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1. 

In a recent study, Smith and Carpenter [1] applied Lighthill’s acoustic analogy to model
the sound radiated by a volume of jet-type shear layer turbulence and calculated the basic
directivity patterns of ensemble-averaged noise generated by randomly orientated
quadrupoles near a rigid surface. The patterns for the two types of quadrupole, namely
longitudinal and lateral quadrupoles, have been shown to be very different from one
another and also from the free field case. Their analysis, however, is confined to the case
of an acoustically rigid surface. Asymptotic expressions for the sound field of an arbitrarily
orientated dipole, and quadrupole, in the vicinity of an impedance boundary have been
developed recently [2–4]. The sound field due to an arbitrarily orientated quadrupole is
expressed in a convenient form for calculating the ensemble-averaged sound field
efficiently. In this communication the theory is used to predict the effect of an impedance
plane on the ensemble averaged directivity patterns of quadrupole sources. The analysis
is restricted to the case of low subsonic jet noise.

2.      

The sound pressure of an arbitrarily orientated quadrupole above a surface with an
acoustic surface admittance of b can be expressed in an asymptotic form as [3]
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where Rp , F(w) and w are, respectively, the plane wave reflection coefficient, the boundary
loss factor and the numerical distance given by

Rp =(cos us − b)/(cos us + b), (1b)

F(w)=1+ ip1/2w e−w2 erfc (−iw), w=+(1
2 ikR2)1/2(b+cos us ) (1c, d)

with us being the angle of incidence. (For detailed discussions on sound propagation from
a point source above an impedance plane see references [5, 6].)

The quantity R
 s 0 (sin mp cos cs , sin mp sin cs , cos mp ) may be regarded as the unit vector
that characterizes the direction of the surface wave pole. The angle cs is the azimuthal angle
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of the line joining the image source to the receiver and the complex angle mp is determined
by cos mp + b=0. The quantities R1 and R2 are the distances from the source and the image
source to the receiver respectively, and R
 1 and R
 2 are the corresponding unit vectors
pointing radially outward from the quadrupole and image centres to the receiver points;
see Figure 1(a). The direction cosines m and l are vectors denoting the direction of the
quadrupole axis and its constituent dipoles respectively; see Figure 1(b). They are given by

l=(sin gl cos cl , sin gl sin cl , cos gl ) (2)

and

m=(sin gm cos cm , sin gm sin cm , cos gm ), (3)

where gi and ci are the polar and azimuthal angles respectively. For a longitudinal
quadrupole the two vectors are parallel and for a lateral one they are perpendicular. In
the following calculations, a two-parameter impedance model [7] is used, where the
normalized specific admittance, b of the ground is given by

1/b=0·436zse /f+i[0·436zse /f+19·48(ae /f )], (4)

where f is frequency, and se and ae are the effective flow resistivity and effective rate of
change of porosity with depth, respectively. This model applies to a rigid porous ground
in which the porosity decreases with depth in an exponential form. It has been used with
tolerable success to fit excess attenuation data taken indoors and outdoors. The parameter
values for se and ae are assumed to be 100 kPa s m−2 and 20 m−1 in all calculations. These
values are typical of a grass-covered ground.

Figure 1. (a) The source–receiver geometry, with us being the incident angle; (b) the two basic types of
quadrupole, a longitudinal quadrupole and a lateral quadrupole. The directions of the arrows indicate the
orientation of the dipole axis (l) and the quadrupole axis (m).
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3. -      

The asymptotic solution for an arbitrarily orientated quadrupole may be applied to
predict jet noise above an impedance ground. Here, the primary concern is with the
fundamental interference effects due to an impedance ground. The following calculations
are for the sound fields due to longitudinal and lateral quadrupoles.

First to be shown are the polar plots (in the plane of y=0) of the far field sound
pressures due to a longitudinal quadrupole and a lateral quadrupole above an impedance
ground (solid line) and a rigid boundary (dotted line). The source is 0·11 m above the
ground and the frequency is 1000 Hz. In Figures 2(a) and 2(b) it is shown that the sound
fields due to a longitudinal and a lateral quadrupole above a finite impedance ground are
significantly different from those above a rigid plane.

The ensemble-averaged intensity I1 (u) of a randomly orientated longitudinal quadrupole
can be calculated by [1]
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In the case of a rigid surface (b=0) the integral (5) can be evaluated explicitly in the far
field to give

I1 (u� )=K1 {[cos4 u� − 1
4 sin4 u� +1− 8

3 sin2 u� cos2 u� ] cos2 (kzs cos u� )+ 4
3 sin2 u� cos2 u� }, (6)

with k being the wavenumber and zs the source height. The constant parameter K1 is a
function of r, R, c and k. The exact value of K1 is less important since one is interested
in the directivity patterns for I1 (u� ) (the curly bracket of equation (6)). The far field intensity
specified in equation (6) furnishes a small correction, cos4 u� − 1

4 sin4 u� , to the result obtained

Figure 2. The directivity pattern, the x–y plane, of the far field sound pressure due to a quadrupole above
rigid surface (dashed lines) and an impedance surface (solid lines). The frequency is 1000 Hz and the source is
0·11 m above the surface. (a) A longitudinal quadruple with l and m perpendicular to the surface; (b) a lateral
quadrupole with l perpendicular and m parallel to the surface.
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Figure 3. The polar plot in the x–z plane of an ensemble-averaged far field intensity of a randomly orientated
quadrupole above a rigid boundary (dashed line) and an impedance boundary (solid line). The frequency in all
cases is 1000 Hz. (a) A lateral quadrupole with kzs =0; (b) lateral quadrupole with kzs =2; (c) a lateral
quadrupole with kzs =8; (d) a longitudinal quadrupole with kzs =0; (e) a longitudinal quadrupole with kzs =2;
(f) a longitudinal quadrupole with kzs =8.
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by Smith and Carpenter [1]. The formula given in equation (6) also agrees with the results
obtained by integrating equation (5) numerically.

It is slightly more complicated to calculate the ensemble average of the far field intensity
for a randomly oriented lateral quadrupole because the polar and azimuthal angles are
determined according to l · m=0, or in other words

sin gl sin gm cos (cl −cm )+ cos gl cos gm =0. (7)

Consequently, three angles are needed to specify fully the orientation of a lateral
quadrupole. In the numerical analysis, gm , cm and cl are chosen and the polar angle gl can
be determined explicitly through the use of equation (7). The ensemble average of the far
field intensity for a lateral quadrupole can be determined according to

I2 (u� )=
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Due to the presence of the ground wave term, it is generally not possible to express the
far field intensities in closed form analytic expressions for the case of an impedance ground.
Nevertheless, it is relatively simple to evaluate the double integral of equation (5) and the
triple integral of equation (8) numerically by standard quadrature routines. The details of
this numerical implementation will not be described here.

Using equations (5) and (8), one can compute the ensemble intensity due to longitudinal
and lateral quadrupoles. The comparisons are made for the far field intensities above an
impedance ground (solid line) and a rigid plane (dashed line) in Figures 3(a)–(f) for
different values of kzs . The far field intensities above an impedance ground are different
from those above a rigid plane for both types of quadrupoles. Powell [8] showed that the
amplitude of the far field intensity is minimum at 45° to a plane surface for lateral
quadrupoles close to a rigid plane. Figure 3(b), for example, suggests that this will not be
the case for an elevated source and for the source above an impedance ground. The exact
position of the minimum intensity depends on the source height, frequency and the
impedance of the ground. The most significant influence of the impedance of ground
surface on the directivity is the near cancellation of the intensity field at the grazing angle.
This is the same for both longitudinal and lateral quadrupole averages. The other
important effect on the directivity pattern of the impedance surface is that the pattern is
explicitly dependent on the frequency and the source height rather than the product kzs .
This is caused by the frequency dependence of the reflected wave term.
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