kth layer in the skew co-ordinate
system and [Qk ] is the reduced stiffness matrix for the kth layer in the rectangular
co-ordinate system [28]. Following the procedure given in reference [25], by simply
replacing [Qk ] with [Hk ], the equation of motion for a thin, symmetrically laminated, skew
plate can then be obtained in the form

[M]{q̈}+[K]{q}= {P} (37)

where [M] and [K] are the mass and stiffness matrices, respectively, and {q} and {P} are
vectors of generalized displacement, Wrs , and applied force, respectively. For free vibration
analysis {P}=0. The elements of the mass and stiffness matrices involve integrals of the
products of the shape functions and/or their derivatives and are formed by using the
computer symbolic manipulation package MAPLE [29]; they are not given here.

After establishment of the stiffness and mass matrices with any given number of
displacement shape functions po, the rows and columns in the matrices and vectors
corresponding to the constrained degrees of freedoms at the edges of the plate are then
deleted. This process is the same as that used in the standard or hierarchical finite element
approach.
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T 8

A comparison of frequency parameters Vi with the results from reference [20]. (PS present
study)

i
ZXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXXV

1 2 3 4 5
ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV ZXXCXXV

b [20] PS [20] PS [20] PS [20] PS [20] PS

0° 21·44 21·44 32·78 32·77 49·55 49·55 52·40 52·39 65·68 65·67
10° 20·06 20·06 33·20 33·20 47·09 47·09 51·77 51·77 63·28 63·28
20° 19·69 19·69 35·49 35·49 43·81 43·81 56·65 56·65 64·28 64·28
30° 20·61 20·61 40·39 40·39 42·96 42·96 63·81 63·81 70·82 70·82
40° 23·53 23·53 45·38 45·38 49·84 49·84 70·73 70·73 82·15 82·16

T 9

Comparison of fundamental frequency parameters K1 with the results from
reference [19], B.C.=F–C–F–F. (PS, present study)

b 0° 15° 30° 45°

[19] 1.75939 1.78926 1.92397 2.23240
PS (po=12) 1.76397 1.78896 1.92229 2.31894
PS (po=20) 1.76397 1.78895 1.92224 2.31848

3. NUMERICAL RESULTS

In order to establish confidence in the analysis and results, several convergence studies
are presented together with comparisons between results obtained using the present
analysis and values available from the literature. Subsequently, new results are presented
for plates with two different types of lay-up, for a variety of skew angles, aspect ratios and
combinations of boundary conditions. With the exception of two sets of results in the
comparison studies, the frequency parameters used throughout are Vi , where

Vi =(rhv2
i a4/D0)1/2, D0 =E1 h3/12(1− n12 n21), (7)

in which r is the average density of the plate through the thickness, vi is the frequency
of ith mode, the minor Poisson’s ratio n21 = (E2 /E1)n12, and E1 and E2 are the Young’s
moduli of elasticity along and perpendicular to the fibre direction, respectively. The
laminated plates treated in this paper are unidirectional fibre reinforced, symmetrically
laminated, flat plates with uniform thickness. All layers in a given plate have the same

T 10

Comparison with results of reference [23]. (a/b=1·0, a/h=100, PS present study)

b u Method V1 V2 V3 V4 V5

105° 15° [23] 1·0639 2·0762 5·3513 6·6153 8·4729
PS 1·0278 2·1072 5·7168 6·5542 8·5668

30° [23] 0·9671 2·0744 5·3986 6·2356 8·4168
PS 0·9428 2·1960 5·7422 6·1459 8·5746

120° 15° [23] 1·1267 2·2652 5·7041 7·1534 9·9549
PS 1·1165 2·2787 5·9661 7·2389 10·211

30° [23] 1·0675 2·2753 5·6874 6·8328 10·091
PS 1·0460 2·3661 5·5915 6·9066 10·344
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the details of which follow, with the first two being for the comparisons with previously
published data and the second two being for the new studies.

(1) Three-layer angle-ply plates. To compare with results given by Hosokawa et al. [20],
the three-layer, angle-ply ([u/− u/u], u=30°), graphite/epoxy plate used in reference [20]
is analysed. The material properties of each layer are: E1 =138 GPa, E2 =8·96 GPa,
G12 =7·1 GPa, n12 =0·30, where G12 is the in-plane shear modulus. In addition, a plate
considered by Krishnan and Desphande [19] is considered which has plies ([u/− u/u],
u=90°) with E1 /E2 =40, G12 /E2 =0·6 and n12 =0·25.

(2) Four-layer angle-ply plates. In order to compare with the work of Singh and
Kumar [23], the four-layer symmetrically laminated plate ([u/− u/− u/u], u=30°)
used in reference [23] is considered. The material elastic properties are: E1 /E2 =2·4474,
G12 /E2 =0·48458, n12 =0·23.

(3) Five-layer angle-ply plates. The five-layer angle-ply plates considered have lay-up
([u/− u/u/− u/u], u=0°, 15°, 30°, 45°) with the material elastic properties of
E1 /E2 =15·4, G12 /E2 =0·79, n12 =0·30. (It may be noted that for the case of u=0°,
the plate is orthotropic). This lamination has been used in the work on rectangular plates
by Chow et al. [30] and by Han and Petyt [25, 26].

(4) The 16-layer symmetrically laminated graphite/epoxy plate. The lay-up for this plate
is [45/−45/0/−45/45/45/0/45]sym . The material properties are E1 =173 GPa, E2 =7·2 GPa,
G12 =3·76 GPa, n12 =0·29. It should be mentioned that this plate satisfies the condition

Figure 3. Vi versus b curves for the 5-layer angle-ply and 16-layer plates, B.C.=F–F–F–F, a/b=1; (a) u=0°,
(b) u=15°, (c) u=30°, (d) u=45°, and (e) the 16-layer plate.
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of special orthotropy, (that is there is coupling between bending and twisting deformations)
and is used as an example in the data sheets of reference [31].

3.1.       

3.1.1. Isotropic plates
In order to investigate the consequence of the omission of corner functions for

accommodating the stress singularity which occurs at the re-entrant corner of skewed
cantilever plates, an isotropic rhombic plate (aspect ratio a/b=1) is considered. This
problem has been treated in detail by McGee et al. [13], who presented very accurate
results for plates with various skew angles. They showed that the rate of convergence of
the Ritz solution for the lower modes of vibration, particularly the fundamental, is
significantly reduced for highly skewed plates if the stress singularity is not accounted
for by the inclusion of special (corner) functions in the assumed displacement series.
The present solution, as with most Ritz solutions, does not include these functions.
A convergence study is presented in Table 1 for the first six modes of vibration for the
cantilever plate with skew angles 15, 45 and 75 degrees. The frequency parameter
employed, V*=Vt cos2 b, is equivalent to that used in reference [13] and the quantities
po and DOF are the number of displacement functions used in each direction in the present
solution and the corresponding degrees of freedom, respectively. The values in parentheses
() are those given by McGee et al. [13] as obtained by using I× J simple polynomials in
the displacement function plus N corner functions, resulting in (I× J+N) degrees of

Figure 4. Vi versus b curves for the 5-layer angle-ply and 16-layer plates, B.C.=F–F–F–F, a/b=2; (a) u=0°,
(b) u=15°, (c) u=30° (the points after b=50 are not shown for mode 3), (d) u=45°, and (e) the 16-layer plate.
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freedom. The last row in each section gives the lowest and hence most accurate result
(by virtue of the upper bound characteristic of the Ritz method) obtained by McGee
et al. The value of (I× J+N) used to compute the lowest values for the 15° case was
not specified but it was inferred from the text that it was probably (8×8+2), giving
66 DOF. Inspection of the table reveals that as either the skew angle or the mode number
increases, the rate of convergence of the present solution decreases. For the 15° case,
convergence is rapid and the most converged results are very close to those of McGee
et al. and superior in some cases. This would be expected as the effect of the stress
singularity is not significant for small skew angles [13] and many more terms were taken
in the present solution than in that by McGee et al. For the 45° case, it can be seen that
the rate of convergence of the present solution is reasonable but, for the first two modes,
a very large number of terms would need to be taken in order to arrive at the results
obtained with the corner functions. However, even for the worst case, the fundamental
mode, the percentage difference between the po=20 result and the corner function result
is only 0·07% which, from a practical viewpoint, is negligible. For modes 5 and 6, the
present values are lower and hence more accurate than those of McGee et al. For the 75°
case (an extremely skewed plate), the rate of convergence remains reasonable and the
agreement with the results from reference [13] is excellent. The difference for
the fundamental mode is 0·7% and for the worst case (mode 4) it is 1·8%. For mode 6,
the present solution is lower by 1%.

Figure 5. Vi versus b curves for the 5-layer angle-ply and 16-layer plates, B.C.=C–C–C–C, a/b=0·5;
(a) u=0°, (b) u=15°, (c) u=30°, (d) u=45°, (six modes plotted) and (e) the 16-layer plate.
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It is recognized that the use of corner functions in the present solution would enhance
the rate of convergence for some plates. However, for the purposes of this work, the
accuracy achieved in their absence was considered more than adequate, making the
reasonable assumption that the effect of the stress singularity will not be greatly magnified
for laminated plate problems.

It should be mentioned that only the cantilever case has been examined here but the
corner stress singularity occurs for other plates, such as simply supported or simply
supported/clamped skew plates, where it is the obtuse angle corners that are of concern
[16, 17]. It is believed that the present solution will behave in a manner similar to that
exhibited here and no further convergence studies were conducted for the isotropic plate.

3.1.2. Laminated plates
Three rhombic plates (a= b) having the 5- and 16-ply lay-up are considered for two

skew angles b=0° (rectangular plate) and b=60° (highly skewed plate). Two fibre
orientations are used for the 5-ply plates: u=0° (the orthotropic case) and u=30°. The
fully clamped (C–C–C–C) and cantilever (C–F–F–F) cases are treated and the first five
non-dimensional natural frequencies Vi are shown in Tables 2–7, as obtained by using
increasing numbers of polynomials po in the displacement series. It can be seen from
Tables 2–4 that the rate of convergence for the clamped plate is excellent, even for the
highly skewed case. Tables 5–7, for the cantilevered plate show that the rate of convergence
is very rapid for the rectangular case and reasonable for the highly skewed case, as would

Figure 6. Vi versus b curves for the 5-layer angle-ply and 16-layer plates, B.C.=C–C–C–C, a/b=1; (a) u=0°,
(b) u=15° (special case, with six modes plotted), (c) u=30°, (d) u=45°, and (e) the 16-layer plate.
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be expected from the isotropic plate study. All the frequency predictions, as expected
from a Ritz formulation, decrease monotonically with increase in the number of shape
functions used. The rate of convergence for the orthotropic 5-ply plates (u=0°) is higher
than for the u=30°, 5-ply plates, which in turn is higher than for the 16-layer plate.
In all instances, however, using po=20 appears to be quite adequate for an accurate
frequency prediction.

A comparison of the first five frequency parameters with those given in reference [20]
is shown in Table 8 for the 3-layer, angle-ply ([u/− u/u], u=30°), graphite/epoxy, fully
clamped, rhombic plate (a/b=1) with skew angle b=0 to 40° (40° is the maximum skew
angle used in reference [20]). The present solution results were obtained using both po=16
(144 DOF) and po=20 (256 DOF) and they agreed identically to the number of
figures given. They also agree almost identically with those from reference [20], where the
method used is very different from that used in this paper.

A second comparison is shown in Table 9, where the fundamental frequency parameters
K1 for 3-layer, cross-ply [0°/90°/0°] cantilever, rhombic plates are given as obtained from
the present study, using po=12 and 20 (with the numbers of DOF being 120 and
360, respectively), and as given by Krishnan and Deshpande [19]. The frequency parameter

K1 =Xv2
1 rha4/zD11 D22,

Figure 7. Vi versus b curves for the 5-layer angle-ply and 16-layer plates, B.C.=C–C–C–C, a/b=2; (a) u=0°,
(b) u=15°, (c) u=30°, (d) u=45°, and (e) the 16-layer plate.
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where D11 and D22 are the bending rigidities of the orthropic plate in the direction of the
fibres and perpendicular to that direction, respectively. The finite element method with
a lumped mass matrix is used in reference [19] and this does not guarantee an upper
or lower bound prediction. Transverse shear deflection is also included and hence the
solution is applicable to moderately thick plates. For the present comparison, the results
for the case a/h=100 are chosen from reference [19] as this corresponds to a thin plate.
It can be seen that the agreement between the sets of results from the two sources is very
good, giving further confidence in the present analysis.

A third comparison is shown in Table 10, where the first five frequency parameters for
the 4-layer, angle-ply, rhombic, cantilever plate, as obtained by Singh and Kumar [23]
using a Ritz approach with Bezier polynomials as the displacement functions, are given
together with those determined using the present solution. The formulation used in
reference [23] is applicable to moderately thick plates and the results quoted from this
reference are for the thin plate case, a/h=100. The agreement here is not as close as in
the previous two examples. Both methods should yield upper bounds which would suggest
that the present method tends to substantially overestimate the frequencies of the second
and third modes, particularly for the case b=105°. However, on further examination of
the results given in reference [23], where a comparison is made with a very accurate Ritz
solution by Qatu and Leissa [32] for a square plate with the same lay-up, it appears that
the analysis of reference [23] underestimates the frequencies of these two modes (and
several others). A comparison of results obtained using the present method and those given

Figure 8. Vi versus b curves for the 5-layer angle-ply and 16-layer plates, B.C.=S–S–S–S, a/b=1; (a) u=0°,
(b) u=15°, (c) u=30°, (d) u=45°, and (e) the 16-layer plate.
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by Qatu and Leissa (not presented here) showed close agreement, with the present solution
always giving slightly higher values, as anticipated from the upper bound nature of the
solution.

Based upon the preceding convergence and comparative studies, the authors believe the
present analysis and computational procedure to be reliable and to generate results of
reasonable to high accuracy. All further results presented in this paper were generated by
using po=20, for which the corresponding degrees of freedom for the F–F–F–F,
C–C–C–C, S–S–S–S, C–S–C–S, C–C–S–S and C–F–F–F plates considered are 400, 256,
324, 288, 288, and 360, respectively.

3.2.    -    

The relationships between the first few non-dimensional frequencies (Vi ) and the
skew angles (b) of the four different lay-up, 5-layer plates and the one 16-layer plate, with
the combinations of boundary conditions mentioned earlier, are now presented
graphically. For the F–F–F–F and C–C–C–C cases, the aspect ratios a/b=0·5, 1·0 and
2·0 are treated and, for the remainder (S–S–S–S, C–S–C–S, C–C–S–S and C–F–F–F), only
a/b=1·0 is considered.

In order to produce the Vi versus b curves, it was necessary to compute the eigen-
values at certain skew angles (b) and then to plot the curves point by point, joining the
points together to give continuous lines. This appears to be trivial but is complicated by
the fact that the lines so produced in some cases cross and in others ‘‘veer’’ away. It is

Figure 9. Vi versus b curves for the 5-layer angle-ply and 16-layer plates, B.C.=C–S–C–S, a/b=1; (a) u=0°,
(b) u=15°, (c) u=30°, (d) u=45°, and (e) the 16-layer plate.
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difficult in some instances to determine whether veering or crossing actually occurs.
Inspection of the smoothness of the curves and the nodal patterns in the vicinity of a
crossing or veering was used in order to arrive at the curves presented here. It was observed
that, in the vicinity of a crossing, the nodal patterns associated with the two frequencies
varied slowly with change of skew angle, whereas where veering occurred, as the two
curves approached each other, so the nodal patterns changes significantly with small
changes in skew angle, often bearing no resemblance to the ‘‘parent’’ nodal patterns,
which were restored as the curves were continued. (This veering/crossing phenomenon is
observed in many systems and has been discussed in some detail by Perkins and Mote [33]).

The Vi versus b curves presented in all figures in this paper are intended to represent
the first five modes of vibration starting from the rectangular plate (that is at b=0°).
However, with increase in skew angle b, the highest of these five modes may no longer
be represented by the fifth curve at that particular skew angle. In this case, the curves
corresponding to the modes other than these five are also plotted partially. By presenting
the results in this way, the figures not only show the change of the first five modes (as
defined at b=0°) with increase in skew angle, but also give a picture of higher mode curves
crossing. It should be mentioned that, for the purpose of discussion, the curves in the
figures are assumed to be numbered in ascending order as they appear at b=0°. For
example, the third curve in a particular figure is identified as the one that starts as the third
curve at b=0° and it may not represent the third lowest frequency at a higher skew angle.
The different symbols and classes of lines used in the figures are employed simply to aid

Figure 10. Vi versus b curves for the 5-layer angle-ply and 16-layer plates, B.C.=C–C–S–S, a/b=1; (a) u=0°,
(b) u=15°, (c) u=30°, (d) u=45°, and (e) the 16-layer plate.
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Figure 11. Vi versus b curves for the 5-layer angle-ply and 16-layer plates, B.C.=C–F–F–F, a/b=1; (a) u=0°,
(b) u=15°, (c) u=30°, (d) u=45°, and (e) the 16-layer plate.

the reader to track the frequencies for the various modes and do not identify a particular
mode sequence.

Figures 2–4 show the curves for the fully free plates. It may be observed that, for the
5-layer plates with u=0°, almost all of the frequency parameters illustrated tend to
increase with skew angle b over the range 0°–70°, the most notable exception being the

Figure 12. Nodal patterns for the 5-layer angle-ply plate (u=0°), a/b=1·0, B.C.=C–C–C–C.
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Figure 13. Nodal patterns for the 5-layer angle-ply plate (u=30°), a/b=1·0, B.C.=C–C–C–C.

fourth curve for a/b=2 (Figure 4(a)). As the fibre orientation angle increases (Figures 2
to 4, (b, c and d)), the behaviour of the curves becomes more complex. Some curves exhibit
peaks at particular fibre angles and there is an increasing tendency for crossings of the
curves to occur. No clear trend is indicated for the variation of frequency parameter with
fibre angle for a given aspect ratio a/b, this being somewhat dependent upon the particular
value of skew angle b at which the comparison is being made. As a/b increases, for other
quantities being constant, the frequency parameter increases, as would be anticipated since
V is based upon side length a, which remains constant while b is decreased, resulting in
a plate of smaller area which is correspondingly stiffer. The curves for the 16-layer plates
are shown in Figures 2–4(e) and these somewhat resemble those obtained for the u=30°
or 45° plates.

Figures 5–7 show the curves for the fully clamped plates (C–C–C–C). Each set of curves
has similar characteristics. In almost all cases, the frequency parameters increase relatively
slowly with increase in skew angle over approximately the first 45°, after which a relatively
rapid increase is observed. A few of the curves exhibit slight decreases in frequency
parameter over the lower skew angles, after which they too increase rapidly with b. The
rapid increase in frequency parameter with increase of skew angle above approximately

Figure 14. Nodal patterns for the 16-layer angle-ply plate, a/b=1·0, B.C.=C–C–C–C.
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Figure 15. Nodal patterns for the 5-layer angle-ply plate (u=0°), a/b=1·0, B.C.=C–F–F–F.

45° is largely attributable to the fact that the plate size decreases with increase in skew
angle; the edges approach each other and considerably stiffen the plate through the
clamping effect. There is no clear trend in the variation of the frequency parameter with
the change in fibre orientation u; the frequencies for some modes for a particular plate
decrease with increase in u (for example mode 1, a/b=0·5, Figure 5) and others increase
(for example, mode 5, Figure 5). The frequency parameters for the plates with increasing
a/b all tend to increase, which is again mainly attributable to the stiffening effect of
decreasing length b while maintaining width a constant.

In Figures 8–10, the respective curves are shown for rhombic plates (a/b=1) with all
edges simply supported (S–S–S–S), two parallel edges clamped and the other two simply
supported (C–S–C–S), and two adjacent edges clamped and the other two simply
supported (C–C–S–S). Apart from the actual magnitude of the frequency parameters, these
all exhibit similar characteristics to the equivalent curves for the rhombic clamped plate
(Figure 6). Clearly, the more clamped edges that exist, the higher the frequencies of the
plate. For the (C–S–C–S) and (C–C–S–S) plates, the sets of curves are very similar but
not identical. Although it is not easy to see without overlaying equivalent curves for each
plate, it is found that the fundamental frequency for the (C–S–C–S) plate is slightly lower

Figure 16. Nodal patterns for the 5-layer angle-ply plate (u=30°), a/b=1·0, B.C.=C–F–F–F.
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than for the equivalent (C–C–S–S) plate for all skew angles and all fibre orientations.
Certain other curves are almost identical for the plates with two different boundary
conditions (such as those for mode 2), while some are less similar in their behaviour.

The last set of curves shown in this section (Figure 11) is that for the rhombic
cantilevered plate (C–F–F–F). Here, for the 5-layer plates, is may be seen that there is a
general tendency for the frequency parameter to increase with skew angle, although the
fundamental frequency appears to be relatively insensitive. As the fibre angle is increased,
so there is an increased tendency for mode crossings to occur, as exhibited by the fully
free plate and, to a lesser extent, by the supported plates. The behaviour of the 16-layer
plate tends to resemble that of the 5-layer 30° fibre angle, plate.

3.3.  

Nodal patterns are shown in Figures 12–14 for rhombic fully clamped plates and in
Figures 15–17 for cantilevered plates, these being support conditions likely to be
encountered in practice. The results are for two 5-layer plates (u=0° and 30°) and the
16-layer plate. The fundamental mode in each case exhibits no nodal lines and is thus
omitted; the patterns plotted correspond to modes 2–5 in increasing value of frequency.
Since, in most cases, the change of the mode shape is relatively small when the skew angle
varies from 0° to 30°, no nodal pattern is presented in the range of 0°Q bQ 30°, although
some were generated to help in the construction of the Vi versus b curves. The skew angles
at which the nodal lines are plotted are b=0°, 30°, 45°, 60° and 70°. Where a ‘‘crossing’’
or ‘‘veering’’ has occurred in the frequency parameter/skew angle curves, this is indicated
in the nodal pattern figures by arrows.

The nodal patterns shown in Figures 12 correspond to the frequency parameter/skew
angle curves shown in Figure 6(a). Inspection of these two figures shows none of the
first three modes exhibits crossing or veering tendencies. For the fourth and fifth mode,
it may be seen from Figure 12 that a crossing takes place between b=0° and 30°, this
may be confirmed by inspection of Figure 6(a). Between b=30° and 60°, a sixth
mode (barely perceptible on the scale of Figure 6(a)) comes into play, causing two
crossings, one between b=30° and 45° and the other between b=45° and 60°.
Examination of Figures 6(c) and 13 further illustrates the crossing and veering phenomena,
where it can be clearly seen that crossing takes place between the third and fourth modes
and between the fifth and sixth modes in the range b=45° to 60° and that veering takes

Figure 17. Nodal patterns for the 16-layer plate a/b=1·0, B.C.=C–F–F–F.
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place between the fourth and fifth modes in the range b=0° to 30°. Inspection of the
pairs of Figures 14 and 6(e), 15 and 8(a), 16 and 8(c), and 17 and 8(e) permits
similar correlations to be made between the changes in order of nodal patterns and the
crossing and veering exhibited in the frequency parameter/skew angle curves. (In order to
confirm the validity of the nodal patterns, the mode shapes for a clamped and a cantilever,
5-layer plate, with fibre angle u=30° and skew angle b=70°, were generated using the
commercial finite element package ABAQUS [34] with an 8×8 mesh of 8-noded shell
elements and compared with the patterns shown in Figures 13 and 16. Close agreement
was achieved for all nodal patterns given except for the fifth mode of the clamped case
at b=70°, where three nodal lines similar to the b=60° case were obtained using
ABAQUS. The agreement between the natural frequency parameters was also close.)

In general, the nodal patterns of the laminated skew plates shown in Figures 12–17 are
somewhat more complicated than those of isotropic skew plates with the same boundary
conditions which are illustrated in references [10] and [11].

4. CONCLUDING REMARKS

A Ritz approach has been presented for the study of the free vibration of laminated,
composite, skew plates with various boundary conditions, laminations, and side ratios. The
convergence rate for the solution has been shown to be reasonably fast and, from
comparison with earlier published work, the accuracy and validity of the approach verified.
Reasonably extensive numerical results have been presented and the authors believe
this to be the most comprehensive investigation on the subject to date. The method
presented can be used for the prediction of the free vibration characteristics of arbitrarily
symmetrically laminated, skew plates with any combinations of clamped, simply supported
and free boundary conditions or corner point supports (not treated here). Recognizing that
the approach described is also a single hierarchical finite element solution, if more than
one element were to be used, plates involving stepped thickness, line supports, interior
point supports and/or cut-outs and plates of different geometries may be studied. The
method may be extended to apply to the geometrically non-linear vibration analysis
problem, as has been demonstrated for the rectangular plate case by Han and Petyt
[35, 36].
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